Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-06

What is This Course About? What Not?

- Calendar description:

Introduction to logic and proof techniques for practical reasoning: propositional logic, predicate logic, structural induction; rigorous proofs in discrete mathematics and programming.

- Calculus is the mathematics of continuous phenomenaphysical sciences, traditional engineering — used for specifying bridges; used for justifying bridge designs.
- Discrete Mathematics is
- the math of data- whether complex or big
- the math of reasoning-logic
- the math of some kinds of AI- machine reasoning
- the math of specifying software
- Logical Reasoning is
- used for justifying software designs
- used for proving software implementations correct

Goals and Rough Outline

- Understand the mechanics of mathematical expressions and proof
- starting in a familiar area: Reasoning about integers
- Develop skill in propositional calculus
- "propositional": statements that can be true or false, not numbers
- "calculus": formalised reasoning, calculation - $\mathbb{B}, \neg, \wedge, \vee, \Rightarrow, \ldots$
- Develop skill in predicate calculus
- "predicate": statement about some subjects. - \quad, \exists
- Develop skill in using basic theories of "data mathematics"
- Sets, Functions, Relations
- Sequences, Trees, Graphs
- .. skill development takes time and effort . . .
- Introduction to reasoning about (imperative) programs
- Encounter mechanised discrete mathematics
- Introduction to mechanised software correctness tools
- Formal Methods: increasingly important in industry

The Importance of Proof in CS

ACM's Computer Science Curricula recognize proofs as one of several areas of mathematics that are integral to a wide variety of sub-fields of computer science:
...an ability to create and understand a proof —either a formal symbolic proof or a less formal but still mathematically rigorous argument - is important in virtually every area of computer science, including (to name just a few) formal specification, verification, databases, and cryptography.

ACM/IEEE: Computer Science Curricula 2013, p. 79
"Mathematically rigorous" - "if I really needed to formalise it, I could."

- Rigorous (informal) proofs (e.g. in LADM)
strive to "make the eventual formalisation effort minimal".
- There is value to readable proofs, no matter whether formal or informal.
- There is value to formal, machine-checkable proofs, especially in the software context, where the world of mathematics is not watching.

Strive for readable formal proofs!

COMPSCI 1DM3 Final 1(a)

Lemma "F1(a)": $(\neg q \wedge(p \Rightarrow q)) \Rightarrow \neg p$
Proof:
$(\neg q \wedge(p \Rightarrow q)) \Rightarrow \neg p$
$\equiv\langle$ "Material implication" \rangle
$(\neg q \wedge(\neg p \vee q)) \Rightarrow \neg p$
$\equiv\langle$ "Absorption" \rangle
$(\neg q \wedge \neg p) \Rightarrow \neg p$
$\equiv\langle$ "De Morgan" \rangle
$\neg(q \vee p) \Rightarrow \neg p$
$\equiv\langle$ "Contrapositive" \rangle
$p \Rightarrow q \vee p$
$\equiv\langle " W e a k e n i n g "\rangle$
true

Lemma "F1(a)": $(\neg q \wedge(p \Rightarrow q)) \Rightarrow \neg p$
Proof:

$$
(\neg q \wedge(p \Rightarrow q)) \Rightarrow \neg p
$$

$\equiv\langle$ "Material implication" \rangle
$\neg(\neg q \wedge(\neg p \vee q)) \vee \neg p$
$\equiv\langle " D e$ Morgan" \rangle
$\neg \neg q \vee(\neg \neg p \wedge \neg q) \vee \neg p$
$\equiv\langle$ "Double negation" \rangle

$$
q \vee(p \wedge \neg q) \vee \neg p
$$

$\equiv\langle " A b s o r p t i o n "\rangle$
$q \vee p \vee \neg p$
$\equiv\langle$ "Excluded middle" \rangle
$q \vee$ true
$\equiv\langle "$ Zero of \vee " \rangle
true

Lemma "F1(b)": $(\exists x \bullet P \Rightarrow Q) \equiv(\forall x \bullet P) \Rightarrow(\exists x \bullet Q)$
Proof:
$(\exists x \bullet P \Rightarrow Q)$
$\equiv\langle$ "Material implication" \rangle
$(\exists x \bullet \neg P \vee Q)$
$\equiv\langle$ "Distributivity of \exists over \vee " \rangle
$(\exists x \bullet \neg P) \vee(\exists x \bullet Q)$
$\equiv\langle$ "Generalised De Morgan" \rangle
$\neg(\forall x \bullet P) \vee(\exists x \bullet Q)$
$\equiv\langle$ "Material implication" \rangle
$(\forall x \bullet P) \Rightarrow(\exists x \bullet Q)$

First Tool: CalcСheck

- CalcCheck: A proof checker for the textbook logic
- CalcCheck analyses textbook-style presentations of proofs
- CalcCheck ${ }_{\text {Web }}$: A notebook-style web-app interface to CalcCheck
- You can check your proofs before handing them in!
- Will be used in exams!
— initially with proof checking turned off...
... but syntax checking left on
- Will be used in exams
- as far as possible...

You need to be able to do both:

- Write formalisations and proofs using CALCCHECK
- Write formalisations and proofs by hand on paper
(Firefox and Chrome can be expected to work with CALCCHECK $_{\text {Web }}$.
Safari, Edge, IE not necessarily.)

From the LADM Instructor's Manual

Emphasis on skill acquisition:

- "a course taught from this text will give students a solid understanding of what constitutes a proof and a skill in developing, presenting, and reading proof."
- "We believe that teaching a skill in formal manipulation makes learning the other material easier."
- "Logic as a tool is so important to later work in computer science and mathematics that students must understand the use of logic and be sure in that understanding."
- "One benefit of our new approach to teaching logic, we believe is that students become more effective in communicating and thinking in other scientific and engineering disciplines."
- "Frequent but shorter homeworks ensure that students get practice"

Consciously departing from existing mechanised logics:

- "Our equational logic is a "People Logic", instead of a
"Machine Logic"." •CALCCHECK mechanises this "People Logic"

```
(11.5) }S={x|x\inS:x
```

According to axiom Extensionality (11.4), it suffices to prove that $v \in S \equiv v \in\{x \mid x \in S: x\}$, for arbitrary v. We have,

```
    v\in{x | x\inS:x}
= \langleDefinition of membership (11.3)\rangle
    ( }\existsx|x\inS:v=x
= \langleTrading (9.19), twice \rangle
    ( }\existsx|x=v:x\inS
    < One-point rule (8.14) >
    v\inS
Theorem (11.5): S = {x | x E S • x }
Proof:
    Using "Set extensionality" (11.4):
        For any `v`:
        v \in{x| x E S • x }
            ={ "Set membership" (11.3) )
```



```
        = ("Trading for ق" (9.19) )
            (\exists x | x = v • x E S)
        = ("One-point rule for G" (8.14), substitution)
        v < S
```


Note:

1. The calculation part is transliterated into Unicode plain text (only minimal notation changes).
2. The prose top-level of the proof is formalised into Using and For any structures in the spirit of LADM

From the LADM Instructor's Manual: "Some Hints on Mechanics"

- "We have been successful (in a class of 70 students) with occasionally writing a few problems on the board and walking around the class as the students work on them."
- COMPSCI\&SFWRENG 2DM3: ≈ 240 students in 2016, 360 in 2020
- COMPSCI 2LC3: Over 180 students in 2021; over 200 in 2023
- Tutorials normally have 20-40 students and use this approach, with students working on their computers
— this still worked with online course delivery
- "Frequent short homework assignments are much more effective than longer but less frequent ones. Handing out a short problem set that is due the next lecture forces the students to practice the material immediately, instead of waiting a week or two."
- Since 2018, giving homework up to twice per week
- Only feasible due to online submission and autograding
- Clear improvement in course results

From the LADM Instructor's Manual: "Some Hints on Mechanics" (ctd.)

- "There is no substitute for practice accompanied by ample and timely feedback"
- Most "timely feedback" is provided by interaction with CALCCHECK ${ }_{\text {Web }}$
- Autograding for homework and assignments produces some additional feedback
- CALCCHECK is intentionally a proof checker, not a proof assistant
- Providing ample TA office hours (and now a "Course Help" channel) helps students overcome roadblocks.
- "We tell the students that they are all capable of mastering the material (for they are)."
- ... and CALCCHECK homework makes more of them actually master the material.

Organisation

- Schedule
- Grading
- Exams
- Avenue
- Course Page: http://www.cas.mcmaster.ca/~kahl/CS2LC3/2023/
- check in case of Avenue and MSTeams outage!
- See the Outline (on course page and on Avenue)
- Read the Outline!

Schedule

	Mon	Tue	Wed	Thu	Fri
${ }^{8: 30}{ }_{-}-10: 20$	T 3	T 5	T 1		
$10: 30-11: 20$					T 2
$11: 30-12: 20$	Lecture		Lecture		T 2
$13: 30-14: 20$					Lecture
	Office hour				
$14: 30-16: 20$				T 4	
$16: 30-18: 20$					

- Lectures: attend!, take notes!
- 2-hour Tutorials (starting Thursday, September 7):
- Discuss student approaches to "Exercise" questions.
- TA office hours: TBA
- Studying and Homework: About 2-3 hours per lecture
- reading the textbook, writing proofs in $\mathrm{CALCCHECK}_{\text {Web }}$

Grading

- Homework, from one lecture to the next — in total: 10\%
- The weakest 2 or 3 homeworks are dropped (see outline)
- MSAFs for homework are not processed
- Roughly-weekly assignments - in total: $\mathbf{1 6 \%}$
- The weakest 1 or 2 assignments are dropped (see outline)
- MSAFs for assignments are not processed
- 2 Midterm Tests, closed book, on CalcCheck $_{\text {Web }}$ / on paper, each:
- $\mathbf{1 5 \%}$ if not better than your final
- 20% if better than your final

- in total at least: $\quad \mathbf{4 0 \%}$	
- in total up to:	$\mathbf{3 0 \%}$

- Deferred midterms may be oral

$=100 \%$
- Possible bonus assignments and other bonus marks
- only count if you passed the course

Exams

- Exercise questions, assignment questions, and the questions on midterm tests, and on the final -
- will be somewhat similar...
- All tests and exams are closed-book.
- The main difference to open-book lies in how you prepare...
- Knowledge is important:

Without the right knowledge, you would not even know what to look up where!

- You need to be able and prepared to do both:
- Write formalisations and proofs using CALCCHECK
- Write formalisations and proofs by hand on paper
- Know your stuff!
- ... and not only in the exams ...
— . . . and not only for this term
— . . similar to learning a new language

The Language of Logical Reasoning

The mathematical foundations of Computing Science involve language skills and knowledge:

- Vocabulary: Commonly known concepts and technical terms
- Syntax/Grammar: How to produce complex statements and arguments
- Semantics: How to relate complex statements with their meaning
- Pragmatics: How people actually use the features of the language

> Conscious and fluent use of the language of logical reasoning is the foundation for
> precise specification and rigorous argumentation in Computer Science and Software Engineering.

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-06
Part 2: Expressions and Calculations

Calculational Proof Format

	E_{0}
$=$	$\left\langle\right.$ Explanation of why $\left.E_{0}=E_{1}\right\rangle$
	E_{1}
$=$	$\left\langle\right.$ Explanation of why $\left.E_{1}=E_{2}\right\rangle$
	E_{2}
$=$	$\left\langle\right.$ Explanation of why $\left.E_{2}=E_{3}\right\rangle$
	E_{3}

This is a proof for:

$$
E_{0}=E_{3}
$$

Calculational Proof Format
$\begin{aligned} & E_{0} \\ = & \left\langle\text { Explanation of why } E_{0}=E_{1}\right\rangle \\ & E_{1} \\ = & \left\langle\text { Explanation of why } E_{1}=E_{2}\right\rangle \\ & E_{2} \\ = & \left\langle\text { Explanation of why } E_{2}=E_{3}\right\rangle \\ & E_{3} \end{aligned}$

The calculational presentation as such is conjunctional: This reads as:

$$
E_{0}=E_{1} \quad \wedge \quad E_{1}=E_{2} \quad \wedge \quad E_{2}=E_{3}
$$

Because = is transitive, this justifies:

$$
E_{0}=E_{3}
$$

LADM 1.1, p. 7

- A constant (e.g., 231) or variable (e.g., x) is an expression
- If E is an expression, then (E) is an expression
- If \circ is a unary prefix operator and E is an expression, then $\circ E$ is an expression, with operand E.
For example, the negation symbol - is used as a unary prefix operator, so - 5 is an expression.
- If \otimes is a binary infix operator and D and E are expressions, then $D \otimes E$ is an expression, with operands D and E.
For example, the symbols + and - are binary infix operators, so $1+2$ and $(-5) \cdot(3+x)$ are expressions.

Syntax of Conventional Mathematical Expressions

- A constant (e.g., 231) or variable (e.g., x) is an expression
- If E is an expression, then (E) is an expression
- If \circ is a unary prefix operator and E is an expression, then $\circ E$ is an expression, with operand E.
- If \otimes is a binary infix operator and D and E are expressions, then $D \otimes E$ is an expression, with operands D and E.

The intention of this is that each expression is at least one of the following alternatives:

- either some constant
- or some variable
- or some simpler expression in parentheses
- or the application of some unary prefix operator
to some simpler expression
- or the application of some binary infix operator
to two simpler expressions

Why is this an expression?

$$
2 \cdot 3+4
$$

- If \otimes is a binary infix operator and D and E are expressions, then $D \otimes E$ is an expression, with operands D and E.
- or the application of some binary infix operator to two simpler expressions

Which expression is it? Why?

\Longrightarrow The multiplication operator \cdot has higher precedence than the addition operator + .

Table of Precedences

- $[x:=e]$ (textual substitution) (highest precedence)
- . (function application)
- unary prefix operators $+,-, \neg, \#, \sim, \mathcal{P}$
- **
- . $/ \div \bmod \operatorname{gcd}$
- + - $\cup \cap \times$ ○ •
- $\downarrow \uparrow$
- \#
- $\triangleleft \triangleright$
$\bullet=\langle \rangle \in \subset \subseteq$ (conjunctional)
- $\vee \wedge$
$\bullet \Rightarrow \Leftarrow$
$\bullet \equiv$
(lowest precedence)
All non-associative binary infix operators associate to the left, except $* *, \triangleleft, \Rightarrow, \rightarrow$, which associate to the right.

Why are these expressions? Which expressions are these?
(1) 5-6+7

(2) $a+b-c$

The operators + and - associate to the left, also mutually.

Associativity versus Association

- If we write $a+b+c$, there appears to be no need to discuss whether we mean $(a+b)+c$ or $a+(b+c)$, because they evaluate to the same values:

$$
(a+b)+c=a+(b+c) \quad \text { "+" is associative }
$$

- If we write $a-b-c$, we mean $(a-b)-c$:
"-" associates to the left $9-(5-2) \neq(9-5)-2$
- If we write $a^{b^{c}}$, we mean $a^{\left(b^{c}\right)}$:
exponentiation associates to the right $\quad 2^{\left(3^{2}\right)} \neq\left(2^{3}\right)^{2}$
- If we write $a * * b * * c$, we mean $a * *(b * * c)$:
" $* *$ " associates to the right
- If we write $a \Rightarrow b \Rightarrow c$, we mean $a \Rightarrow(b \Rightarrow c)$:
$" \Rightarrow$ " associates to the right $F \Rightarrow(T \Rightarrow F) \neq(F \Rightarrow T) \Rightarrow F$

An Equational Theory of Integers - Axioms (LADM Ch. 15)
(15.1) Axiom, Associativity: $\quad(a+b)+c=a+(b+c)$
$(a \cdot b) \cdot c=a \cdot(b \cdot c)$
(15.2)

Axiom, Symmetry: $\quad a+b=b+a$
$a \cdot b=b \cdot a$
(15.3) Axiom, Additive identity: $\quad 0+a=a$
$a+0=a$
(15.4) Axiom, Multiplicative identity: $1 \cdot a=a$

$$
a \cdot 1=a
$$

Axiom, Distributivity: $\quad a \cdot(b+c)=a \cdot b+a \cdot c$

$$
\begin{equation*}
(b+c) \cdot a=b \cdot a+c \cdot a \tag{15.5}
\end{equation*}
$$

(15.13) Axiom, Unary minus:

$$
a+(-a)=0
$$

(15.14) Axiom, Subtraction: $a-b=a+(-b)$

An Equational Theory of Integers - Axioms (СадсСнеск)

Declaration: \mathbb{Z} : Type
Declaration:_+_: $\mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}$
Declaration:__: $\mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}$
Axiom (15.1) (15.1a) "Associativity of + ": $(a+b)+c=a+(b+c)$
Axiom (15.1) (15.1b) "Associativity of $\cdot ":(a \cdot b) \cdot c=a \cdot(b \cdot c)$
Axiom (15.2) (15.2a) "Symmetry of + ": $a+b=b+a$
Axiom (15.2) (15.2b) "Symmetry of $\cdot ": a \cdot b=b \cdot a$
Axiom (15.3) "Additive identity" "Identity of + ": $0+a=a$
Axiom (15.4) "Multiplicative identity" "Identity of \cdot ": $1 \cdot a=a$
Axiom (15.5) "Distributivity of \cdot over + ": $a \cdot(b+c)=a \cdot b+a \cdot c$
Axiom (15.9) "Zero of $\cdot ": a \cdot 0=0$
Declaration: -_: $\mathbb{Z} \rightarrow \mathbb{Z}$
Declaration:___: $\mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}$
Axiom (15.13) "Unary minus": $a+(-a)=0$
Axiom (15.14) "Subtraction": $a-b=a+(-b)$

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-08

Expressions and Substitution

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-08
Part 1: Syntax of Mathematical Expressions (ctd.)

Term Tree Presentation of Mathematical Expression

$$
\begin{aligned}
& b^{2} \leq n \leq(b+1)^{2} \\
& b^{2} \leq n \wedge n \leq(b+1)^{2}
\end{aligned}
$$

We write strings, but we think trees.
All the rules we have for implicit parentheses only serve to encode the tree structure.

Recall: Syntax of Conventional Mathematical Expressions

Textbook 1.1, p. 7

- A constant (e.g., 231) or variable (e.g., x) is an expression
- If E is an expression, then (E) is an expression
- If \circ is a unary prefix operator and E is an expression, then $\circ E$ is an expression, with operand E.

For example, the negation symbol - is used as a unary prefix operator, so -5 is an expression.

- If \otimes is a binary infix operator and D and E are expressions, then $D \otimes E$ is an expression, with operands D and E.

For example, the symbols + and \cdot are binary infix operators, so $1+2$ and $(-5) \cdot(3+x)$ are expressions.

Recall: Syntax of Conventional Mathematical Expressions

- A constant (e.g., 231) or variable (e.g., x) is an expression
- If E is an expression, then (E) is an expression
- If \circ is a unary prefix operator and E is an expression, then $\circ E$ is an expression, with operand E.
- If \otimes is a binary infix operator and D and E are expressions, then $D \otimes E$ is an expression, with operands D and E.
The intention of this is that each expression is at least one of the following alternatives:
- either some constant
- or some variable
- or some simpler expression in parentheses
- or the application of some unary prefix operator
to some simpler expression
- or the application of some binary infix operator
to two simpler expressions

Why is this an expression?

$$
2 \cdot 3+4
$$

- If \otimes is a binary infix operator and D and E are expressions, then $D \otimes E$ is an expression, with operands D and E.
- or the application of some binary infix operator to two simpler expressions

Which expression is it?

Why?
\Longrightarrow The multiplication operator • has higher precedence than the addition operator + .

Table of Precedences

- $[x:=e]$ (textual substitution) (highest precedence)
- . (function application)
- unary prefix operators $+,-, \neg, \#, \sim, \mathcal{P}$
- **
- . $/ \div \bmod \operatorname{gcd}$
- + - $\cup \cap \times$ 。 •
- $\downarrow \uparrow$
- \#
- $\triangleleft \triangleright$
$\bullet=\langle \rangle \in \subset \subseteq$ (conjunctional)
- $\vee \wedge$
$\bullet \Rightarrow \Leftarrow$
$\bullet \equiv \quad$ (lowest precedence)
All non-associative binary infix operators associate to the left, except $* *, \triangleleft, \Rightarrow, \rightarrow$, which associate to the right.

Why are these expressions? Which expressions are these?
(1) $n-k-1$

(2) $5-6+7$

(3) $a+b-c$

The operators + and - associate to the left, also mutually.

Precedences and Association－We write strings，but we think trees
 All the rules we have for implicit parentheses only serve to encode the tree structure．

（We use underscores to denote operator argument positions．
So \otimes_{-}is a binary infix operator，and \boxminus_{-}is a unary prefix operator．）

${ }_{-} \otimes_{-}$has higher precedence than＿\odot_{-}	means	$\begin{aligned} & a \otimes b \odot c=(a \otimes b) \odot c \\ & a \odot b \otimes c=a \odot(b \otimes c) \end{aligned}$
＿\otimes_{-}has higher precedence than \square_{-}	means	$\boxminus a \otimes b=\boxminus(a \otimes b)$
$日_{-}$has higher precedence than＿\otimes_{-}	means	$\boxminus a \otimes b=(\boxminus a) \otimes b$
${ }_{-} \otimes_{-}$associates to the left	means	$a \otimes b \otimes c=(a \otimes b) \otimes c$
${ }_{-} \otimes_{-}$associates to the right	means	$a \otimes b \otimes c=a \otimes(b \otimes c)$
${ }_{-} \otimes_{-}$mutually associates to the left with（same prec．）＿－＿	means	$a \otimes b \odot c=(a \otimes b) \odot c$
${ }_{-} \otimes_{-}$mutually associates to the right with（same prec．）＿®＿	means	$a \otimes b \odot c=a \otimes(b \odot c)$

Associativity versus Association

－If we write $a+b+c$ ，there is no need to discuss whether we mean $(a+b)+c$ or $a+(b+c)$ ，because they are the same：

$$
(a+b)+c=a+(b+c) \quad \text { "+" is associative }
$$

－If we write $a-b-c$ ，we mean $(a-b)-c$ ：

$$
\text { "-" associates to the left } 9-(5-2) \neq(9-5)-2
$$

－If we write $a^{b^{c}}$ ，we mean $a^{\left(b^{c}\right)}$ ：
exponentiation associates to the right $\quad 2^{\left(3^{2}\right)} \neq\left(2^{3}\right)^{2}$
－If we write $a * * b * * c$ ，we mean $a * *(b * * c)$ ：
＂＊＊＂associates to the right
－If we write $a \Rightarrow b \Rightarrow c$ ，we mean $a \Rightarrow(b \Rightarrow c)$ ：
$" \Rightarrow$＂associates to the right $\quad F \Rightarrow(T \Rightarrow F) \neq(F \Rightarrow T) \Rightarrow F$

Conjunctional Operators

Chains can involve different conjunctional operators：

$$
\begin{aligned}
& 1<i \leq j<5=k \\
& \equiv \text { 〈"Reflexivity of }=\text { " } ‘ x=x \text { - conjunctional operators 〉 } \\
& 1<i \wedge i \leq j \wedge j<5 \wedge 5=k \\
& \equiv \text { 〈"Reflexivity of }=\text { " } \quad-\wedge \text { has lower precedence 〉 } \\
& (1<i) \wedge(i \leq j) \wedge(j<5) \wedge(5=k) \\
& x<5 \in S \subseteq T \\
& \equiv \text { 〈"Reflexivity of }=\text { " - conjunctional operators }\rangle \\
& x<5 \wedge 5 \in S \wedge S \subseteq T \\
& \equiv \text { 〈"Reflexivity of =" }-\wedge \text { has lower precedence 〉 } \\
& (x<5) \wedge(5 \in S) \wedge(S \subseteq T)
\end{aligned}
$$

Mathematical Expressions, Terms, Formulae ...

"Expression" is not the only word used for this kind of concept.
Related terminology:

- Both "term" and "expression" are frequently used names for the same kind of concept.
- The textbook's "expression" subsumes both "term" and "formula" of conventional first-order predicate logic.

Remember:

- Expressions are understood as tree-structures
— "abstract syntax"
- Expressions are written as strings

- "concrete syntax"

- Parentheses, precedences, and association rules only serve to disambiguate the encoding of trees in strings.

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-08

Part 2: Substitution

Plan for Part 2

- Substitution as such: Replaces variables with expressions in expressions, e.g.,
$(x+2 \cdot y)[x, y:=3 \cdot a, b+5]$
$=\langle$ Substitution \rangle
$3 \cdot a+2 \cdot(b+5)$
- Applying substitution instances of theorems and making the substitution explicit:
$2 \cdot y+-(2 \cdot y)$
$=\left\langle\right.$ "Unary minus" $` a+-a=0$ with $\left.` a:=2 \cdot y^{\prime}\right\rangle$
0

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

$$
E[x:=R] \quad \text { or } \quad E_{R}^{x}
$$

to denote an expression that is the same as E but with all occurrences of x replaced by (R).

Example 1:

$$
(x+y)[x:=z+2]
$$

$=\langle$ Substitution - performing substitution \rangle

$$
((z+2)+y)
$$

$=$ 〈"Reflexivity of $=$ " - removing unnecessary parentheses \rangle
$z+2+y$

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

$$
E[x:=R]
$$

to denote an expression that is the same as E but with all occurrences of x replaced by (R).
Example 2:

$$
(x \cdot y)[x:=z+2]
$$

$=\langle$ Substitution \rangle

$$
((z+2) \cdot y)
$$

$=$ 〈"Reflexivity of $=$ " - removing unnecessary parentheses \rangle

$$
(z+2) \cdot y
$$

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

$$
E[x:=R]
$$

to denote an expression that is the same as E but with all occurrences of x replaced by (R).
Example 3:

$$
\begin{aligned}
& (0+a)[a:=-(-a)] \\
= & \langle\text { Substitution }\rangle \\
& (0+(-(-a))) \\
= & \langle\text { "Reflexivity of }=\text { " }- \text { removing (some) unnecessary parenth. }\rangle \\
& 0+-(-a)
\end{aligned}
$$

Textual Substitution

Let E and R be expressions and let x be a variable．We write：

$$
E[x:=R]
$$

to denote an expression that is the same as E but with all occurrences of x replaced by (R) ．
Example 4：

$$
x+y[x:=z+2]
$$

$=\langle$＂Reflexivity of $=$＂- adding parentheses for clarity \rangle

$$
x+(y[x:=z+2])
$$

$=\langle$ Substitution \rangle

$$
x+(y)
$$

$=$ 〈＂Reflexivity of $=$＂- removing unnecessary parentheses 〉

$$
x+y
$$

Note：Substitution $[x:=R]$ is a highest precedence postfix operator

Textual Substitution

Let E and R be expressions and let x be a variable．We write：

$$
E[x:=R] \quad \text { or } \quad E_{R}^{x}
$$

to denote an expression that is the same as E but with all occurrences of x replaced by (R) ．
Examples：
Unnecessary
parentheses

Expression	Result	removed
$x[x:=z+2]$	$(z+2)$	$z+2$
$(x+y)[x:=z+2]$	$((z+2)+y)$	$z+2+y$
$(x \cdot y)[x:=z+2]$	$((z+2) \cdot y)$	$(z+2) \cdot y$
$x+y[x:=z+2]$	$x+y$	$x+y$

Note：Substitution $[x:=R]$ is a highest precedence postfix operator

Sequential Substitution

$$
(x+y)[x:=y-3][y:=z+2]
$$

$=\langle$＂Reflexivity of $=$＂- adding parentheses for clarity \rangle

$$
((x+y)[x:=y-3])[y:=z+2]
$$

$=\langle$ Substitution - performing inner substitution \rangle

$$
(((y-3)+y))[y:=z+2]
$$

$=\langle$ Substitution - performing outer substitution \rangle

$$
((((z+2)-3)+(z+2)))
$$

$=$ 〈＂Reflexivity of $=$＂- removing unnecessary parentheses \rangle

$$
z+2-3+z+2
$$

On CalcCheck ${ }_{\text {Web }}$ ：Exercise 2．2：Substitutions

Simultaneous Textual Substitution

If R is a list R_{1}, \ldots, R_{n} of expressions and x is a list x_{1}, \ldots, x_{n} of distinct variables, we write:

$$
E[x:=R]
$$

to denote the simultaneous replacement of the variables of x by the corresponding expressions of R, each expression being enclosed in parentheses.

Example:

$$
\begin{aligned}
& (x+y)[x, y:=y-3, z+2] \\
= & \langle\text { Substitution }- \text { performing substitution }\rangle \\
& ((y-3)+(z+2)) \\
= & \langle\text { "Reflexivity of }=\text { " }- \text { removing unnecessary parentheses }\rangle \\
& y-3+z+2
\end{aligned}
$$

Simultaneous Textual Substitution

If R is a list R_{1}, \ldots, R_{n} of expressions
and x is a list x_{1}, \ldots, x_{n} of distinct variables, we write:

$$
E[x:=R]
$$

to denote the simultaneous replacement of the variables of x by the corresponding expressions of R,
each expression being enclosed in parentheses.
Examples:

Expression	Result	Unnecessary parentheses removed
$x[x, y:=y-3, z+2]$	$(y-3)$	$y-3$
$(y+x)[x, y:=y-3, z+2]$	$((z+2)+(y-3))$	$z+2+y-3$
$(x+y)[x, y:=y-3, z+2]$	$((y-3)+(z+2))$	$y-3+z+2$
$x+y[x, y:=y-3, z+2]$	$x+(z+2)$	$x+z+2$

Simultaneous Substitution:

$$
(x+y)[x, y:=y-3, z+2]
$$

$=\langle$ Substitution - performing substitution \rangle
$((y-3)+(z+2))$
$=\langle$ "Reflexivity of $=$ " - removing unnecessary parentheses \rangle
$y-3+z+2$
Sequential Substitution:

$$
\begin{aligned}
& (x+y)[x:=y-3][y:=z+2] \\
= & \langle\text { "Reflexivity of }=\text { " - adding parentheses for clarity }\rangle \\
& ((x+y)[x:=y-3])[y:=z+2] \\
= & \langle\text { Substitution - performing inner substitution }\rangle \\
& (((y-3)+y))[y:=z+2] \\
= & \langle\text { Substitution - performing outer substitution }\rangle \\
& ((((z+2)-3)+(z+2))) \\
= & \langle\text { "Reflexivity of }=\text { " }- \text { removing unnecessary parentheses }\rangle \\
& z+2-3+z+2
\end{aligned}
$$

Recall: An Equational Theory of Integers - Axioms (LADM Ch. 15)
(15.1) Axiom, Associativity: $\quad(a+b)+c=a+(b+c)$

$$
\begin{equation*}
(a \cdot b) \cdot c=a \cdot(b \cdot c) \tag{15.2}
\end{equation*}
$$

Axiom, Symmetry: $\quad a+b=b+a$
$a \cdot b=b \cdot a$
Axiom, Additive identity: $\quad 0+a=a$
$a+0=a$
(15.4) Axiom, Multiplicative identity: $1 \cdot a=a$

$$
a \cdot 1=a
$$

Axiom, Distributivity: $\quad a \cdot(b+c)=a \cdot b+a \cdot c$

$$
\begin{equation*}
(b+c) \cdot a=b \cdot a+c \cdot a \tag{15.5}
\end{equation*}
$$

(15.13) Axiom, Unary minus:
$a+(-a)=0$
(15.14) Axiom, Subtraction:
$a-b=a+(-b)$

Calculational Proofs of Theorems - (15.17) $\quad-(-a)=a$

| (15.3) Identity of $+\quad 0+a=a$ | (15.13) Unary minus $a+(-a)=0$ |
| :--- | :--- | :--- |

Theorem (15.17) "Self-inverse of unary minus": $\quad-(-a)=a$ Proof:

$$
-(-a)
$$

$=\langle$ Identity of $+(15.3)\rangle$
$0+-(-a)$
$=\langle$ Unary minus (15.13) \rangle
$a+(-a)+-(-a)$
$=\langle$ Unary minus (15.13) \rangle
$a+0$
$=\langle$ Identity of $+(15.3)\rangle$
a

Calculational Proofs of Theorems - (15.17) — Renamed Theorem Variables | (15.3x) Identity of $+\quad 0+x=x$ | (15.13y) Unary minus $y+(-y)=0$ |
| :--- | :--- |

Theorem (15.17) "Self-inverse of unary minus": $\quad-(-a)=a$ Proof:

$$
-(-a)
$$

$=\langle$ Identity of $+(15.3 x)\rangle$
$0+-(-a)$
$=\langle$ Unary minus (15.13y) \rangle
$a+(-a)+-(-a)$
$=\langle$ Unary minus (15.13y) \rangle
$a+0$
$=\langle$ Identity of $+(15.3 x)\rangle$

Details of Applying Theorems - (15.17) with Explicit Substitutions I

$$
\begin{array}{|l|l|l|}
\hline \text { (15.3x) Identity of }+0+x=x & \text { (15.13y) Unary minus } y+(-y)=0 \\
\hline
\end{array}
$$

Theorem (15.17) "Self-inverse of unary minus": $\quad-(-a)=a$
Proof:
$-(-a)$
$=\langle$ Identity of $+(15.3 x)$ with $x:=-(-a)\rangle(0+x=x)[x:=-(-a)]=(0+-(-a)=-(-a))$ $0+-(-a)$
$=\langle$ Unary minus (15.13y) with $y:=a\rangle \quad(y+(-y)=0)[y:=a] \quad=\quad(a+(-a)=0)$
$a+(-a)+-(-a)$
$=\langle$ Unary minus (15.13y) with $y:=-a\rangle \quad(y+(-y)=0)[y:=-a]=(-a+(-(-a))=0)$
$a+0$
$=\langle$ Identity of $+(15.3 \mathrm{x})$ with $x:=a\rangle \quad(0+x=x)[x:=a)] \quad=\quad(0+a=a$ a

Details of Applying Theorems - (15.17) with Explicit Substitutions II

\section*{| (15.3) Identity of $+\quad 0+a=a$ | (15.13) Unary minus $a+(-a)=0$ |
| :--- | :--- | :--- |}

Theorem (15.17) "Self-inverse of unary minus": $\quad-(-a)=a$
Proof:
$-(-a)$
$=\langle$ Identity of $+(15.3)$ with $a:=-(-a)\rangle$
$0+-(-a)$
$=\langle$ Unary minus (15.13) with $a:=a\rangle$
$a+(-a)+-(-a)$
$=\langle$ Unary minus (15.13) with $a:=-a\rangle$ $a+0$
$=\langle$ Identity of $+(15.3)$ with $a:=a\rangle$
a

Specifying Substitutions for Theorem Application in CalcСнеск

Theorem (15.19) "Distributivity of unary minus over +": $-(a+b)=(-a)+(-b)$
Proof:

$$
\begin{aligned}
& -(a+b) \\
& =\langle(15.20) \text { with } ` a:=a+b\rangle \\
& (-1) \cdot(a+b) \\
& =\langle\text { "Distributivity of } \cdot \text { over }+ \text { " with ` } a, b, c:=-1, a, b\rangle \quad \text { Theorem (15.20): } \\
& (-1) \cdot a+(-1) \cdot b \\
& =\left\langle(15.20) \text { with } \begin{array}{l}
a \\
:= \\
b
\end{array}\right\rangle-a=(-1) \cdot a \\
& \text { (-1) } \cdot a+-b \\
& =\left\langle(15.20) \text { with ` } a:=a^{`}\right\rangle \\
& (-a)+(-b)
\end{aligned}
$$

- Backquotes enclose math embedded in English. (Markdown convention)
- Substitution notation as in LADM: variables := expressions
- ":=" reads "becomes" or "is/are replaced with"
- ":=" is entered by typing " $\backslash:=$ " or " \backslash becomes"!
- The variable list has the same length as the expression list.
- No variable occurs twice in the variable list.
- CALCCHECK ${ }_{\text {Web }}$ notebooks "with rigid matching" require all theorem variables to be substituted. "Rigid matching" means: The theorems you specify need to match without substitution.

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-11
Part 1: Foundations of Applying Equations in Context

Plan for Today

- Anatomy of calculation based on Substitution (LADM 1.3-1.5):
- Inference rule Substitution: Justifies applying instances of theorems:

$$
2 \cdot y+-(2 \cdot y)
$$

$=\left\langle\right.$ "Unary minus" $a+-a=0$ with ' $\left.a:=2 \cdot y^{\prime}\right\rangle$
0

- Inference rule Leibniz: Justifies applying (instances of) equational theorems deeper inside expressions:

$$
\begin{aligned}
& 2 \cdot x+3 \cdot(y-5 \cdot(4 \cdot x+7)) \\
= & \left\langle\text { "Subtraction" } a-b=a+-b \text { with ' } a, b:=y, 5 \cdot(4 \cdot x+7)^{\prime}\right\rangle \\
& 2 \cdot x+3 \cdot(y+-(5 \cdot(4 \cdot x+7)))
\end{aligned}
$$

- LADM Chapter 2: Boolean Expressions
- Meaning of Boolean Operators
- Equality versus Equivalence
- Satisfiability and Validity
- Starting with LADM Chapter 3: Propositional Calculus
- Equivalence, Negation, Inequivalence

> What is an Inference Rule? premise $_{1} \quad \ldots \quad$ premise $_{n}$ conclusion $^{\text {con }}$

- If all the premises are theorems, then the conclusion is a theorem.
- A theorem is a "proved truth"
- either an axiom,
- or the result of an inference rule application.
- Inference rules are the building blocks of proofs.
- The premises are also called hypotheses.
- The conclusion and each premise all have to be Boolean.
- Axioms are inference rules with zero premises

Inference Rule: Substitution

(1.1) Substitution:

$$
\frac{E}{E[x:=R]}
$$

"If E is a theorem, then $E[x:=R]$ is a theorem as well"

Example:
If $a+0=a$ is a theorem,
then $3 \cdot b+0=3 \cdot b$ is also a theorem.

"Identity of $+" \prime$
"Identity of $+{ }^{\prime \prime}$ with ' $a:=3 \cdot b^{\prime}$

$$
\begin{array}{cc}
a+0=a & \frac{a+0=a}{(a+0=a)[a:=3 \cdot b]} \\
3 \cdot b+0=3 \cdot b
\end{array}
$$

Inference Rule Scheme: Substitution

(1.1) Substitution: $\frac{E}{E[x:=R]} \quad$| "If E is a theorem, |
| :--- |
| then $E[x:=R]$ is a theorem as well" |

Really an inference rule scheme:
works for every combination of

- expression E,
- variable x, and
- expression R.

Example:
If $a+0=a$ is a theorem,

$$
\frac{a+0=a}{3 \cdot b+0=3 \cdot b}
$$

then $3 \cdot b+0=3 \cdot b \quad$ is also a theorem.

- expression E is $\quad a+0=a$
- the variable x substituted into is a
- the substituted expression R is $3 \cdot b$

Inference Rule Scheme: Substitution - Also for Simultaneous Substitution
(1.1) Substitution: $\quad \frac{E}{E[x:=R]}$

Really an inference rule scheme: works for every combination of

- expression E,
- variable list x, and
- corresponding expression list R.

Example:
If $x+y=y+x$ is a theorem, then $b+3=3+b$ is also a theorem.

- expression E is $\quad x+y=y+x$
- variable list x is x, y
- corresponding expression list R is $\quad b, 3$

Logical Definition of Equality

Two axioms (i.e., postulated as theorems):

- (1.2) Reflexivity of $=: \quad x=x$
- (1.3) Symmetry of $=: \quad(x=y)=(y=x)$

Two inference rule schemes:

- (1.4) Transitivity of $=: \quad \frac{X=Y \quad Y=Z}{X=Z}$
- (1.5) Leibniz: $\quad \frac{X=Y}{E[z:=X]=E[z:=Y]}$
— the rule of "replacing equals for equals"

Using Leibniz' Rule in (15.21)

Given: (15.20) $-a=(-1) \cdot a$

$$
\frac{X=Y}{E[z:=X]=E[z:=Y]}
$$

Proving (15.21) $(-a) \cdot b=a \cdot(-b)$:
$(-a) \cdot b$
$=\langle(15.20)$ - via Leibniz (1.5) with E chosen as $z \cdot b\rangle$
$((-1) \cdot a) \cdot b$
$=\langle$ Associativity (15.1) and Symmetry (15.2) of $\cdot\rangle$
$a \cdot((-1) \cdot b)$
$=\langle(15.20)\rangle$
$a \cdot(-b)$

Using Leibniz together with Substitution in (15.21)
Given: (15.20) $-a=(-1) \cdot a$

$$
\begin{gathered}
X=Y \\
E[z:=X]=E[z:=Y]
\end{gathered}
$$

Proving (15.21) $(-a) \cdot b=a \cdot(-b)$:
$(-a) \cdot b$
$=\langle(15.20)-$ via Leibniz (1.5) with E chosen as $z \cdot b\rangle$
$((-1) \cdot a) \cdot b$
$=\langle$ Associativity (15.1) and Symmetry (15.2) of $\cdot\rangle$
$a \cdot((-1) \cdot b)$
$=\langle(15.20)$ with $a:=b —$ via Leibniz (1.5) with E chosen as $a \cdot z\rangle$ $a \cdot(-b)$

$$
\frac{X=Y}{E[z:=X]=E[z:=Y]}
$$

$$
(15.20)-a=(-1) \cdot a
$$

(1.1) Substitution:

$$
\frac{F}{F[v:=R]}
$$

Using Leibniz:
$E[z:=X]$
$=\langle X=Y\rangle$
$E[z:=Y]$

$$
\begin{gathered}
\text { Using them together: } \\
\quad E[z:=X[v:=R]] \\
=\langle X=Y\rangle \\
E[z:=Y[v:=R]]
\end{gathered}
$$

Example:

$$
a \cdot((-1) \cdot b)
$$

$$
=\langle(15.20) \text { with } a:=b-E \text { is } a \cdot z\rangle
$$

$$
a \cdot(-b)
$$

Justification:

$$
\begin{gathered}
\frac{X=Y}{X[v:=R]=Y[v:=R]} \text { Substitution (1.1) } \\
E[z:=X[v:=R]]=E[z:=Y[v:=R]] \\
\text { Leibniz (1.5) }
\end{gathered}
$$

Automatic Application of Associativity and Symmetry Laws

Axiom (15.1) (15.1a) "Associativity of + ": $(a+b)+c=a+(b+c)$
Axiom (15.1) (15.1b) "Associativity of \cdot ": $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
Axiom (15.2) (15.2a) "Symmetry of + ": $a+b=b+a$
Axiom (15.2) (15.2b) "Symmetry of.": $a \cdot b=b \cdot a$

- You have been trained to reason "up to symmetry and associativity"
- Making symmetry and associativity steps explicit is
- always allowed
- sometimes very useful for readability
- CALCCHECK allows selective activation of symmetry and associativity laws
\Longrightarrow "Exercise ... / Assignment ...: [...] without automatic associativity and symmetry"
\Longrightarrow Having to make symmetry and associativity steps explicit can be tedious...
(15.17) with Explicit Associativity and Symmetry Steps

| (15.3) Identity of $+\quad 0+a=a$ | (15.13) Unary minus $\quad a+(-a)=0$ |
| :--- | :--- | :--- |

Proving (15.17) $-(-a)=a$:
$-(-a)$
$=\langle$ Identity of $+(15.3)\rangle$
$0+-(-a)$
$=\langle$ Unary minus (15.13) \rangle
$(a+(-a))+-(-a)$
$=\langle$ Associativity of $+(15.1)\rangle$
$a+((-a)+-(-a))$
$=\langle$ Unary minus (15.13) \rangle
$a+0$
$=\langle$ Symmetry of $+(15.2)\rangle$
$0+a$
$=\langle$ Identity of $+(15.3)\rangle$
a

Some Property Names

Let \odot and \oplus be binary operators and \square be a constant.
(\odot and \oplus and \square are metavariables for operators respectively constants.)

- " \odot is symmetric": $\quad x \odot y=y \odot x$
- " \odot is associative": $\quad(x \odot y) \odot z=x \odot(y \odot z)$
- " \odot is mutually associative with \oplus (from the left)":

$$
(x \odot y) \oplus z=x \odot(y \oplus z)
$$

For example:

- + is mutually associative with -:

$$
(x+y)-z=x+(y-z)
$$

- - is not mutually associative with +:

$$
(5-2)+3 \neq 5-(2+3)
$$

Some Property Names (ctd.)

Let \odot and \oplus be binary operators and \square be a constant.
(\odot and \oplus and \square are metavariables for operators respectively constants.)

- " \odot is idempotent":
- " \square is a left-identity (or left-unit) of \odot ":
$x \odot x=x$
$\square \odot x=x$
$x \odot \square=x$
$\square \odot x=x=x \odot \square$
- " \square is a identity (or unit) of \odot ":
$\square \odot x=x=x \odot \square$
- " \square is a left-zero of \odot ":
$\square \odot x=\square$
- " \square is a right-zero of \odot ":
$x \odot \square=\square$
- " \square is a zero of \odot ":
$\square \odot x=\square=x \odot \square$
- " \odot distributes over \oplus from the left": $\quad x \odot(y \oplus z)=(x \odot y) \oplus(x \odot z)$
- " \odot distributes over \oplus from the right": $\quad(y \oplus z) \odot x=(y \odot x) \oplus(z \odot x)$
- " \odot distributes over \oplus ": \odot distributes over \oplus from the left and \odot distributes over \oplus from the right

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

Truth Values

Boolean constants/values: false, true
The type of Boolean values: \mathbb{B}

- This is the type of propositions, for example: $(x=1): \mathbb{B}$
_ For any type t, equality _=_ can be used on expressions of that type: _=_ $: t \rightarrow t \rightarrow \mathbb{B}$
Boolean operators:
- $\neg_{-}: \mathbb{B} \rightarrow \mathbb{B}$ — negation, complement, "logical not", \lnot
- _^_ $: \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$ — conjunction, "logical and", \land
- _$\vee_{_}: \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$ — disjunction, "logical or", "inclusive or", \lor
$\bullet_{-} \Rightarrow_{-}: \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$ —implication, "implies", "if ... then ...", \=>, \implies
- _三_ : $\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}$ — equivalence, "if and only if", "iff", $\backslash==$, \equiv
- $\neq \#_{-}: \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B} \quad$ —inequivalence, "exclusive or", \nequiv

Table of Precedences

- $[x:=e]$ (textual substitution) (highest precedence)
- . (function application)
- unary prefix operators $+,-, \neg, \#, \sim, \mathcal{P}$
- **
- . $/ \div \bmod \operatorname{gcd}$
- + - u $\cap \times$ - •
- $\downarrow \uparrow$
- \#
- $\triangleleft \triangleright$
$\bullet=\neq>\in \subset \subseteq$ (conjunctional)
- $\vee \wedge$
$\bullet \Rightarrow \nRightarrow \Leftarrow \neq$
$\bullet \equiv \not \equiv \quad$ (lowest precedence)
All non-associative binary infix operators associate to the left, except $* *, \triangleleft, \Rightarrow, \rightarrow$, which associate to the right.

Binary Boolean Operators: Conjunction

Args.			
		\wedge	
F	F	F	The moon is green, and $2+2=7$.
F	T	F	The moon is green, and $1+1=2$.
T	F	F	$1+1=2$, and the moon is green.
T	T	T	$1+1=2$, and the sun is a star.

Args.			
		\vee	
F	F	F	The moon is green, or $2+2=7$.
F	T	T	The moon is green, or $1+1=2$.
T	F	T	$1+1=2$, or the moon is green.
T	T	T	$1+1=2$, or the sun is a star.

This is known as "inclusive or" - see textbook p.34.

Binary Boolean Operators: Implication

Args.			
		\Rightarrow	
F	F	T	If the moon is green, then $2+2=7$.
F	T	T	If the moon is green, then $1+1=2$.
T	F	F	If $1+1=2$, then the moon is green.
T	T	T	If $1+1=2$, then the sun is a star.

$$
\begin{array}{rlr}
p \Rightarrow q & \equiv & \neg p \vee q \\
\neg p \Rightarrow q & \equiv & \neg \neg p \vee q \\
\neg p \Rightarrow q & \equiv & p \vee q
\end{array}
$$

| If you don't eat your spinach,
 I'll spank you. |
| :--- | | You eat your spinach, |
| :--- |
| or I'll spank you. |

Binary Boolean Operators: Consequence

Args.	\Leftarrow	
$F \quad F$	T	The moon is green if $2+2=7$.
$F \quad T$	F	The moon is green if $1+1=2$.
T F	T	$1+1=2$ if the moon is green.
$T \mathrm{~T}$	T	$1+1=2$ if the sun is a star.

$$
p \Leftarrow q \quad \equiv \quad p \vee \neg q
$$

Binary Boolean Operators: Equivalence

Equality of Boolean values is also called equivalence and written \equiv (In some other places: \Leftrightarrow)

$$
p \equiv q \quad \text { can be read as: } \quad p \text { is equivalent to } q
$$

or: $\quad p$ exactly when q
or: $\quad p$ if-and-only-if q
or: $\quad p$ iff q

p	q	$p \equiv q$	
false	false	true	The moon is green iff $2+2=7$.
false	true	false	The moon is green iff $1+1=2$.
true	false	false	$1+1=2$ iff the moon is green.
true	true	true	$1+1=2$ iff the sun is a star.

Binary Boolean Operators: Inequivalence ("exclusive or")

Args.			
		$\not \equiv$	
F	F	F	Either the moon is green, or $2+2=7$.
F	T	T	Either the moon is green, or $1+1=2$.
T	F	T	Either $1+1=2$, or the moon is green.
T	T	F	Either $1+1=2$, or the sun is a star.

Table of Precedences

```
- \([x:=e\) ] (textual substitution)
(highest precedence)
- . (function application)
- unary prefix operators \(+,-, \neg, \#, \sim, \mathcal{P}\)
- **
- . \(/ \div \bmod \operatorname{gcd}\)
\(\bullet+\quad \cup \quad\) - \(\times\) -
- \(\downarrow \uparrow\)
- \#
- \(\triangleleft \triangleright\) ^
\(\bullet=\neq>\in \subset \subseteq\) (conjunctional)
\(\bullet \vee \wedge\)
\(\bullet \Rightarrow \nRightarrow \Leftarrow \neq\)
\(\bullet \equiv \neq \quad\) (lowest precedence)
```

All non-associative binary infix operators associate to the left, except $* *, \triangleleft, \Rightarrow, \rightarrow$, which associate to the right.

Expression Evaluation (LADM 1.1 end)

- $2 \cdot 3+4$
- $2 \cdot(3+4)$
- $2 \cdot y+4$

A state is a "list of variables with associated values". E.g.:

$$
s_{1}=[(x, 5),(y, 6)] \quad-\text { (using Haskell notation for informal lists) }
$$

Evaluating an expression in a state:

"Replace variables with their values; then evaluate":

- $x-y+2$ in state s_{1}
$\longrightarrow 5-6+2 \longrightarrow(5-6)+2 \longrightarrow(-1)+2 \longrightarrow 1$
- $x \cdot 2+y$
- $x \cdot(2+y)$
- $x \cdot(z+y)$

Evaluation of Boolean Expressions

Example: Using the state $\langle(p, f$ false $),(q$, true $),(r, f$ false $)\rangle$:

$$
p \vee(q \wedge \neg r)
$$

$=\langle$ replace variables with state values \rangle

$$
\text { false } \vee(\text { true } \wedge \neg \text { false })
$$

$=\langle\quad$-false $=$ true \rangle false \vee (true \wedge true)
$=\langle$ true \wedge true $=$ true \rangle false \vee true
$=\langle\quad$ false \vee true $=$ true \rangle true

Evaluation of Boolean Expressions Using Truth Tables

p	q	$\neg p$	$q \wedge \neg p$	$p \vee(q \wedge \neg p)$
F	F	T	F	F
F	T	T	T	T
T	F	F	F	T
T	T	F	F	T

- Identify variables
- Identify subexpressions
- Enumerate possible states (of the variables)
- Evaluate (sub-)expressions in all states

Validity and Satisfiability

- A boolean expression is satisfied in state s iff it evaluates to true in state s.
- A boolean expression is satisfiable iff there is a state in which it is satisfied.

p	q	$\neg p$	$q \wedge \neg p$	$p \vee(q \wedge \neg p)$
F	F	T	F	F
F	T	T	T	T
T	F	F	F	T
T	T	F	F	T

- A boolean expression is valid iff it is satisfied in every state.
- A valid boolean expression is called a tautology.
- A boolean expression is called a contradiction iff it evaluates to false in every state.
- Two boolean expressions are called logically equivalent iff they evaluate to the same truth value in every state.

These definitions rely on states / truth tables: Semantic concepts

Modeling English Propositions 1

- Henry VIII had one son and Cleopatra had two.

Henry VIII had one son and Cleopatra had two sons.

Declarations:
$h: \equiv$ Henry VIII had one son
c : : Cleopatra had two sons
Formalisation:
$h \wedge c$

Modeling English Propositions - Recipe

- Transform into shape with clear subpropositions
- Introduce Boolean variables to denote subpropositions
- Replace these subpropositions by their corresponding Boolean variables
- Translate the result into a Boolean expression, using (no perfect translation rules are possible!) for example:

and, but	becomes	\wedge
or	becomes	\vee
not	becomes	\neg
it is not the case that	becomes	\neg
if p then q	becomes	$p \Rightarrow q$

Ladies or Tigers

Raymond Smullyan provides, in The Lady or the Tiger?, the following context for a number of puzzles to follow:
[...] the king explained to the prisoner that each of the two rooms contained either a lady or a tiger, but it could be that there were tigers in both rooms, or ladies in both rooms, or then again, maybe one room contained a lady and the other room a tiger.
In the first case, the following signs are on the doors of the rooms:
In this room there is a lady,
Ind in the other room there is
a tiger.
In one of these rooms there is a
lady, and in one of these rooms
there is a tiger.

We are told that one of the signs is true, and the other one is false.
"Which door would you open (assuming, of course, that you preferred the lady to the tiger)?"

Ladies or Tigers - The First Case - Starting Formalisation

Raymond Smullyan provides, in The Lady or the Tiger?, the following context for a number of puzzles to follow:
[...] the king explained to the prisoner that each of the two rooms contained either a lady or a tiger, but it could be that there were tigers in both rooms, or ladies in both rooms, or then again, maybe one room contained a lady and the other room a tiger.
$R 1 L:=$ There is a lady in room 1
$R 1 T:=$ There is a tiger in room 1
$R 2 L:=$ There is a lady in room 2
$R 2 T:=$ There is a tiger in room 2
[...] We are told that one of the signs is true, and the other one is false.
$S_{1}:=$ Sign 1 is true
$S_{2}:=\operatorname{Sign} 2$ is true

Equality "=" versus Equivalence " $\equiv "$
The operators $=($ as Boolean operator $)$ and \equiv

- have the same meaning (represent the same function),
- but are used with different notational conventions:
- different precedences (\equiv has lowest)
- different chaining behaviour:
- \equiv is associative:

$$
(p \equiv q \equiv r)=((p \equiv q) \equiv r) \quad=\quad(p \equiv(q \equiv r))
$$

- = is conjunctional:

$$
(x=y=z) \quad=\quad((x=y) \wedge(y=z))
$$

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-11
Part 3: LADM Propositional Calculus: \equiv, \neg, \equiv

Propositional Calculus

Calculus: method of reasoning by calculation with symbols
Propositional Calculus: calculating

- with Boolean expressions
- containing propositional variables

The Textbook's Propositional Calculus: Equational Logic E

- a set of axioms defining operator properties
- four inference rules:
- (1.5) Leibniz: $\frac{X=Y}{E[z:=X]=E[z:=Y]}$
We can apply equalities
- (1.4) Transitivity: $\frac{X=Y \quad Y=Z}{X=Z}$

We can chain equalities.

- (1.1) Substitution: $\frac{E}{E[x:=R]} \quad \begin{aligned} & \text { We can can use substitution } \\ & \text { instances of theorems. }\end{aligned}$
- Equanimity: $\frac{X=Y \quad X}{Y} \quad$ - This is ...

Theorems - Remember!

A theorem is

- either an axiom
- or the conclusion of an inference rule where the premises are theorems
- or a Boolean expression proved (using the inference rules) equal to an axiom or a previously proved theorem. ("—This is ...")
Such proofs will be presented in the calculational style.
Note:
- The theorem definition does not use evaluation/validity
- But: - All theorems in E are valid
- All valid Boolean expressions are theorems in E
- Important:
- We will prove theorems without using validity!
- This trains an essential mathematical skill!

Equivalence Axioms

(3.1) Axiom, Associativity of \equiv : $\quad((p \equiv q) \equiv r) \equiv(p \equiv(q \equiv r))$
(3.2) Axiom, Symmetry of \equiv : $p \equiv q \equiv q \equiv p$

Can be used as:

- $(p \equiv q)=(q \equiv p)$
- $p=(q \equiv q \equiv p)$
- $(p \equiv q \equiv q)=p$

Example theorem - shown differently in the textbook:
Proving $p \equiv p \equiv q \equiv q$:
$p \equiv p \equiv q \equiv q$
$=\langle(3.2)$ Symmetry of \equiv, with $p, q:=p, q \equiv q\rangle$
$p \equiv q \equiv q \equiv p$ - This is (3.2) Symmetry of \equiv

Equivalence Axioms - Example Proof with Parentheses

(3.1) Axiom, Associativity of \equiv : $\quad((p \equiv q) \equiv r) \equiv(p \equiv(q \equiv r))$
(3.2) Axiom, Symmetry of \equiv : $\quad p \equiv q \equiv q \equiv p$

Can be used as:

- $(p \equiv q)=(q \equiv p)$
- $p=(q \equiv q \equiv p)$
- $(p \equiv q \equiv q)=p$

Example theorem - shown differently in the textbook:
Proving $p \equiv p \equiv q \equiv q$:

$$
\begin{aligned}
& p \equiv(p \equiv(q \equiv q)) \\
\equiv & \langle(3.2) \text { Symmetry of } \equiv, \text { with } p, q:=p,(q \equiv q)\rangle \\
& p \equiv((q \equiv q) \equiv p) \quad \text { This is }(3.2) \text { Symmetry of } \equiv
\end{aligned}
$$

Equivalence Axioms - Introducing true

(3.1) Axiom, Associativity of \equiv : $\quad((p \equiv q) \equiv r) \equiv(p \equiv(q \equiv r))$
(3.2) Axiom, Symmetry of \equiv : $p \equiv q \equiv q \equiv p$

Can be used as:

- $(p \equiv q)=(q \equiv p)$
- $p=(q \equiv q \equiv p)$
- $(p \equiv q \equiv q)=p$
(3.3) Axiom, Identity of \equiv : \quad true $\equiv q \equiv q$

Can be used as:

- $($ true $\equiv q)=q$
- true $=(q \equiv q)$

Equivalence Axioms, and Theorem (3.4)

(3.1) Axiom, Associativity of $\equiv: \quad((p \equiv q) \equiv r) \equiv(p \equiv(q \equiv r))$
(3.2) Axiom, Symmetry of $\equiv: \quad p \equiv q \equiv q \equiv p$
(3.3) Axiom, Identity of \equiv : true $\equiv q \equiv q$

Can be used as: \quad true $=(q \equiv q)$
The least interesting theorem:
Proving (3.4) true:
true
$=\langle$ Identity of \equiv (3.3), with $q:=$ true \rangle
true \equiv true
$=\langle$ Identity of \equiv (3.3), with $q:=q\rangle$
true $\equiv q \equiv q \quad$ - This is Identity of $\equiv(3.3)$
Equivalence Axioms and Theorems
(3.1) Axiom, Associativity of $\equiv: \quad((p \equiv q) \equiv r) \equiv(p \equiv(q \equiv r))$
(3.2) Axiom, Symmetry of $\equiv: \quad p \equiv q \equiv q \equiv p$
(3.3) Axiom, Identity of \equiv : true $\equiv q \equiv q$
Theorems and Metatheorems:
(3.4) true
(3.5) Reflexivity of $\equiv: p \equiv p$
(3.6) Proof Method: To prove that $P \equiv Q$ is a theorem, transform P to Q or Q to P using Leibniz.
(3.7) Metatheorem: Any two theorems are equivalent.

Negation Axioms

(3.8) Axiom, Definition of false:

$$
\text { false } \equiv \neg \text { true }
$$

(3.9) Axiom, Commutativity of \neg with $\equiv: \quad \neg(p \equiv q) \equiv \neg p \equiv q$
(LADM: "Distributivity of \neg over \equiv ")
Can be used as:

- $\neg(p \equiv q) \quad=\quad(\neg p \equiv q)$
- $(\neg(p \equiv q) \equiv \neg p)=q$
- $(\neg(p \equiv q) \equiv q) \quad=\quad \neg p$
(3.10) Axiom, Definition of $\not \equiv: \quad(p \neq q) \equiv \neg(p \equiv q)$

(3.23) Heuristic of Definition Elimination

To prove a theorem concerning an operator \circ that is defined in terms of another, say \bullet, expand the definition of \circ to arrive at a formula that contains \bullet; exploit properties of \bullet to manipulate the formula, and then (possibly) reintroduce \circ using its definition.

"Unfold-Fold strategy"

Inequivalence Theorems: Symmetry

(3.16) Symmetry of \neq : $(p \neq q) \equiv(q \equiv p)$

Proving (3.16) Symmetry of \neq :

$$
p \neq q
$$

$=\langle(3.10)$ Definition of $\not \equiv\rangle \quad$...... Unfold

$$
\neg(p \equiv q)
$$

$=\langle$ (3.2) Symmetry of $\equiv\rangle$
$\neg(q \equiv p)$
$=\langle(3.10)$ Definition of $\neq\rangle \quad$...... Fold
$q \neq p$

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-13
Part 1: Correctness of Assignment Commands

- Reasoning about Assignment Commands in Imperative Programs (\approx LADM 1.6):
- Correctness of programs with respect to pre-/post-condition specifications
- Reasoning using "Hoare logic"

- Continuing Propositional Calculus (LADM Chapter 3)

- Negation, Inequivalence
- Disjunction
- Conjunction

States as Program States

LADM 1.1: A state is a "list of variables with associated values". E.g.:

$$
s_{1}=[(x, 5),(y, 6)] \quad-\text { (using Haskell notation for informal lists) }
$$

Evaluating an expression in a state:

"Replace variables with their values; then evaluate"

- In logic, "states" are usually called "variable assignments"
- States can serve as a mathematical model of program states
- Execution of imperative programs induces state transformation:

$$
\left.\begin{array}{rl}
& {[(x, 5),(y, 6)]} \\
\sim & \langle x:=x+y, \\
& {[(x, 11),(y, 6)]} \\
\leadsto & \langle\quad y:=x-y, \\
& {[(x, 11),(y, 5)]}
\end{array}\right\rangle
$$

State Predicates

- Execution of imperative programs induces state transformation:

$$
\begin{aligned}
& {[(x, 5),(y, 6)] \quad-\cdots+\cdots \quad \begin{array}{l}
\\
\quad x<y \text { holds }
\end{array}} \\
& \leadsto\langle\quad x:=x+y \quad\rangle \\
& {[(x, 11),(y, 6)] \quad \text {...... }{ }^{-} x<y \text { does not hold }} \\
& \leadsto\langle y:=x-y\rangle \\
& {[(x, 11),(y, 5)] \quad \text {...... } x<y \text { does not hold }}
\end{aligned}
$$

- Boolean expressions containing variables can be used as state predicates:

$$
P \text { "holds in state } s \text { " iff } \quad P \text { evaluates to true in state } s
$$

－Program correctness statement in LADM（and much current use）：

$$
\{P\} \subset\{Q\}
$$

This is called a＂Hoare triple＂．
－Meaning：If command C is started in a state in which the precondition P holds， then it will terminate only in a state in which the postcondition Q holds．
－Hoare＇s original notation：

$$
P\{C\} Q
$$

－Dynamic logic notation（will be used in CalcСНеск）：

$$
P \Rightarrow[C] Q
$$

Correctness of Assignment Commands
－Recall：Hoare triple：
$\{P\} C\{Q\}$
－Dynamic logic notation（will be used in CalcСнеск）： $P \Rightarrow[C] Q$
－Meaning：If command C is started in a state in which the precondition P holds，then it will terminate only in a state in which the postcondition Q holds．
－Assignment Axiom：$\{Q[x:=E]\} x:=E\{Q\}$

$$
Q[x:=E] \Rightarrow[x:=E] \quad Q
$$

－Example：
－$(x=5)[x:=x+1] \Rightarrow[x:=x+1] \quad x=5$
－$(x+1=5) \quad \Rightarrow[x:=x+1] \quad x=5$
－$x+1=5$
$\equiv \quad$ 〈Substitution 〉
$(x=5)[x:=x+1]$
$\Rightarrow[x:=x+1]$ 〈Assignment 〉
$x=5$

Substitution＂：$=$＂：
－One Unicode character； type＂$\backslash=$＝＂

Assignment＂：＝＂：
Two characters； type＂：＝＂

Correctness of Assignment Commands－Longer Example
－Recall：Hoare triple：$\quad\{P\} C\{Q\}$
－Dynamic logic notation（will be used in CalcСheck）：

$$
P \Rightarrow[C] Q
$$

－Meaning：If command C is started in a state in which the precondition P holds，then it will terminate only in a state in which the postcondition Q holds．
－Assignment Axiom：$\{Q[x:=E]\} x:=E\{Q\} \quad Q[x:=E] \Rightarrow[x:=E] Q$
－Longer example（these proofs are developed from the bottom to the top！）：

$$
\begin{aligned}
& \text { true } \\
& \equiv \quad\langle\text { Zero of } \vee\rangle \\
& 1=0 \vee \text { true } \\
& \equiv \quad\langle\text { Reflexivity of }=\text { 〉 } \\
& 1=0 \vee 1=1 \\
& \equiv \quad \text { 〈Substitution 〉 } \\
& (x=0 \vee x=1)[x:=1] \\
& \Rightarrow[x:=1] \text { 〈Assignment 〉 } \\
& x=0 \vee x=1
\end{aligned}
$$

Example Proof for a	Proof:
Sequence of Assignments	$\begin{aligned} & x=5 \\ & \equiv\left\langle{ }^{\prime \prime} \text { Cancellation of }+ \text { " }\right\rangle \\ & x+1=5+1 \\ & \equiv\langle\text { Fact } ` 5+1=6\rangle \end{aligned}$
Lemma (4): $\begin{gathered} x=5 \\ \Rightarrow\left[\begin{array}{c} x:=x+1 ; \\ x:=y+y \\ \exists \\ x=12 \end{array}, ~\right. \end{gathered}$	$\begin{aligned} & x+1=6 \\ \equiv & \langle\text { Substitution }\rangle \\ & (y=6)[y:=x+1] \\ \Rightarrow & {[y:=x+1] \text { ""Assignment" }\rangle } \\ & y=6 \\ \equiv & \langle\text { "Cancellation of } \cdot \text { " with Fact } 2 \neq 0 \text { 次 } \\ & 2 \cdot y=2 \cdot 6 \\ \equiv & \langle\text { Evaluation }\rangle \\ & (1+1) \cdot y=12 \\ \equiv & \langle\text { "Distributivity of } \cdot \text { over }+ \text { " }\rangle \\ & 1 \cdot y+1 \cdot y=12 \\ \equiv & \langle\text { "Identity of } \cdot \text { " }\rangle \\ & y+y=12 \end{aligned}$
Read and write such "_ \Rightarrow [_]_" proofs from the bottom to the top!	$\begin{aligned} & \equiv\langle\text { Substitution }\rangle \\ & (x=12)[x:=y+y] \\ & \Rightarrow[x:=y+y]\langle " A s s i g n m e n t "\rangle \\ & \\ & x=12 \end{aligned}$

Sequential Composition of Commands

Primitive inference rule "SEQ":

$$
\left.`\{P\} C_{1}\{Q\}^{\prime}, \quad ` Q\right\} C_{2}\{R\}^{\prime}
$$

${ }^{-}\{P\} C_{1}{ }_{i} C_{2}\{R\}$

Primitive inference rule "Sequence":

$$
\stackrel{\Im P \Rightarrow\left[C_{1}\right] Q^{`}, \quad ` \Rightarrow\left[C_{2}\right] R^{`}}{` P \Rightarrow\left[C_{1} ; C_{2}\right] R}
$$

- Activated as transitivity rule
- Therefore used implicitly in calculations, e.g., proving $P \Rightarrow\left[C_{1} ; C_{2}\right] R \quad$ by:

$$
\begin{gathered}
P \\
\Rightarrow\left[C_{1}\right]\langle\ldots\rangle \\
Q \\
\Rightarrow\left[C_{2}\right] \begin{array}{c}
\\
\langle\ldots\rangle \\
R
\end{array},
\end{gathered}
$$

- No need to refer to this rule explicitly.

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

Equivalence Axioms and Theorems

(3.1) Axiom, Associativity of $\equiv: \quad((p \equiv q) \equiv r) \equiv(p \equiv(q \equiv r))$
(3.2) Axiom, Symmetry of $\equiv: \quad p \equiv q \equiv q \equiv p \quad$ - Can be used as:
(3.3) Axiom, Identity of \equiv : true $\equiv q \equiv q$

Theorems and Metatheorems:

- $(p \equiv q)=(q \equiv p)$
- $p=(q \equiv q \equiv p)$
- $(p \equiv q \equiv q)=p$
(3.4) true
(3.5) Reflexivity of $\equiv: p \equiv p$
(3.6) Proof Method: To prove that $P \equiv Q$ is a theorem, transform P to Q or Q to P using Leibniz.
(3.7) Metatheorem: Any two theorems are equivalent.

Proof Method Equanimity: To prove P, prove $P \equiv Q$ where Q is a theorem. (Document via " - This is ...".)

Special case: To prove P, prove $P \equiv$ true.

Negation Axioms

(3.8) Axiom, Definition of false: false $\equiv \neg$ true
(3.9) Axiom, Commutativity of \neg with \equiv : $\neg(p \equiv q) \equiv \neg p \equiv q$
(LADM: "Distributivity of \neg over \equiv ")
Can be used as:

- $\neg(p \equiv q) \quad=\quad(\neg p \equiv q)$
- $(\neg(p \equiv q) \equiv \neg p)=q$
- $(\neg(p \equiv q) \equiv q) \quad=\quad \neg p$
(3.10) Axiom, Definition of $\not \equiv: \quad(p \neq q) \equiv \neg(p \equiv q)$

Negation Axioms and Theorems

(3.8) Axiom, Definition of false: false $\equiv \neg$ true
(3.9) Axiom, Commutativity of \neg with $\equiv: \quad \neg(p \equiv q) \equiv \neg p \equiv q$
(3.10) Axiom, Definition of $\not \equiv: \quad(p \neq q) \equiv \neg(p \equiv q)$

Theorems:
(3.11) $\neg p \equiv q \equiv p \equiv \neg q$

- can be used as " \neg connection": $\quad(\neg p \equiv q) \equiv(p \equiv \neg q)$
- can be used as "Cancellation of \neg ": $\quad(\neg p \equiv \neg q) \equiv(p \equiv q)$
(3.12) Double negation: $\quad \neg \neg p \equiv p$
(3.13) Negation of false: $\quad-$ false \equiv true

$$
\begin{equation*}
(p \not \equiv q) \equiv \neg p \equiv q \tag{3.14}
\end{equation*}
$$

(3.15) Definition of $\neg \mathbf{v i a} \equiv: \quad \neg p \equiv p \equiv$ false
(3.16) Symmetry of $\not \equiv$:
(3.17) Associativity of $\not \equiv$:
(3.18) Mutual associativity: $\quad((p \neq q) \equiv r) \equiv(p \neq(q \equiv r))$
(3.19) Mutual interchangeability: $p \not \equiv q \equiv r \equiv p \equiv q \not \equiv r$

Note: Mutual associativity is not (yet...) automated!
(But omission of parentheses is implemented, similar to

- $k-m+n$
- $k+m-n$
- $k-m-n$
- None of these has $m-n$ as subexpression!
- But the second one is equal to $k+(m-n) \quad \ldots)$

(3.23) Heuristic of Definition Elimination

To prove a theorem concerning an operator \circ that is defined in terms of another, say \bullet, expand the definition of \circ to arrive at a formula that contains \bullet; exploit properties of \bullet to manipulate the formula, and then (possibly) reintroduce \circ using its definition.

Textbook, p. 48

"Unfold-Fold strategy"

Inequivalence Theorems: Symmetry

(3.16) Symmetry of \neq :

$$
(p \not \equiv q) \equiv(q \not \equiv p)
$$

Proving (3.16) Symmetry of $\not \equiv$:
$p \neq q$
$=\langle$ (3.10) Definition of $\not \equiv\rangle \quad$ ".... Unfold
$\neg(p \equiv q)$
$=\langle$ (3.2) Symmetry of $\equiv\rangle$
$\neg(q \equiv p)$
$=\langle(3.10)$ Definition of $\not \equiv\rangle$
Fold
$q \neq p$

Disjunction Axioms

(3.24) Axiom, Symmetry of v :
$p \vee q \equiv q \vee p$
$(p \vee q) \vee r \equiv p \vee(q \vee r)$
(3.25) Axiom, Associativity of v :
(3.26) Axiom, Idempotency of v :
(3.27) Axiom, Distributivity of \vee over \equiv :

$$
p \vee p \equiv p
$$

$$
p \vee(q \equiv r) \equiv p \vee q \equiv p \vee r
$$

(3.28) Axiom, Excluded Middle:

$$
p \vee \neg p
$$

The Law of the Excluded Middle (LEM)

Aristotle:
...there cannot be an intermediate between contradictories, but of one subject we must either affirm or deny any one predicate...

Bertrand Russell in "The Problems of Philosophy":
Three "Laws of Thought":

1. Law of identity: "Whatever is, is."
2. Law of noncontradiction: "Nothing can both be and not be."
3. Law of excluded middle: "Everything must either be or not be."

These three laws are samples of self-evident logical principles...
(3.28) Axiom, Excluded Middle:

$$
p \vee \neg p
$$

- this will often be used as: $\quad p \vee \neg p \equiv$ true

Disjunction Axioms and Theorems

Heuristics of Directing Calculations

(3.33) Heuristic: To prove $P \equiv Q$, transform the expression with the most structure (either P or Q) into the other.

```
Proving (3.29) \(p \vee\) true \(\equiv\) true:
Proving (3.29) \(p \vee\) true \(\equiv\) true:
    \(p \vee\) true
    \(\equiv\langle\) Identity of \(\equiv(3.3)\rangle\)
    \(p \vee(q \equiv q)\)
    \(\equiv\langle\) Distr. of \(\vee\) over \(\equiv(3.27)\rangle\)
    \(p \vee q \equiv p \vee q\)
    \(\equiv\langle\) Identity of \(\equiv(3.3)\rangle\)
    true
    true
    \(\equiv\langle\) Identity of \(\equiv(3.3)\rangle\)
\(\equiv\langle\) Distr. of \(\vee\) over \(\equiv(3.27)\rangle\)
        \(p \vee(p \equiv p)\)
    \(\equiv\langle\) Identity of \(\equiv(3.3)\rangle\)
    \(p \vee\) true
```

(3.34) Principle: Structure proofs to minimize the number of rabbits pulled out of a hat - make each step seem obvious, based on the structure of the expression and the goal of the manipulation.

(3.21) Heuristic

Identify applicable theorems by matching the structure of expressions or subexpressions. The operators that appear in a boolean expression and the shape of its subexpressions can focus the choice of theorems to be used in manipulating it.

Obviously, the more theorems you know by heart and the more practice you have in pattern matching, the easier it will be to develop proofs.

Textbook, p. 47

The Conjunction Axiom: The "Golden Rule"

(3.35) Axiom, Golden rule:

$$
p \wedge q \equiv p \equiv q \equiv p \vee q
$$

Can be used as:

- $p \wedge q=(p \equiv q \equiv p \vee q) \quad$ - Definition of \wedge
- $(p \equiv q)=(p \wedge q \equiv p \vee q)$
- ...

Theorems:
(3.36) S

Symmetry of $\wedge: \quad p \wedge q \equiv q \wedge p$
(3.37) Associativity of $\wedge: \quad(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
(3.38) Idempotency of $\wedge: \quad p \wedge p \equiv p$
(3.39) Identity of \wedge : $\quad p \wedge$ true $\equiv p$
(3.40) Zero of \wedge :
$p \wedge$ false \equiv false
(3.41) Distributivity of \wedge over $\wedge: \quad p \wedge(q \wedge r) \equiv(p \wedge q) \wedge(p \wedge r)$
(3.42) Contradiction:
$p \wedge \neg p \equiv$ false
(3.36) Symmetry of \wedge :
$(p \wedge q) \equiv(q \wedge p)$

Proving (3.36) Symmetry of \wedge :
$p \wedge q$
$\equiv\langle(3.35)$ Definition of $\wedge($ Golden rule) $\rangle \quad$ - Unfold
$p \equiv q \equiv p \vee q$
$\equiv\langle(3.2)$ Symmetry of \equiv, (3.24) Symmetry of $\vee\rangle$
$q \equiv p \equiv q \vee p$
$\equiv\langle(3.35)$ Definition of \wedge (Golden rule) $\rangle \quad$-Fold $q \wedge p$

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-15

- Natural Induction
- Propositional Calculus: \wedge

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-15

How is the set \mathbb{N} of all natural numbers defined?

(Without referring to the integers)
(From first principles...)

Natural Numbers - \mathbb{N}

- The set of all natural numbers is written \mathbb{N}.
- In Computing, zero " 0 " is a natural number.
- If n is a natural number, then its successor "suc n " is a natural number, too.
- We write
- " 1 " for "suc 0 "
- " 2 " for "suc 1 "
- "3" for "suc 2"
- " 4 " for "suc 3"
- ...
- In Haskell (data constructors start with upper-case letters):

```
data Nat= Zero| Suc Nat
```


Natural Numbers - Rigorous Definition

- The set of all natural numbers is written \mathbb{N}.
- Zero " 0 " is a natural number.
- If n is a natural number, then its successor "suc n " is a natural number, too.
- Nothing else is a natural number.
- Two natural numbers are equal if and only if they are constructed in the same way.

Example: suc suc suc $0 \neq$ suc suc suc suc 0
This is an inductive definition.
(Like the definition of expressions...)
Every inductive definition gives rise to an induction principle

- a way to prove statements about the inductively defined elements

Natural Numbers - Induction Principle

- The set of all natural numbers is written \mathbb{N}.
- Zero " 0 " is a natural number.
- If n is a natural number, then its successor "suc n " is a natural number, too.

Induction principle for the natural numbers:

- if $P(0)$ If P holds for 0
- and if $P(m)$ implies $P($ suc $m)$,

$$
\text { and whenever } P \text { holds for } m \text {, it also holds for suc } m \text {, }
$$

- then for all m : \mathbb{N} we have $P(m)$.
then P holds for all natural numbers.
Natural Numbers - Induction Proofs
Induction principle for the natural numbers:
- if $P[m:=0]$
- and if we can obtain $P[m:=s u c ~ m]$ from P,
and whenever P holds for m, it also holds for suc m,
- then P holds.

An induction proof using this looks as follows:
Theorem: P

Proof:

By induction on $m: \mathbb{N}$:
Base case: Proof for $P[m:=0]$
Induction step:
Proof for $P[m:=$ suc $m]$ using Induction hypothesis P

Factorial - Inductive Definition

- The set of all natural numbers is written \mathbb{N}.
- zero " 0 " is a natural number.
- If n is a natural number, then its successor "suc n " is a natural number, too.
- Nothing else is a natural number.
- Two natural numbers are only equal if constructed in the same way.
\mathbb{N} is an inductively-defined set.
The factorial operator "_!" on \mathbb{N} can be defined as follows:
- The factorial of a natural number is a natural number again:

$$
_!: \mathbb{N} \rightarrow \mathbb{N}
$$

- $0!=1$
- For every $n: \mathbb{N}$, we have:

$$
(\operatorname{suc} n)!=(\operatorname{suc} n) \cdot(n!)
$$

_! is an inductively-defined function.
Proving properties about inductively-defined functions on \mathbb{N} frequently requires use of the induction principle for \mathbb{N}.

Even Natural Numbers - Inductive Definition

- The predicates even and odd are declared as Boolean-valued functions:

Declaration: even, odd: $\mathbb{N} \rightarrow \mathbb{B}$

- Function application of function f to argument a is written as juxtaposition: $f a$
- The definitions provided in Homework 5.1 are inductive definitions:

Axiom "Zero is even": even 0 --..." read this as: even $0 \equiv$ true
Axiom "Even successor": even $($ suc $n) \equiv \neg($ even $n)$
even is an inductively-defined function.
Why does this define even for all possible arguments?
Because:

- even takes one argument of type \mathbb{N}
- This argument is always either 0 , or suc k for some smaller $k: \mathbb{N}$
- Each clause covers one case completely.
- The second clause "builds up" the domain of definition of even from smaller to larger n.

Proving "Odd is not even"

Theorem "Odd is not even": odd $n \equiv \neg($ even $n)$
Axiom "Zero is even": even 0 read this as: even $0 \equiv$ true
Axiom "Even successor": even $(\operatorname{suc} n) \equiv \neg($ even $n)$
Axiom "Zero is not odd": \neg odd 0
Axiom "Odd successor": odd (suc n) $\equiv \neg($ odd $n)$

An induction proof looks as follows:
Theorem: P
Proof:
By induction on $m: \mathbb{N}$:
Base case:
Proof for P[m:= 0]
Induction step:
Proof for $P[m:=$ suc $m]$ using Induction hypothesis P

Proving "Odd is not even"

Theorem "Odd is not even": odd $n \equiv \neg($ even $n)$ Proof:

Axiom "Zero is even": even 0 read this as: even $0 \equiv$ true
Axiom "Even successor": even (suc n) $\equiv \neg($ even $n)$
Axiom "Zero is not odd": ᄀ odd 0
Axiom "Odd successor": odd (suc $n) \equiv \neg($ odd $n)$
By induction on ’:
Base case:
odd 0
$\equiv\langle ?\rangle$
$\neg($ even 0$)$
Induction step:
odd (suc n)
$\equiv\langle ?\rangle$
$\neg($ odd $n)$
$\equiv\langle$ Induction hypothesis \rangle
$\neg \neg($ even $n)$
$\equiv\langle$? \rangle
\neg even (suc n)

Natural Number Addition - Inductive Definition

- The set of all natural numbers is written \mathbb{N}.
- zero " 0 " is a natural number.
- If n is a natural number, then its successor "suc n " is a natural number, too.
- Nothing else is a natural number.
- Two natural numbers are only equal if constructed in the same way.
\mathbb{N} is an inductively-defined set.
Addition on \mathbb{N} can be defined as follows:
- The (infix) addition operator " + ", when applied to two natural numbers, produces again a natural number
${ }^{+}+: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$
- For every $q: \mathbb{N}$, we have:
- $0+q=q$
- For every $n: \mathbb{N}$ we have: $($ suc $n)+q=\operatorname{suc}(n+q)$
+ is an inductively-defined function.

Proving "Right-Identity of +"

Theorem "Right-identity of + ": $m+0=m$

Proof:
By induction on :
Base case:
$0+0$
$=\langle$ "Definition of + for $0 "\rangle$
0
Induction step:
suc $m+0$
$=\langle$ "Definition of + for `suc"" \rangle
suc $(m+0)$
$=\langle$ Induction hypothesis \rangle
suc m

An induction proof looks as follows:
Theorem: P
Proof:
By induction on $m: \mathbb{N}$:
Base case:

$$
\text { Proof for } P[m:=0]
$$

Induction step:

Proof for $P[m:=$ suc $m]$ using Induction hypothesis P

Proving "Right-Identity of +" — With Details

Theorem "Right-identity of + ": $m+0=m$

Proof:
By induction on ${ }^{\prime} m: \mathbb{N}$:
Base case ${ }^{\circ} 0+0=0$:
$0+0$
$=\langle$ "Definition of + for $0 "\rangle$
0
Induction step `suc \(m+0=\boldsymbol{\operatorname { s u c }} m^{\text {}}\) : suc \(m+0\) \(=\left\langle\right.\) "Definition of + for \(\left.{ }^{\text {s suc }}{ }^{\prime \prime}\right\rangle\) suc \((m+0)\) \(=\left\langle\right.\) Induction hypothesis \(\left.{ }^{`} m+0=m^{`}\right\rangle\) SUC m

An induction proof looks as follows:
Theorem: P
Proof:
By induction on $m: \mathbb{N}$:
Base case:
Proof for P[m:= 0]
Induction step:
Proof for $P[m:=$ suc $m]$
using Induction hypothesis P

$$
\text { Proving "Right-Identity of }+ \text { " - Indentation! }
$$

Theorem＂Right－identity of＋＂：m＋ 0 ＝m
Proof：
${ }_{u}{ }^{B y}$ induction on $\times m$ ： \mathbb{N} ’：
uчич Base case：
บบบบบบи 0 ＋ 0

usuInduction step：

บบบบบบபsuc m
Press＂Ctrl－Shift－v＂to toggle＂visible spaces＂．

Read Parse Error Messages！

\equiv 〈Substitution \rangle
－CalcCheck：Due to parse error in the expression below，this calculation step cannot be checked．
《 Parse error：＂Cell 12＂（line 19，column 16）：
unexpected＂$=$＂

Submitting parse errors is unprofessional！

Carefully Check Indentation：Each Level ≥ 2 Spaces！

\equiv 〈Substitution 》
－CalcCheck：Due to parse error in the expression below，this calculation step cannot be checked
《 Parse error：＂Cell 12＂（line 18，column 25）： unexpected＂＂＂

Hint item where the parser expects an expression－
calculation operators need to be aligned two spaces to the left of calculation expressions！

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-15

Part 2: A Look at the Outline

Academic Integrity (see also page 4) — Course-Specific Notes

Academic credentials you earn are rooted in principles of honesty and academic integrity.
In the context of COMPSCI 2LC3, in particular the following behaviours constitute academic dishonesty:

1. Plagiarism, i.e., the submission of work that is not one's own or for which other credit has been obtained.
2. Collaboration where individual work is expected.

You have to produce your submissions for homework and assignment questions yourself, and without collaboration.
For each assignment question there will normally be exercise questions similar to it - you are allowed to collaborate on these exercise questions. (The tutorials are typically not expected to cover all exercise questions.)

- You are not allowed to copy \& edit any portion of another student's work, nor from any websites, but you may use material from the course notes.
- You are not allowed to give your solutions (or portions thereof) to another student.
- You are not allowed to work on your homework or assignment with other students, nor with friends, parents, relatives, etc..
- You are not allowed to post full or partial homework or assignment solutions on discussion boards or websites (e.g., github, FaceBook, etc..).
- You are not allowed to solicit solutions to the problem on on-line forums or purchasing solutions from on-line sources.
- You are not allowed to submit a combined solution with a classmate.

3. Copying or using unauthorised aids in tests and examinations.
4. Accessing another students' Avenue or other relevant online account, or providing others access to your accounts.
5. Accessing or attempting to access midterm or exam material outside the individually assigned writing time and space.
6. Meddling or attempting to meddle with online services used for course delivery.

Note: If you cheat, you are cheating yourself.
Later in the course, we intend to have individually-generated assignments and tests and so collaboration or cheating early on in the course will result in hardship during time-constrained midterms with individualised assignments where collaboration is no longer feasible and each person must use the allotted time to solve their individual problems.

You need to solve the Homeworks yourself!

- Assuming that you can pass this course without actually acquiring the expected reasoning skills is most likely unrealistic.
- You acquire the skills by doing Homeworks and Assignments yourself!
- If you provide your solutions to others,
- that constitutes academic dishonesty as well!
- If you provide your solutions to others,
- that actually reduces their chances to acquire the skills and pass the course!
- Large cluster of extremely similar submissions strongly suggest that large groups of students are not getting the expected learning:
- I need to act!
- If homeworks were to be done with pen and paper, you would submit imperfect solutions without hesitation...

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-15
Part 3: Propositional Calculus: \wedge — Conjunction

The Conjunction Axiom: The "Golden Rule"

(3.35) Axiom, Golden rule:

$$
p \wedge q \equiv p \equiv q \equiv p \vee q
$$

Can be used as:

- $p \wedge q=(p \equiv q \equiv p \vee q) \quad$ - Definition of \wedge
- $(p \equiv q)=(p \wedge q \equiv p \vee q)$
- ...

Theorems:

(3.36) S

Symmetry of $\wedge: \quad p \wedge q \equiv q \wedge p$
(3.37) Associativity of \wedge :

$$
(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)
$$

(3.38) Idempotency of \wedge :
$p \wedge p \equiv p$
(3.39) Identity of \wedge :
$p \wedge$ true $\equiv p$
(3.40) Zero of \wedge :
$p \wedge$ false \equiv false
(3.41) Distributivity of \wedge over $\wedge: \quad p \wedge(q \wedge r) \equiv(p \wedge q) \wedge(p \wedge r)$
(3.42) Contradiction:
$p \wedge \neg p \equiv$ false

Conjunction Theorems: Symmetry

(3.36) Symmetry of \wedge :

$$
(p \wedge q) \equiv(q \wedge p)
$$

Proving (3.36) Symmetry of \wedge :

$$
p \wedge q
$$

$\equiv\langle(3.35)$ Definition of $\wedge($ Golden rule $)\rangle$ - Unfold

$$
p \equiv q \equiv p \vee q
$$

$\equiv\langle(3.2)$ Symmetry of $\equiv,(3.24)$ Symmetry of $v\rangle$
$q \equiv p \equiv q \vee p$
$\equiv\langle(3.35)$ Definition of \wedge (Golden rule) \rangle-Fold $q \wedge p$

Theorems Relating \wedge and \vee

(3.43) Absorption:

$$
\begin{aligned}
& p \wedge(p \vee q) \equiv p \\
& p \vee(p \wedge q) \equiv p
\end{aligned}
$$

(3.44) Absorption:

$$
\begin{aligned}
& p \wedge(\neg p \vee q) \equiv p \wedge q \\
& p \vee(\neg p \wedge q) \equiv p \vee q
\end{aligned}
$$

(3.45) Distributivity of \vee over $\wedge: \quad p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
(3.46) Distributivity of \wedge over $\vee: \quad p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
(3.47) De Morgan:

$$
\begin{aligned}
\neg(p \wedge q) & \equiv \neg p \vee \neg q \\
\neg(p \vee q) & \equiv \neg p \wedge \neg q
\end{aligned}
$$

Boolean Lattice Duality

A Boolean-lattice expression is

- either a variable,
- or true or false
- or an application of \neg _ to a Boolean-lattice expression
- or an application of _^_ or _ \vee _ to two Boolean-lattice expressions.

The dual of a Boolean-lattice expressions is obtained by

- replacing true with false and vice versa,
- replacing _^_ with _ی_ and vice versa.

The dual of a Boolean-lattice equation (equivalence) is the equation between the duals of the LHS and the RHS.

Metatheorem "Boolean lattice duality":
Every Boolean-lattice equation is valid iff its dual is valid.

Metatheorem "Boolean lattice duality":

Every Boolean-lattice equation is a theorem iff its dual is a theorem.

Theorems Relating \wedge and \equiv

$$
\begin{equation*}
p \wedge q \equiv p \wedge \neg q \equiv \neg p \tag{3.48}
\end{equation*}
$$

(3.49) Semi-distributivity of \wedge over \equiv

$$
p \wedge(q \equiv r) \equiv p \wedge q \equiv p \wedge r \equiv p
$$

(3.50) Strong modus ponens for \equiv
$p \wedge(q \equiv p) \equiv p \wedge q$
(3.51) Replacement:
$(p \equiv q) \wedge(r \equiv p) \equiv(p \equiv q) \wedge(r \equiv q)$

Alternative Definitions of \equiv and $\not \equiv$

(3.52) Alternative definition of \equiv :

$$
\begin{aligned}
p \equiv q & \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
p \not \equiv q & \equiv(\neg p \wedge q) \vee(p \wedge \neg q)
\end{aligned}
$$

(3.53) Alternative definition of $\not \equiv$:

Ladies or Tigers: First Case, Formalisation, Long S_{2}

In the first case, the following signs are on the doors of the rooms:

1
In this room there is a lady, and in the other
room there is a tiger.

2

In one of these rooms there is a lady, and in one of these rooms there is a tiger.

We are told that one of the signs is true, and the other one is false.

$R 1 L:=$	There is a lady in room 1	$S_{1} \equiv R 1 L \wedge R 2 T$
$R 2 T:=$	There is a tiger in room 2	$S_{2} \equiv(R 1 L \vee \neg R 2 T) \wedge(\neg R 1 L \vee R 2 T)$

$S_{1} \neq S_{2}$

Ladies or Tigers: First Case, Long S_{2}, Solution

```
R1L := There is a lady in room 1 
R2T := There is a tiger in room 2 
```

 \(S_{1} \neq S_{2}\)
 \(=\left\langle\right.\) Def. \(\left.S_{1}, S_{2}\right\rangle\)
 \((R 1 L \wedge R 2 T) \not \equiv((R 1 L \vee \neg R 2 T) \wedge(\neg R 1 L \vee R 2 T))\)
 \(=\langle(3.14) p \not \equiv q \equiv \neg p \equiv q\), (3.35) Golden Rule \(\rangle\)
 \(\neg(R 1 L \wedge R 2 T) \equiv R 1 L \vee \neg R 2 T \equiv \neg R 1 L \vee R 2 T \equiv R 1 L \vee \neg R 2 T \vee \neg R 1 L \vee R 2 T\)
 \(=\langle\) (3.28) Excluded Middle, (3.29) Zero of \(\vee\rangle\)
 \(\neg(R 1 L \wedge R 2 T) \equiv R 1 L \vee \neg R 2 T \equiv \neg R 1 L \vee R 2 T \equiv\) true
 \(=\langle\) (3.47) De Morgan, (3.3) Identity of \(\equiv\rangle\)
 \(\neg R 1 L \vee \neg R 2 T \equiv R 1 L \vee \neg R 2 T \equiv \neg R 1 L \vee R 2 T\)
 \(=\langle(3.32) p \vee q \equiv p \vee \neg q \equiv p\rangle\)
 \(\neg R 2 T \equiv \neg R 1 L \vee R 2 T\)
 \(=\langle(3.32) p \vee q \equiv p \vee \neg q \equiv p\rangle\)
 \(\neg R 2 T \equiv \neg R 1 L \vee \neg R 2 T \equiv \neg R 1 L\)
 \(=\langle\) (3.35) Golden Rule 〉
 \(\neg R 1 L \wedge \neg R 2 T\)
 \(=\langle R 1 T=\neg R 1 L\) and \(R 2 L=\neg R 2 T\rangle\)
 \(R 1 T \wedge R 2 L\)

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-18

- Introduction to Quantification (LADM ch. 8)
- Propositional Calculus: Implication \Rightarrow

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-18
Part 1: Introduction to Quantification (start LADM chapt. 8), Quantification expansion

Counting Integral Points

How many integral points are in the triangle $\begin{gathered}(0, n) \\ \text { ? }\end{gathered}$ $(0,0)-(n, 0)$

$$
\left(\sum x, y: \mathbb{N} \mid x+y \leq n \bullet 1\right)
$$

How many integral points are in the circle of radius n around $(0,0)$?

$$
\left(\sum x, y: \mathbb{Z} \mid x \cdot x+y \cdot y \leq n \cdot n \bullet 1\right)
$$

Sum Quantification Examples

$\left(\sum k: \mathbb{N} \mid k<5 \bullet k\right)$

- "The sum of all natural numbers less than five"
$\left(\sum k: \mathbb{N} \mid k<5 \bullet k \cdot k\right)$
- "For all natural numbers k that are less than 5 , adding up the value of $k \cdot k$ "
- "The sum of all squares of natural numbers less than five"
$\left(\sum x, y: \mathbb{N} \mid x \cdot y=120 \bullet 2 \cdot(x+y)\right)$
- "For all natural numbers x and y with product 120, adding up the value of $2 \cdot(x+y)^{\prime \prime}$
- "The sum of the perimeters of all integral rectangles with area 120 "

Product Quantification Examples

- "The factorial of n is the product of all positive integers up to n "
factorial : $\mathbb{N} \rightarrow \mathbb{N}$
factorial $n=(\Pi k: \mathbb{N} \mid 0<k \leq n \bullet k)$
- "The product of all odd natural numbers below 50 ."
$(\Pi n: \mathbb{N} \mid \neg(2 \mid n) \wedge n<50 \bullet n)$
$(\Pi k: \mathbb{N} \mid 2 \cdot k+1<50 \cdot 2 \cdot k+1)$
$(П k: \mathbb{N} \mid k<25 \cdot 2 \cdot k+1)$

Sum and Product Quantification

($\sum x \mid R \bullet E$)

- "For all x satisfying R, summing up the value of E "
- "The sum of all E for x with R "
($\left.\sum x: T \bullet E\right)$
- "For all x of type T, summing up the value of E "
- "The sum of all E for x of type T "
$(\Pi x \mid R \bullet E)$
- "The product of all E for x with R "
($П x: T \bullet E)$
- "The product of all E for x of type T "

> General Shape of Sum and Product Quantifications $$
\begin{array}{c}\left(\sum x: t_{1} ; y, z: t_{2} \mid R \bullet E\right) \\ \left(\Pi x: t_{1} ; y, z: t_{2} \mid R \bullet E\right)\end{array}
$$

- Any number of variables x, y, z can be quantified over
- The quantified variables may have type annotations (which act as type declarations)
- Expression $R: \mathbb{B}$ is the range of the quantification
- Expression E is the body of the quantification
- E will have a number type $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$
- Both R and E may refer to the quantified variables x, y, z
- The type of the whole quantification expression is the type of E.

LADM/CalcСheck Quantification Notation

Conventional sum quantification notation: $\quad \sum_{i=1}^{n} e=e[i:=1]+\ldots+e[i:=n]$
The textbook uses a different, but systematic linear notation:

$$
\left(\sum i \mid 1 \leq i \leq n: e\right) \quad \text { or } \quad(+i \mid 1 \leq i \leq n: e)
$$

We use a variant with a "spot" " \bullet " instead of the colon ":" and only use "big" operators:

$$
\left(\sum_{i} \mid 1 \leq i \leq n \bullet e\right) \quad-\quad \text { sum } \quad \text { |with } \quad \text { spot }
$$

Reasons for using this kind of linear quantification notation:

- Clearly delimited introduction of quantified variables (dummies)
- Arbitrary Boolean expressions can define the range
$\left(\sum i \mid 1 \leq i \leq 7 \wedge\right.$ even $\left.i \bullet i\right)=2+4+6$
- The notation extends easily to multiple quantified variables:
$\left(\sum i, j: \mathbb{Z} \mid 1 \leq i<j \leq 4 \bullet i / j\right)=1 / 2+1 / 3+1 / 4+2 / 3+2 / 4+3 / 4$

Meaning of Sum Quantification

Let i be a variable list, R a Boolean expression, and E an expression of a number type.
The meaning of $\left(\sum i \mid R \bullet E\right) \quad$ in state s is:

- the sum of the meanings of E
- in all those states that satisfy R
- and are different from s at most in variables in i.

Examples:

- $\left(\sum i, j \mid i=j=i+1 \bullet i \cdot j\right)=0$
- $\left(\sum i, j \mid 0<i<j<4 \cdot i \cdot j\right)=1 \cdot 2+1 \cdot 3+2 \cdot 3$
- $\left(\sum i, j \mid 1 \leq i \leq 2 \wedge 3 \leq j \leq 4 \cdot i \cdot j\right)=1 \cdot 3+1 \cdot 4+2 \cdot 3+2 \cdot 4$
- In state $[(i, 7),(j, 11),(k, 3)]$, we have:
$\left(\sum i, j \mid 0<i<j<k \bullet i \cdot j\right)=1 \cdot 2$

Bound / Free Variable Occurrences

$\left(\sum i: \mathbb{N} \mid i<x \bullet i+1\right)=10 \quad$ example expression
Is this true or false? In which states?
We have: $\quad\left(\sum i: \mathbb{N} \mid i<x \bullet i+1\right)=10 \quad \equiv \quad x=4$
The value of this example expression in a state depends only on x, not on i !
Renaming quantified variables does not change the meaning:

$$
\left(\sum i: \mathbb{N} \mid i<x \bullet i+1\right)=\left(\sum j: \mathbb{N} \mid j<x \bullet j+1\right)
$$

- Occurrences of quantified variables inside the quantified expression are bound
- Non-bound variable occurences are called free
- Variables of the same name may occur both free and bound in the same expression, e.g.: $\quad 3 \cdot i+\left(\sum i: \mathbb{N} \mid i<x \bullet 2 \cdot i\right)$
- The variable declarations after the quantification operator may be called binding occurrences.

Variable Binding is Everywhere! Including in Substitution!

Another example expression: $\quad(x+3=5 \cdot i)[i:=9]$
Is this true or false? In which states?

$$
\begin{aligned}
&(x+3=5 \cdot i)[i:=9] \\
& \equiv\langle\text { Substitution, }, .\rangle\rangle \\
& x=42
\end{aligned}
$$

The value of $(x+3=5 \cdot i)[i:=9]$ in a state depends only on x, not on i !
Renaming substituted variables does not change the meaning:

$$
(x+3=5 \cdot i)[i:=9] \quad \equiv \quad(x+3=5 \cdot j)[j:=9]
$$

- Occurrences of substituted variables inside the target expression are bound
- The variable occurrences to the left of := in substitutions may be called binding occurrences.
- Non-bound variable occurences are called free.

$$
i>0 \wedge(x+3=5 \cdot i)[i:=7+i]
$$

- Substitution does not bind to the right of $:=$!

Expanding Sum and Product Quantification

Sum quantification (Σ) is "addition $(+)$ of arbitrarily many terms":
$\left(\sum i \mid 5 \leq i<9 \bullet i \cdot(i+1)\right)$
$=\langle$ Quantification expansion \rangle
$(i \cdot(i+1))[i:=5]+(i \cdot(i+1))[i:=6]+(i \cdot(i+1))[i:=7]+(i \cdot(i+1))[i:=8]$
$=\langle$ Substitution \rangle
$5 \cdot(5+1)+6 \cdot(6+1)+7 \cdot(7+1)+8 \cdot(8+1)$
Product quantification (Π) is "multiplication (.) of arbitrarily many factors":
($\Pi i \mid 0 \leq i<3 \cdot 5 \cdot i+1$)
$=\langle$ Quantification expansion \rangle
$(5 \cdot i+1)[i:=0] \quad(5 \cdot i+1)[i:=1] \quad(5 \cdot i+1)[i:=2]$
$=\langle$ Substitution \rangle
$(5 \cdot 0+1) \cdot(5 \cdot 1+1) \cdot(5 \cdot 2+1)$

Quantification Examples

($\sum_{i} \mid 0 \leq i<4 \bullet i \cdot 8$)
$=\langle$ Quantification expansion, substitution \rangle
$0 \cdot 8+1 \cdot 8+2 \cdot 8+3 \cdot 8$

$$
\left(\Pi^{i} \mid 0 \leq i<3 \bullet i+(i+1)\right)
$$

$=\langle$ Quantification expansion, substitution \rangle

$$
(0+1) \cdot(1+2) \cdot(2+3)
$$

($\forall i \mid 1 \leq i<3 \cdot i \cdot d \neq 6$)
$=\langle$ Quantification expansion, substitution \rangle
$1 \cdot d \neq 6 \wedge 2 \cdot d \neq 6$
($\exists i \mid 0 \leq i<6 \bullet b i=0)$
$=\langle$ Quantification expansion, substitution \rangle
$b 0=0 \vee b 1=0 \vee b 2=0 \vee b 3=0 \vee b 4=0 \vee b 5=0$

General Quantification

It works not only for $+, \wedge, \vee \ldots$
Let a type T and an operator $\star: T \times T \rightarrow T$ be given.
If for an appropriate $u: T$ we have:

- Symmetry: $\quad b \star c=c \star b$
- Associativity: $(b \star c) \star d=b \star(c \star d)$
- Identity u : $u \star b=b=b \star u$
we may use \star as quantification operator:

$$
\left(\star x: T_{1}, y: T_{2} \mid R \bullet E\right)
$$

- $R: \mathbb{B}$ is the range of the quantification
- $E: T$ is the body of the quantification
- E and R may refer to the quantified variables x and y
- The type of the whole quantification expression is T.

General Quantification: Instances

Let a type T and an operator $\star: T \times T \rightarrow T$ be given.
If for an appropriate $u: T$ we have:

$$
\begin{array}{ll}
\text { - Symmetry: } & b \star c=c \star b \\
\text { Associativity: } & (b \star c) \star d=b \star(c \star d) \\
\text { Identity } u \text { : } & u \star b=b=b \star u
\end{array}
$$

we may use \star as quantification operator: $\left(\star x: T_{1}, y: T_{2} \mid R \bullet E\right)$

- $\vee_{-}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ is symmetric (3.24), associative (3.25),
and has false as identity (3.30) - the "big operator" for \vee is \exists ":
$(\exists k: \mathbb{N} \mid k>0 \bullet k \cdot k<k+1)$
- $\wedge_{-}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ is symmetric (3.36), associative (3.27),
and has true as identity (3.39) - the "big operator" for \wedge is \forall ":
$(\forall k: \mathbb{N} \mid k>2$ - prime $k \Rightarrow \neg$ prime $(k+1))$
- _+_ : $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is symmetric (15.2), associative (15.1),
and has 0 as identity (15.3) - the "big operator" for + is \sum ":
$\left(\sum n: \mathbb{Z} \mid 0<n<100 \wedge\right.$ prime $\left.n \bullet n \cdot n\right)$

Meaning of General Quantification

Let a type T, and a symmetric and associative operator $\star: T \times T \rightarrow T$ with identity $u: T$ be given.
Further let x be a variable list, R a Boolean expression, and E an expression of type T.
The meaning of $(\star x \mid R \bullet E) \quad$ in state s is:

- the nested application of \star to the meanings of E
- in all those states that satisfy R
- and are different from s at most in variables in x,
or u, if there are no such states.
Examples:
- $(\exists i, j \mid i=j=i+1 \bullet i<j)=$ false
- $(\forall i, j \mid i=j=i+1 \bullet i<j)=$ true
- $(\Pi i, j \mid i=j=i+1 \bullet i \cdot j)=1$
- $(\exists i, j \mid 0<i \leq j<3 \bullet i \geq j)=1 \geq 1 \vee 1 \geq 2 \vee 2 \geq 2$

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-18
Part 2: Propositional Calculus: Implication \Rightarrow

Implication

(3.57) Axiom, Definition of Implication,

Definition of \Rightarrow from \vee :

$$
p \Rightarrow q \equiv p \vee q \equiv q
$$

(3.58) Axiom, Consequence:

$$
p \Leftarrow q \equiv q \Rightarrow p
$$

Rewriting Implication:
(3.59) (Alternative) Definition of Implication,

Material implication: $\quad p \Rightarrow q \equiv \neg p \vee q$
(3.60) (Dual) Definition of Implication,

Definition of \Rightarrow from \wedge :

$$
p \Rightarrow q \equiv p \wedge q \equiv p
$$

(3.61) Contrapositive:

$$
p \Rightarrow q \equiv \neg q \Rightarrow \neg p
$$

All Propositional Axioms of the Equational Logic E
(1) (3.1) Axiom, Associativity of \equiv
(2) (3.2) Axiom, Symmetry of \equiv
(3) (3.3) Axiom, Identity of \equiv
(4) (3.8) Axiom, Definition of false
(5) (3.9) Axiom, Commutativity of \neg with \equiv
(6) (3.10) Axiom, Definition of $\not \equiv$

O (3.24) Axiom, Symmetry of v
(8) (3.25) Axiom, Associativity of v
(9) (3.26) Axiom, Idempotency of \vee
(1) (3.27) Axiom, Distributivity of \vee over \equiv
(1) (3.28) Axiom, Excluded Middle
(1) (3.35) Axiom, Golden rule
(3) (3.57) Axiom, Definition of Implication
(44) (3.58) Axiom, Definition of Consequence

The "Golden Rule" and Implication
(3.35) Axiom, Golden rule:
$p \wedge q \equiv p \equiv q \equiv p \vee q$

Can be used as:

- $p \wedge q=(p \equiv q \equiv p \vee q)$
- $(p \equiv q)=(p \wedge q \equiv p \vee q)$
- ...
- $(p \wedge q \equiv p) \equiv(q \equiv p \vee q)$
(3.57) Axiom, Definition of Implication: $\quad p \Rightarrow q \equiv p \vee q \equiv q$
(3.60) (Dual) Definition of Implication: $p \Rightarrow q \equiv p \wedge q \equiv p$

Some Implication Theorems

$$
\begin{align*}
& p \Rightarrow(q \equiv r) \equiv p \wedge q \equiv p \wedge r \tag{3.62}\\
& p \Rightarrow(q \equiv r) \equiv p \Rightarrow q \equiv p \Rightarrow r \\
& p \Rightarrow(q \Rightarrow r) \equiv \quad(p \Rightarrow q) \Rightarrow(p \Rightarrow r) \\
& p \wedge q \Rightarrow r \equiv p \Rightarrow(q \Rightarrow r)
\end{align*}
$$

(3.63) Distributivity of \Rightarrow over \equiv :
(3.64) Self-distributivity of \Rightarrow :
(3.65) Shunting:

How do start to prove the following? (For example,...)
$p \wedge(p \Rightarrow q) \equiv p \wedge q$
$p \wedge(q \Rightarrow p) \equiv p$
$p \vee(p \Rightarrow q) \equiv$ true
$p \vee(q \Rightarrow p) \equiv q \Rightarrow p$
$p \vee q \Rightarrow p \wedge q \equiv p \equiv q$
$\langle\ldots \quad p \wedge q \equiv p\rangle$
(3.67) $p \wedge(q \Rightarrow p) \equiv p$
$\langle\ldots \quad p \wedge q \equiv p\rangle$
(3.68) $p \vee(p \Rightarrow q) \equiv$ true
$\langle\ldots \quad \neg p \vee q\rangle$
$p \vee(q \Rightarrow p) \quad=\quad q \Rightarrow p$
$\langle\ldots \quad p \vee q \equiv q\rangle$
(3.70) $p \vee q \Rightarrow p \wedge q \equiv p \equiv q$
$\langle\ldots$ Golden Rule〉

Additional Important Implication Theorems

Reflexivity of \Rightarrow :
$p \Rightarrow p \equiv$ true
Right-zero of \Rightarrow :
$p \Rightarrow$ true \equiv true
Left-identity of \Rightarrow :
true $\Rightarrow p \equiv p$
Definition of \neg from \Rightarrow :
$p \Rightarrow$ false $\equiv \neg p$
Definition of \neg from \equiv :
$\neg p \equiv p \equiv$ false
ex falso quodlibet:
false $\Rightarrow p \equiv$ true
Shunting:

$$
\begin{equation*}
p \wedge q \Rightarrow r \equiv p \Rightarrow(q \Rightarrow r) \tag{3.75}
\end{equation*}
$$

Modus ponens:
$p \wedge(p \Rightarrow q) \Rightarrow q$
(3.78) Case analysis: $(p \Rightarrow r) \wedge(q \Rightarrow r) \equiv(p \vee q \Rightarrow r)$
(3.79) Case analysis: $(p \Rightarrow r) \wedge(\neg p \Rightarrow r) \equiv r$

Weakening/Strengthening Theorems

" $p \Rightarrow q$ " can be read " p is stronger-than-or-equivalent-to q "
" $p \Rightarrow q$ " can be read " p is at least as strong as q "
(3.76a) $p \quad \Rightarrow p \vee q$
(3.76b) $p \wedge q \quad \Rightarrow p$
(3.76c) $p \wedge q \quad \Rightarrow p \vee q$
(3.76d) $p \vee(q \wedge r) \Rightarrow p \vee q$
(3.76e) $p \wedge q \quad \Rightarrow p \wedge(q \vee r)$

Implication as Order on Propositions
" $p \Rightarrow q$ " can be read " p is stronger-than-or-equivalent-to q "

- similar to " $x \leq y$ " as " x is less-or-equal y "
- similar to " $x \geq y$ " as " x is greater-or-equal y "
" $p \Rightarrow q$ " can be read " p is at least as strong as q "
- similar to " $x \leq y$ " as " x is at most y "
- similar to " $x \geq y$ " as " x is at least y "
(3.57) Axiom, Definition of \Rightarrow from disjunction: $\quad p \Rightarrow q \equiv p \vee q \equiv q$ - defines the order from maximum: $p \Rightarrow q \equiv((p \vee q)=q)$
- analogous to: $x \leq y \equiv((x \uparrow y)=y)$
- analogous to: $k \mid n \equiv((\operatorname{lcm}(k, n)=n)$
(3.60) (Dual) Definition of \Rightarrow from conjunction: $p \Rightarrow q \equiv p \wedge q \equiv p$
- defines the order from minimum: $p \Rightarrow q \equiv((p \wedge q)=p)$
- analogous to: $x \leq y \equiv((x \downarrow y)=x)$
- analogous to: $k \mid n \equiv((g c d(k, n)=k)$

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-20
Implication as Order, Replacement, Monotonicity

Plan for Today

- Continuing Propositional Calculus (LADM Chapter 3)
- Implication as order, order relations
- Leibniz as axiom, and "Replacement" theorems
- Transitivity Calculations, Monotonicity
- (Coming up: LADM chapter 4 , and then chapters 8 and 9.)

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-20
Part 1: Implication as Order, Order Relations

Recall: Weakening/Strengthening Theorems

" $p \Rightarrow q$ " can be read " p is stronger-than-or-equivalent-to q "
" $p \Rightarrow q$ " can be read " p is at least as strong as q "
(3.76a) $p \quad \Rightarrow p \vee q$
(3.76b) $p \wedge q \quad \Rightarrow p$
(3.76c) $p \wedge q \quad \Rightarrow p \vee q$
(3.76d) $p \vee(q \wedge r) \Rightarrow p \vee q$
(3.76e) $p \wedge q \quad \Rightarrow p \wedge(q \vee r)$

Implication as Order on Propositions
" $p \Rightarrow q$ " can be read " p is stronger-than-or-equivalent-to q "

- similar to " $x \leq y$ " as " x is less-or-equal y "
- similar to " $x \geq y$ " as " x is greater-or-equal y "
" $p \Rightarrow q$ " can be read " p is at least as strong as q "
- similar to " $x \leq y$ " as " x is at most y "
- similar to " $x \geq y$ " as " x is at least y "
(3.57) Axiom, Definition of \Rightarrow from disjunction: $p \Rightarrow q \equiv p \vee q \equiv q$ - defines the order from maximum: $p \Rightarrow q \equiv((p \vee q)=q)$
- analogous to: $x \leq y \equiv((x \uparrow y)=y)$
—analogous to: $k \mid n \equiv((\operatorname{lcm}(k, n)=n)$
(3.60) (Dual) Definition of \Rightarrow from conjunction: $\quad p \Rightarrow q \equiv p \wedge q \equiv p$ - defines the order from minimum: $p \Rightarrow q \equiv((p \wedge q)=p)$

$$
\begin{aligned}
& \text { - analogous to: } x \leq y \equiv((x \downarrow y)=x) \\
& \text { - analogous to: } k \mid n \equiv((g c d(k, n)=k)
\end{aligned}
$$

One View of Relations

- Let T_{1} and T_{2} be two types.
- A function of type $T_{1} \rightarrow T_{2} \rightarrow \mathbb{B}$ can be considered as one view of a relation from T_{1} to T_{2}
- We will see a different view of relations later ...
- ... and the way to switch between these views.
- With such a way of switching, the two views "are the same" in colloquial mathematics
- Therefore we will occasionally just use the term "relation" also for functions of types $T_{1} \rightarrow T_{2} \rightarrow \mathbb{B}$
- A function of type $T \rightarrow T \rightarrow \mathbb{B}$ may then be called a relation on T.
- Some relations you are familar with: _=_ :T $\rightarrow T \rightarrow \mathbb{B}$

$$
\begin{aligned}
& =_{-}: \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{B} \\
& =_{-}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B} \\
& \text { _-_ }: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B} \\
& \equiv_{-}: \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B} \\
& Z_{-}: \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}
\end{aligned}
$$

Order Relations

- Let T be a type.
- A relation _́_ on T is called:
- reflexive iff $x \leq x$ is valid
- transitive iff $x \leq y \wedge y \leq z \Rightarrow x \leq z$ is valid
- antisymmetric iff $x \leq y \wedge y \leq x \Rightarrow x=y$ is valid
- an order (or ordering) iff it is reflexive, transitive, and antisymmetric
- Orders you are familiar with: _=_: $T \rightarrow T \rightarrow \mathbb{B}$

$$
\leq_{-}: \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{B}
$$

$$
\geq_{-}: \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{B}
$$

$$
\leq_{-}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}
$$

$$
\geq_{-}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}
$$

$$
ـ_{-}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}
$$

$$
{ }_{-\equiv}: \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}
$$

$$
\Rightarrow_{-}: \mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}
$$

$$
\subseteq_{-}: \operatorname{set} T \rightarrow \boldsymbol{\operatorname { s e t }} T \rightarrow \mathbb{B}
$$

Order Properties of Implication in LADM Chapter 3

(3.71) Reflexivity of $\Rightarrow: \quad p \Rightarrow p$
(3.80b) Reflexivity wrt. Equivalence: $(p \equiv q) \Rightarrow(p \Rightarrow q)$
(3.80) Mutual implication: $(p \Rightarrow q) \wedge(q \Rightarrow p) \equiv p \equiv q$
(3.81) Antisymmetry: $(p \Rightarrow q) \wedge(q \Rightarrow p) \Rightarrow(p \equiv q)$
(3.82a) Transitivity: $(p \Rightarrow q) \wedge(q \Rightarrow r) \Rightarrow(p \Rightarrow r)$
(3.82b) Transitivity: $(p \equiv q) \wedge(q \Rightarrow r) \Rightarrow(p \Rightarrow r)$
(3.82c) Transitivity: $(p \Rightarrow q) \wedge(q \equiv r) \Rightarrow(p \Rightarrow r)$

Some Order-Related Concepts

An order _ \leq _ on T may have (or may not have):

- a least element denoted b : A constant b such that $b \leq x$ is valid
$\leq_{-}: \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{B}$ has no least element
_ $\leq_{-}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ has least element 0
$\geq_{-}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ has no least element
I: $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ has least element 1
- a greatest element denoted t : A constant t such that $x \leq t$ is valid
$__{-}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ has no greatest element
$\geq_{-}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ has greatest element 0
$\|_{-}: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ has greatest element 0
- have binary maxima: An operation _ U_{-}such that $x \sqcup y$ is the least element that is at least x and also at least y
- have binary minima: An operation _п_ such that $x \sqcap y$ is the greatest element that is at most x and also at most y

Monotonicity, Isotonicity, Antitonicity

- Let _<_ be an order on T
- Let $f: T \rightarrow T$ be a function on T
- Then f is called
- monotonic iff $x \leq y \Rightarrow f x \leq f y$ is a theorem
- isotonic iff $x \leq y \equiv f x \leq f y$ is a theorem
- antitonic iff $x \leq y \Rightarrow f y \leq f x$ is a theorem
- Examples:
- suc_: $\mathbb{N} \rightarrow \mathbb{N}$ is isotonic
- pred : $\mathbb{N} \rightarrow \mathbb{N}$ is monotonic, but not isotonic
- _+_ : $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ is isotonic in the first argument: $x \leq y \equiv x+z \leq y+z \quad$ is a theorem
- _+_: $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ is isotonic in the second argument: $x \leq y \equiv z+x \leq z+y \quad$ is a theorem
- _-_ $: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ is monotonic in the first argument: $x \leq y \Rightarrow x-z \leq y-z \quad$ is a theorem
- _-_ : $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ is antitonic in the second argument: $x \leq y \Rightarrow z-y \leq z-x \quad$ is a theorem
\square
Monotonicity and Antitonicity Theorems for \Rightarrow
(4.2) Left-Monotonicity of $\vee: \quad(p \Rightarrow q) \Rightarrow(p \vee r \Rightarrow q \vee r)$
(4.3) Left-Monotonicity of $\wedge: \quad(p \Rightarrow q) \Rightarrow p \wedge r \Rightarrow q \wedge r$
- We'll be getting to LADM chapter 4 on Wednesday.
- But you can prove these already in the context of chapter 3!

Tutorials and Exercise Notebooks

- Doing the Homework (yourself) is necessary - but not sufficient!
- The Exercise notebooks have content that you are expected to know as well!
- Some of that content may be new to you... (e.g., Ex3.3, Ex3.4...)
- The tutorials will explain that content, and help you tackle related problems.
- Exercise 3.1 (Implication) builds on Ex2.5-2.7 (Equiv., Neg., Disjunction, Conjunction).

Questions in this direction will be on Midterm 1.
You are expected to know the theorems you will need to use, and to know also the names of these theorems.
You will need practice using these theorems. If you haven't started yet: Start now! Best practice: Produce different proofs for the theorems in Ex2.7 and Ex3.1. Without that practice, Midterm 1 will probably be infeasible for you.

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-20
Part 2: Leibniz as Axiom, Replacement Theorems

Leibniz's Rule as an Axiom

Recall the inference rule (scheme):
(1.5) Leibniz:

$$
\frac{X=Y}{E[z:=X]=E[z:=Y]}
$$

Axiom scheme (E can be any expression, and z any variable):
(3.83) Axiom, Leibniz: $(e=f) \Rightarrow(E[z:=e]=E[z:=f])$

What is the difference?

- Given a theorem $X=Y$ and an expression E, the inference rule (1.5) produces a new theorem $E[z:=X]=E[z:=Y]$
- (3.83) is a theorem
- $((e=f) \Rightarrow(E[z:=e]=E[z:=f]))=$ true

Can be used deep inside nested expressions

- making use of local assumptions (that are typically not theorems)

Leibniz's Rule as an Axiom - Examples

Recall the inference rule (scheme):
(1.5) Leibniz:

$$
\frac{X=Y}{E[z:=X]=E[z:=Y]}
$$

Axiom scheme (E can be any expression, and z any variable):
(3.83) Axiom, Leibniz: $(e=f) \Rightarrow(E[z:=e]=E[z:=f])$

Examples

- $n=k+1 \Rightarrow n \cdot(k-1)=(k+1) \cdot(k-1)$
- $n=k+1 \Rightarrow(z \cdot(k-1))[z:=n]=(z \cdot(k-1))[z:=k+1]$
- $\quad\left(n=k+1 \Rightarrow n \cdot(k-1)=k^{2}-1\right)=$ true
$\Rightarrow \quad\left(n>5 \Rightarrow\left(n=k+1 \Rightarrow n \cdot(k-1)=k^{2}-1\right)\right)$

$$
=(n>5 \Rightarrow \text { true })
$$

Leibniz's Rule Axiom, and Further Replacement Rules

Axiom scheme (E can be any expression; $z, e, f: t$ can be of any type t):
(3.83) Axiom, Leibniz: $(e=f) \Rightarrow(E[z:=e]=E[z:=f])$

- Axiom (3.83) is rarely useful directly!
- Allmost all applications are via derived "Replacement" theorems

Replacement rules: (P can be any expression of type \mathbb{B})
(3.84a) "Replacement": $\quad(e=f) \wedge P[z:=e] \equiv \quad(e=f) \wedge P[z:=f]$
(3.84b) "Replacement": $\quad(e=f) \Rightarrow P[z:=e] \equiv \quad(e=f) \Rightarrow P[z:=f]$
(3.84c) "Replacement": $q \wedge(e=f) \Rightarrow P[z:=e] \equiv q \wedge(e=f) \Rightarrow P[z:=f]$

Using a Replacement (LADM: "Substitution") Rule

Replacement rule: (P can be any expression of type \mathbb{B})
(3.84a) "Replacement": $\quad(e=f) \wedge P[z:=e] \equiv \quad(e=f) \wedge P[z:=f]$

Textbook-style application:

$$
k=n+1 \wedge k \cdot(n-1)=n^{2}-1
$$

$=\langle(3.84 a)$ "Replacement" \rangle
$k=n+1 \wedge(n+1) \cdot(n-1)=n^{2}-1$
Not so fast! - CalcCheck cannot do second-order matching (yet):

$$
k=n+1 \quad \wedge \quad k \cdot(n-1)=n \cdot n-1
$$

$=\langle$ Substitution \rangle
$k=n+1 \wedge(z \cdot(n-1)=n \cdot n-1)[z:=k]$
$=\langle(3.84 a)$ "Replacement" \rangle
$k=n+1 \quad \wedge \quad(z \cdot(n-1)=n \cdot n-1)[z:=n+1]$
$=\langle$ Substitution \rangle
$k=n+1 \wedge(n+1) \cdot(n-1)=n \cdot n-1$

Some Replacements

$((x>f 5) \equiv(y<g 7)) \wedge((f x \leq g y) \equiv(x>f 5))$
$\equiv\langle\quad$?
$((x>f 5) \equiv(y<g 7)) \wedge((f x \leq g y) \equiv(y<g 7))$

$$
\begin{aligned}
& ((f 5)=(g y)) \wedge((f x \leq g y) \equiv x>(f 5)) \\
\equiv & \langle\quad ? \quad\rangle \\
& ((f 5)=(g y)) \wedge((f x \leq g y) \equiv x>g y))
\end{aligned}
$$

$((x>f 5) \equiv(y<g 7)) \wedge((f x \leq g y) \Rightarrow p(x-1) \vee(x>f 5))$
$\equiv\langle\quad ?$
$((x>f 5) \equiv(y<g 7)) \wedge((f x \leq g y) \Rightarrow p(x-1) \vee(y<g 7))$

Replacements 1 \& 2

$$
((x>f 5) \equiv(y<g 7)) \wedge((f x \leq g y) \equiv(x>f 5))
$$

$\equiv\langle(3.51)$ "Replacement" $(p \equiv q) \wedge(r \equiv p) \equiv(p \equiv q) \wedge(r \equiv q)\rangle$

$$
((x>f 5) \equiv(y<g 7)) \wedge((f x \leq g y) \equiv(y<g 7))
$$

$((f 5)=(g y)) \wedge \quad((f x \leq g y) \equiv x>(f 5))$
$\equiv\langle$ Substitution \rangle
$((f 5)=(g y)) \wedge((f x \leq g y) \equiv x>z)[z:=(f 5)]$

$$
\equiv\left|\begin{array}{l}
\text { (3.84a) "Replacement" } \\
(e=f) \wedge \underline{P}[z:=e] \equiv(e=f) \wedge \underline{P}[z:=f], \\
\text { Substitution }
\end{array}\right\rangle
$$

$((f 5)=(g y)) \wedge \quad((f x \leq g y) \equiv x>g y))$

Replacement 3

$((x>f 5) \equiv(y<g 7)) \wedge((f x \leq g y) \Rightarrow p(x-1) \vee(x>f 5))$
$\equiv\langle$ Substitution \rangle

$$
\begin{aligned}
&((x>f 5) \equiv(y<g 7)) \wedge \underline{((f x \leq g y) \Rightarrow p(x-1) \vee z)}[z:=(x>f 5)] \\
& \equiv\left(\begin{array}{c}
(3.84 a) \\
(e=f) \wedge \underline{P}[z:=e] \equiv(e=f) \wedge \underline{P}[z:=f], \\
\text { "Definition of } \equiv "(p \equiv q)=(p=q), \text { Substitution }
\end{array}\right) \\
&((x>f 5) \equiv(y<g 7)) \wedge((f x \leq g y) \Rightarrow p(x-1) \vee(y<g 7))
\end{aligned}
$$

In CalcCheck, इ does not match =!
Explicit conversions using "Definition of \equiv " are necessary.

Replacing Variables by Boolean Constants

In each of the following, P can be any expression of type \mathbb{B} :
(3.85a) Replace by true:
(3.86a) Replace by false:
(3.87) Replace by true:
(3.88) Replace by false:

$$
p \Rightarrow P[z:=p] \equiv p \Rightarrow P[z:=\text { true }]
$$

$$
q \wedge p \Rightarrow P[z:=p] \equiv q \wedge p \Rightarrow P[z:=\text { true }]
$$

$$
P[z:=p] \Rightarrow p \equiv P[z:=\text { false }] \Rightarrow p
$$

$$
P[z:=p] \Rightarrow p \vee q \equiv P[z:=\text { false }] \Rightarrow p \vee q
$$

$$
p \wedge P[z:=p] \equiv p \wedge P[z:=\text { true }]
$$

$p \vee P[z:=p] \equiv p \vee P[z:=$ false $]$
(3.89) Shannon: $P[z:=p] \equiv(p \wedge P[z:=$ true $]) \vee(\neg p \wedge P[z:=$ false $])$

Note: Using Shannon on all propositional variables in sequence is equivalent to producing a truth table.
"Prove the following theorems (without using Shannon or the proof method of case analysis by Shannon), ..."

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-20
Part 3: Transitivity Calculations, Monotonicity

$7 \cdot 8$

$=\langle$ Evaluation \rangle
$(10-3) \cdot(12-4)$
$\leq\langle$ Fact: $3 \leq 4\rangle$
$(10-4) \cdot(12-4)$
$\leq\langle$ Fact: $4 \leq 5\rangle$
$(10-4) \cdot(12-5)$
$=\langle$ Evaluation \rangle

$$
6 \cdot 7
$$

$=\langle$ Evaluation \rangle
42

This proves: $7 \cdot 8 \leq 42$

Recall: Calculational Proof Format

\square
Because the calculational presentation is conjunctional, this reads as:

$$
E_{0}=E_{1} \quad \wedge \quad E_{1}=E_{2} \quad \wedge \quad E_{2}=E_{3}
$$

Because $=$ is transitive, this justifies:

$$
E_{0}=E_{3}
$$

Because the calculational presentation is conjunctional, this reads as:

$$
E_{0} \leq E_{1} \quad \wedge \quad E_{1} \leq E_{2} \quad \wedge \quad E_{2} \leq E_{3}
$$

Because \leq is transitive, this justifies:

$$
E_{0} \leq E_{3}
$$

Extended Calculational Proof Format (2)

```
    E
    < Explanation of why E E < 㫜\rangle
    E
    = \langleExplanation of why E E = E 2 - with comment }
    E2
\leq\langleExplanation of why }\mp@subsup{E}{2}{}\leq\mp@subsup{E}{3}{}
        E3
```

Because the calculational presentation is conjunctional, this reads as:

$$
E_{0} \leq E_{1} \quad \wedge \quad E_{1}=E_{2} \quad \wedge \quad E_{2} \leq E_{3}
$$

Because \leq is reflexive and transitive, this justifies:

$$
E_{0} \leq E_{3}
$$

Extended Calculational Proof Format (3)

\square
Because the calculational presentation is conjunctional, this reads as:

$$
\left(E_{0} \Rightarrow E_{1}\right) \quad \wedge \quad\left(E_{1} \equiv E_{2}\right) \quad \wedge \quad\left(E_{2} \Rightarrow E_{3}\right)
$$

Because \Rightarrow is reflexive and transitive, this justifies:

$$
E_{0} \Rightarrow E_{3}
$$

Extended Calculational Proof Format (4)

```\(E_{0}\) \(\leq\left\langle\right.\) Explanation of why \(\left.E_{0} \leq E_{1}\right\rangle\) \(E_{1}\) \(=\left\langle\right.\) Explanation of why \(E_{1}=E_{2}\) - with comment \(\rangle\) \(E_{2}\) \(<\left\langle\right.\) Explanation of why \(\left.E_{2}<E_{3}\right\rangle\) \(E_{3}\)```

Because the calculational presentation is conjunctional, this reads as:

$$
E_{0} \leq E_{1} \quad \wedge \quad E_{1}=E_{2} \quad \wedge \quad E_{2}<E_{3}
$$

Because < is transitive, and because $\leq$ is the reflexive closure of $<$, this justifies:

$$
E_{0}<E_{3}
$$

## Calculational Non-Proofs

$\square$
Because the calculational presentation is conjunctional, this reads as:

$$
E_{0} \leq E_{1} \quad \wedge \quad E_{1}=E_{2} \quad \wedge \quad E_{2} \geq E_{3}
$$

This justifies nothing about the relation between $E_{0}$ and $E_{3}$ !

## Leibniz is Special to Equality

How about the following?

$$
\begin{aligned}
& x-3 \\
& \leq\langle\text { Fact: } 3 \leq 4\rangle \\
& x-4
\end{aligned}
$$

Remember:
(1.5) Leibniz:

$$
\begin{aligned}
X & =Y \\
\hline E[z:=X] & =E[z:=Y]
\end{aligned}
$$

## Leibniz is available only for equality

## Example Application of "Monotonicity of -"

- _-_ $: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ is monotone in the first argument:
$x \leq y \quad \Rightarrow \quad x-z \leq y-z \quad$ is a theorem


```
Calculation:
 12 - n
 \leq{ "Monotonicity of -" with Fact `12 \leq 20`)
 20 - n
```

This step can be justified without "with" as follows:

```
Calculation:
```

            \(12-n \leq 20-n\)
    \(\equiv\langle\) "Left-identity of \(\Rightarrow\) " )
        true \(\Rightarrow(12-n \leq 20-n)\)
        \(\equiv\langle\) Fact ` \(12 \leq 20 `\) )
            \((12 \leq 20) \Rightarrow(12-n \leq 20-n)\)
    - This is "Monotonicity of -"
    Modus Pones via with 2
Modus ponens theorem: (3.77) Modus ponens: $p \wedge(p \Rightarrow q) \Rightarrow q$
Modus ponens inference rule:
("Implication elimination" rule)

$$
\frac{P \Rightarrow Q \quad P}{Q} \Rightarrow \text {-Elim } \quad \frac{f: A \rightarrow B \quad x: A}{(f x): B} \text { Fct. app. }
$$

Applying implication theorems:

A proof for $P \Rightarrow Q$ can be used as a recipe for turning a proof for $P$ into a proof for $Q$.
$Q_{1}$
$\subseteq\left\langle\right.$ "Theorem 1" ${ }^{\prime} P \Rightarrow\left(Q_{1} \subseteq Q_{2}\right)^{`} \quad$ with "Theorem 2" $\left.P^{\prime}\right\rangle$ $Q_{2}$

Theorem "Monotonicity of - ": $a \leq b \Rightarrow a-c \leq b-c$

```
Calculation:
 12 - n
 \leq("Monotonicity of -" with Fact `12 \leq 20`)
 20 - n
```


## Example Application of "Antitonicity of -"

- _-_ $: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ is antitone in the second argument:
$x \leq y \Rightarrow z-y \leq z-x \quad$ is a theorem
Theorem "Antitonicity of -": $b \leq c \Rightarrow a-c \leq a-b$

```
Calculation:
 m - 3
 \leq("Antitonicity of -" with Fact `2 \leq 3`)
 m - 2
```

                    Multiplication on \(\mathbb{N}\) is Monotonic...
        Calculation:
            42
            \(=\langle\) Evaluation \(\rangle\)
            6. 7
            \(=\langle\) Evaluation \(\rangle\)
            \((10-4) \cdot(12-5)\)
            \ll "Monotonicity of •" with
                "Antitonicity of -" with Fact \(3 \leq 4\)
            )
            \((10-3) \cdot(12-5)\)
            \(\leq\) 〈 "Monotonicity of •" with
                    "Antitonicity of -" with Fact \({ }^{\prime} 4 \leq 5\)
            \(\rangle\)
            \((10-3) \cdot(12-4)\)
            \(=\langle\) Evaluation \(\rangle\)
            7. 8
    - _+_ : $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ is isotone in the first argument:
$x \leq y \equiv x+z \leq y+z \quad$ is a theorem

```
Calculation:
 2 + n
 < < "Isotonicity of +" with Fact ` 2 < 3`)
```

This step can be justified without "with" as follows:

```
Calculation:
 2 + n \leq 3 + n
 \equiv{ "Identity of \equiv")
 true \equiv 2 + n \leq 3 + n
 #< Fact `2 \leq 3`)
 2\leq3 \equiv 2 + n \leq 3 + n
 - This is "Isotonicity of +"
```


# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-09-22
LADM Chapter 4: "Relaxing the Proof Style" - New Proof Structures

## Plan for Today

- LADM Chapter 4: "Relaxing the Proof Style" - New Proof Structures
- Transitivity calculations with implication $\Rightarrow$ or consequence $\Leftarrow$
- Proving implications: Assuming the antecedent
- Proving By cases
- Using theorems as proof methods
- Proof by Contrapositive
- Proof by Mutual Implication
- Coming up: LADM chapters 8 and 9 .


# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-09-22
Part 1: Subproofs, Abbreviated Proofs for Implications

## CalcСнеск: Subproof Hint Items

You have used the following kinds of hint items:

- Theorem name references "Identity of $\equiv$ "
- Theorem number references (3.32)
- Certain key words and key phrases: Substitution, Evaluation, Induction hypothesis
- Fact `Expression`
- Composed hint items: "Identity of + " with `Substitution`
"Monotonicity of + " with HintItem
A new kind of hint item:

> Subproof for ` Expression`:
> Proof

For example, Fact $3=2+1^{`}$ is really syntactic sugar for a subproof:

```
 Calculation:
 3 · x
 =\ Subproof for `3 = 2 + 1`:
 By evaluation
)
 (2 + 1) · x
```



Because:
$(p \equiv q) \wedge(q \Rightarrow r)$
$\Rightarrow\langle(3.82 b)$ Transitivity of $\Rightarrow\rangle$
$p \Rightarrow r$

This proof style will not be allowed in questions "belonging" to LADM Chapter 3!

```
 (4.1) - Creating the Proof "Bottom-up"
Proving (4.1) p=>(q=>p):
 p
=>\ (3.76a) Weakening p=>p\veeq\rangle
 \negq\veep
\equiv\langle(3.59) Definition of implication \rangle
 q=>p
We have: Axiom (3.58) Consequence:
\[
p \Leftarrow q \equiv q \Rightarrow p
\]
This means that the \(\Leftarrow\) relation is the converse of the \(\Rightarrow\) relation.
Theorem: The converse of a transitive relation is transitive again, and the converse of an order is an order again.
CALCCHECK supports activation of converse properties, enabling reversed presentations following mathematical habits of transitivity calculations such as the above.
- "... propositional logic following LADM chapters 3 and \(4 \ldots "\)
```

```
 (4.1) Implicitly Using "Consequence"
Proving (4.1) p=>(q=>p):
 q=>p
 \equiv\langle(3.59) Definition of implication \rangle
 \negq\veep
 \Leftarrow\langle(3.76a) Strenghtening - used as p\veeq\Leftarrowp\rangle
 p
```

In CALCCHECK, if the converse property is not activated, then $\Leftarrow$ is a separate operator requiring explicit conversion:

Theorem (4.1): $p \Rightarrow(q \Rightarrow p)$
Proof:
$q \Rightarrow p$
$\equiv\langle "$ Definition of $\Rightarrow "(3.59)\rangle$
ᄀ q v p
$\leftarrow\langle$ "Strengthening" (3.76a), "Definition of $\Leftarrow "\rangle$
p

## Recall: Weakening/Strengthening Theorems

(3.76a) $p \quad \Rightarrow p \vee q$
(3.76b) $p \wedge q \quad \Rightarrow p$
(3.76c) $p \wedge q \quad \Rightarrow p \vee q$
(3.76d) $p \vee(q \wedge r) \Rightarrow p \vee q$
(3.76e) $p \wedge q \quad \Rightarrow p \wedge(q \vee r)$
(4.2) Left-Monotonicity of $\vee$

$$
(p \Rightarrow q) \Rightarrow(p \vee r \Rightarrow q \vee r)
$$

$$
p \vee r \Rightarrow q \vee r
$$

$\equiv\langle(3.57)$ Definition of $\Rightarrow p \Rightarrow q \equiv p \vee q \equiv q\rangle$
$p \vee r \vee q \vee r \equiv q \vee r$
$\equiv\langle(3.26)$ Idempotency of $\vee\rangle$
$p \vee q \vee r \equiv q \vee r$
$\equiv\langle(3.27)$ Distributivity of $\vee$ over $\equiv\rangle$
$(p \vee q \equiv q) \vee r$
$\equiv\langle(3.57)$ Definition of $\Rightarrow p \Rightarrow q \equiv p \vee q \equiv q\rangle$
$(p \Rightarrow q) \vee r$
$\Leftarrow\langle(3.76 \mathrm{a})$ Strengthening $p \Rightarrow p \vee q\rangle$
$p \Rightarrow q$

## (4.3) Left-Monotonicity of $\wedge$

Proving (4.3) $\quad(p \Rightarrow q) \Rightarrow p \wedge r \Rightarrow q \wedge r:$
$p \wedge r \Rightarrow q \wedge r$
$\equiv\langle(3.60)$ Definition of $\Rightarrow$ 〉
$p \wedge r \wedge q \wedge r \equiv p \wedge r$
$\equiv\langle(3.38)$ Idempotency of $\wedge\rangle$
$(p \wedge q) \wedge r \equiv p \wedge r$
$\equiv\langle(3.49)$ Semi-distributivity of $\wedge\rangle$
$((p \wedge q) \equiv p) \wedge r \equiv r$
$\equiv\langle(3.60)$ Definition of $\Rightarrow\rangle$
$(p \Rightarrow q) \wedge r \equiv r$
$\equiv\langle(3.60)$ Definition of $\Rightarrow\rangle$
$r \Rightarrow(p \Rightarrow q)$
$\Leftarrow\langle(4.1) p \Rightarrow(q \Rightarrow p)\rangle$
$p \Rightarrow q$

# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-09-22

Part 2: Assuming the Antecedent

## Proving Implications...

How to prove the following?
"=-Congruence of + ": $\quad b=c \quad \Rightarrow \quad a+b=a+c$
"We have been doing this via Leibniz (1.5)......"

- One of the "Replacement" theorems of the "Leibniz as Axiom" section can help.
- It may be nicer to turn this into a situation where the inference rule Leibniz (1.5) can be used again...


## Assuming the Antecedent:

```
Lemma "=-Congruence of +": b = c m a + b = a + c
Proof:
 Assuming `b = c`:
 a + b
 = \ Assumption `b = c` \rangle
 a + c
```

                    Assuming the Antecedent
    To prove an implication $\quad p \Rightarrow q$
we can prove its conclusion $q$ using $p$ as assumption:
Assuming ${ }^{\prime} p$ :
Proof of $q$
possibly using: Assumption `\(\quad\)`

Iustification:

## Assuming the Antecedent

To prove an implication $\quad p \Rightarrow q$
we can prove its conclusion $q$ using $p$ as assumption:
Assuming ` $p$ ':

| Proof of $q$ |
| :--- | :--- |
| possibly using: Assumption ${ }^{~} p$ ` |

(4.4) (Extended) Deduction Theorem: Suppose adding $P_{1}, \ldots, P_{n}$ as axioms to propositional logic E , with the free variables of the $P_{i}$ considered to be constants, allows $Q$ to be proved.

Then $\quad P_{1} \wedge \ldots \wedge P_{n} \Rightarrow Q \quad$ is a theorem.
That is:
Assumptions cannot be used with substitutions (with ' $a, b:=e, f$ ')

- just like induction hypotheses.
"Assuming the Antecedent" is not allowed in questions "belonging to" LADM chapt. 3!


## Inference Rule for Proving Implications: $\Rightarrow$-Introduction

One way to prove $P \Rightarrow Q$ :

## Assuming ` $P$ :

Proof of $Q$
possibly using: Assumption ` \(P\) ’ (And Assuming \({ }^{`} P^{`}: ···\) can only prove theorems of shape $P \Rightarrow \cdots$.)

This directly corresponds to an application of the inference rule " $\Rightarrow$-Introduction" (which is missing in the Rosen book used in COMPSCI 1DM3):


Proving and Using Implication Theorems: Assuming and with ${ }_{2}$
"Cancellation of ": $\quad z \neq 0 \Rightarrow(z \cdot x=z \cdot y \quad \equiv \quad x=y)$
Theorem "Non-zero multiplication": $a \neq 0 \Rightarrow(b \neq 0 \Rightarrow a \cdot b \neq 0)$
Proof:
Assuming `\(a \neq 0`, ~ `b \neq 0`\) :
$a \cdot b \neq 0$
$\equiv\langle$ "Definition of $\neq "\rangle$
$\neg(\mathrm{a} \cdot \mathrm{b}=0)$
$\equiv\langle "$ Zero of $\cdot "\rangle$
$\neg(\mathrm{a} \cdot \mathrm{b}=\mathrm{a} \cdot 0)$
$\equiv\langle$ "Cancellation of $\cdot "$ with Assumption `\(a \neq 0\)` $\rangle$
$\neg(\mathrm{b}=0)$
$\equiv\langle$ "Definition of $\neq "$, Assumption $` b \neq 0 `\rangle$
true

- HintItem1 with HintItem2 and HintItem3, HintItem4 parses as (HintItem1 with (HintItem2 and HintItem3)), HintItem4


## (4.3) Left-Monotonicity of $\wedge$ (shorter proof, LADM-style)

(4.3) $\quad(p \Rightarrow q) \Rightarrow((p \wedge r) \Rightarrow(q \wedge r))$

PROOF:
Assume $p \Rightarrow q \quad$ (which is equivalent to $p \wedge q \equiv p$ )
$p \wedge r$
$\equiv\langle$ Assumption $p \wedge q \equiv p\rangle$
$p \wedge q \wedge r$
$\Rightarrow\langle(3.76 b)$ Weakening $\rangle$
$q \wedge r$
How to do "which is equivalent to" in CalcCheck?

- Transform before assuming
- or transform the assumption when using it
- or "Assuming ... and using with ..."


## Transform Before Assuming - Proof for this:

Theorem (4.3) "Left-monotonicity of $\wedge$ " "Monotonicity of $\wedge$ ":

$$
(p \Rightarrow q) \Rightarrow((p \wedge r) \Rightarrow(q \wedge r))
$$

Proof:

$$
\begin{aligned}
& \quad(p \Rightarrow q) \Rightarrow((p \wedge r) \Rightarrow(q \wedge r)) \\
& \equiv \\
& \left\langle\text { " Definition of }^{\prime} \text { from } \wedge^{\prime \prime}\right\rangle \\
& \quad(p \wedge q \equiv p) \Rightarrow((p \wedge r) \Rightarrow(q \wedge r))
\end{aligned}
$$

## Proof for this:

Assuming ${ }^{`} p \wedge q \equiv p$ :

$$
\begin{aligned}
& p \wedge r \\
\equiv & \left.\langle\text { Assumption }\urcorner p \wedge q \equiv p{ }^{`}\right\rangle \\
& p \wedge q \wedge r \\
\Rightarrow & \langle\text { "Weakening" }\rangle \\
& q \wedge r
\end{aligned}
$$

## Transform Assumption When Used－with ${ }_{3}$

（4．3）$\quad(p \Rightarrow q) \Rightarrow((p \wedge r) \Rightarrow(q \wedge r))$
Proof：
Assume $p \Rightarrow q \quad$（which is equivalent to $p \wedge q \equiv p$ ）
$p \wedge r$
$\equiv\langle$ Assumption $p \wedge q \equiv p\rangle$
$p \wedge q \wedge r$
$\Rightarrow\langle(3.76 \mathrm{~b})$ Weakening $\rangle$
$q \wedge r$
Theorem（4．3）＂Left－monotonicity of $\Lambda$＂：$(p \Rightarrow q) \Rightarrow(p \wedge r \Rightarrow q \wedge r)$
Proof：
Assuming $\quad p \Rightarrow q$｀：
$p \wedge r$
$\equiv\left\langle\right.$ Assumption＇$p \Rightarrow q^{\prime}$ with＂Definition of $\Rightarrow$＂（3．60）〉
$p \wedge q \wedge r$
$\Rightarrow\langle$＂Weakening＂〉
$q \wedge r$

## Assuming ．．．and using with ．．．

（4．3）$(p \Rightarrow q) \Rightarrow((p \wedge r) \Rightarrow(q \wedge r))$
Proof：
Assume $p \Rightarrow q \quad$（which is equivalent to $p \wedge q \equiv p$ ）
$p \wedge r$
$\equiv\langle$ Assumption $p \wedge q \equiv p\rangle$
$p \wedge q \wedge r$
$\Rightarrow\langle(3.76 b)$ Weakening $\rangle$
$q \wedge r$
Theorem（4．3）＂Left－monotonicity of $\Lambda$＂＂Monotonicity of $\Lambda$＂：
$(p \Rightarrow q) \Rightarrow((p \wedge r) \Rightarrow(q \wedge r))$
Proof：
Assuming $\quad p \Rightarrow q$｀and using with＂Definition of $\Rightarrow$＂（3．60）：
$p \wedge r$
$\equiv($ Assumption $` p \Rightarrow q$ ’ $)$
$p \wedge q \wedge r$
$\Rightarrow\langle " W e a k e n i n g "$（3．76b）〉
$q \wedge r$

# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University，Fall 2023

Wolfram Kahl

2023－09－22
Part 3：Case Analysis and Other Proof Methods

## LADM General Case Analysis

(4.6) $(p \vee q \vee r) \wedge(p \Rightarrow s) \wedge(q \Rightarrow s) \wedge(r \Rightarrow s) \Rightarrow s$

Proof pattern for general case analysis:
Prove: $S$
By cases: $P, Q, R$
(proof of $P \vee Q \vee R$ - omitted if obvious)
Case $P$ : ( proof of $P \Rightarrow S$ )
Case $Q:($ proof of $Q \Rightarrow S)$
Case $R$ : ( proof of $R \Rightarrow S$ )

## LADM Case Analysis Example: (4.2) $(p \Rightarrow q) \Rightarrow p \vee r \Rightarrow q \vee r$

Assume $p \Rightarrow q$
Assume $p \vee r$
Prove: $q \vee r$
By Cases: $p, r \quad-p \vee r$ holds by assumption
Case $p$ :
$p$
$\Rightarrow\langle$ Assumption $p \Rightarrow q\rangle$
$q$
$\Rightarrow\langle$ Weakening (3.76a) $\rangle$
$q \vee r$

## Case $r$ :

$r$
$\Rightarrow\langle$ Weakening (3.76a) $\rangle$
$q \vee r$

## Case Analysis Example (4.2) "Left-Monotonicity of $\vee$ " in CalcСнеск

Theorem "Monotonicity of $\vee ":(p \Rightarrow q) \Rightarrow(p \vee r) \Rightarrow(q \vee r)$

## Proof:

Assuming ${ }^{`} p \Rightarrow q^{\prime},{ }^{`} p \vee r$ :
By cases: ' $p{ }^{\prime},{ }^{\prime} r \prime$
Completeness: By assumption ${ }^{`} p \vee r$
Case ` \(p\) : \(p\) - This is assumption \({ }^{\circ} p\) ' \(\Rightarrow\left\langle\right.\) Assumption \(\left.{ }^{`} p \Rightarrow q^{`}\right\rangle\) \(q\) \(\Rightarrow\langle\) "Weakening" \(\rangle\) \(q \vee r\) Case \({ }^{\prime} r\) : \(r\) - This is assumption \({ }^{`} r\) '
$\Rightarrow\langle$ "Weakening" $\rangle$
$q \vee r$

CalcСнеск By cases with "Zero or successor of predecessor": $n=0 \vee n=\operatorname{suc}$ (pred $n$ )
Theorem "Right-identity of subtraction": m - $0=m$ Proof:

By cases: `m = 0`, `m = suc (pred m)` Completeness: By "Zero or successor of predecessor" Case `m = 0`:
m - $0=\mathrm{m}$ $\equiv\langle$ Assumption `m = 0` 〉
$0-0=0$

- This is "Subtraction from zero" Case `m = suc (pred m)`:
m - 0
$=\left\langle\right.$ Assumption ${ }^{\prime} m=$ suc (pred m)`\(\rangle\) (suc (pred m)) - 0 = ( "Subtraction of zero from successor" ) suc (pred m) \(=\left\langle\right.\) Assumption \({ }^{\prime} m=\operatorname{suc}(\) pred \(\left.m)`\right\rangle\) m


## Case Analysis with Calculation for "Completeness:" . .

By cases: `pos b', `ᄀ pos b`

## Completeness:

pos $\mathrm{b} V \neg$ pos b
$\equiv$ 〈"Excluded Middle" $\rangle$
true
Case `pos b`:
By (15.31a) with Assumption `pos b`

- After "Completeness:" goes a proof for the disjunction of all cases listed after "By cases:"
- This can be any kind of proof.
- Inside the "Case ' $p$ ':" block, you may use "Assumption ' $p$ ""


## Proof by Contrapositive

(3.61) Contrapositive: $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$
(4.12) Proof method: Prove $P \Rightarrow Q$ by proving its contrapositive $\neg Q \Rightarrow \neg P$

```
Proving }\quadx+y\geq2 क\quadx\geq1\veey\geq1
 \neg (x \geq 1 \vee y \geq 1)
 \equiv\langleDe Morgan (3.47) \rangle
 \neg (x \geq 1) \wedge ~ ᄀ (y \geq 1)
 \equiv\langle Def. \geq (15.39) with Trichotomy (15.44)\rangle
 x<1^y<1
 => < Monotonicity of + (15.42) \rangle
 x+y<1+1
 \equiv\langleDef. 2\rangle
 x+y<2
 \equiv\langleDef. \geq (15.39) with Trichotomy (15.44) \rangle
 \neg (x + y \geq 2)
```

```
Proof by Contrapositive in CalcСнеск — Using
Theorem "Example for use of Contrapositive": \(x+y \geq 2 \Rightarrow x \geq 1 \vee y \geq 1\)
Proof:
Using "Contrapositive":
 Subproof for \({ }^{`} \neg(x \geq 1 \vee y \geq 1) \Rightarrow \neg(x+y \geq 2)^{\prime}\) :
 \(\neg(x \geq 1 \vee y \geq 1)\)
\(\equiv\) 〈"De Morgan" >
 \(\neg(\mathrm{x} \geq 1) \wedge \neg(\mathrm{y} \geq 1)\)
 \(\equiv\langle\) "Complement of \(<\) " with (3.14) 〉
 \(\mathrm{x}<1 \wedge \mathrm{y}<1\)
 \(\Rightarrow\) ("<-Monotonicity of + ")
 \(\mathrm{x}+\mathrm{y}<1+1\)
\(\equiv\langle\) Evaluation \(\rangle\)
 \(x+y<2\)
 \(\equiv\langle\) "Complement of \(<\) " with (3.14) \(\rangle\)
 \(\neg(x+y \geq 2)\)
```

－＂Using HintItem1：subproof1 subproof2＂
is processed as＂By HintItem1 with subproof1 and subproof2＂
－If you get the subproof goals wrong，the with heuristic has no chance to succeed．．．

```
 Proof by Mutual Implication - Using
(3.80) Mutual implication: \((p \Rightarrow q) \wedge(q \Rightarrow p) \equiv p \equiv q\)
 Theorem (15.44A) "Trichotomy - A"
 \(a<b \equiv a=b \equiv a>b\)
 Proof:
 Using "Mutual implication":
 Subproof for `a \(=\mathrm{b} \Rightarrow(\mathrm{a}<\mathrm{b} \equiv \mathrm{a}>\mathrm{b})^{`}\) :
 Assuming `a = b`:
 \(a<b\)
 \(\equiv\langle\) "Converse of <", Assumption `a = b` 〉
 a > b
 Subproof for ` \((\mathrm{a}<\mathrm{b} \equiv \mathrm{a}>\mathrm{b}) \Rightarrow \mathrm{a}=\mathrm{b}\) :
 \(a<b \equiv a>b\)
 \(\equiv\langle\) "Definition of \(<\) ", "Definition of >" >
 pos (b-a) \(\equiv\) pos (a - b)
 \(\equiv\langle(15.17),(15.19), " S u b t r a c t i o n ")\)
 \(\operatorname{pos}(b-a) \equiv \operatorname{pos}(-(b-a))\)
 \(\Rightarrow\langle(15.33 c)\rangle\)
 b - a = 0
 \(\equiv\langle\) "Cancellation of +" 〉
 b \(-\mathrm{a}+\mathrm{a}=0+\mathrm{a}\)
 三("Identity of +", "Subtraction", "Unary minus" >
 \(\mathrm{a}=\mathrm{b}\)
```


## Proof by Contradiction

    \(p \Rightarrow\) false \(\equiv \neg p\)
    （4．9）Proof by contradiction：$\neg p \Rightarrow$ false $\equiv p$
＂This proof method is overused＂

If you intuitively try to do a proof by contradiction：
－Formalise your proof
－This may already contain a direct proof！
－So check whether contradiction is still necessary
－．．．，or whether your proof can be transformed into one that does not use contradiction．

# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-09-25

## Examples of Structured Proofs; General Quantification

## Plan for Today

- Order on Integers via Positivity (LADM chapter 15, pp. 307-308)
$\Longrightarrow$ Opportunities for structured proofs
- General quantification, LADM chapter 8


## Logical Reasoning for Computer Science

 COMPSCI 2LC3McMaster University, Fall 2023

Wolfram Kahl

2023-09-25
Part 1: Structured Proofs Example: Order on Integers via Positivity

## LADM Theory of Integers — Positivity and Ordering

(15.30) Axiom, Addition in pos: $\quad \operatorname{pos} a \wedge p o s b \Rightarrow \operatorname{pos}(a+b)$
(15.31) Axiom, Multiplication in pos: $\operatorname{pos} a \wedge \operatorname{pos} b \Rightarrow \operatorname{pos}(a \cdot b)$
(15.32) Axiom: $\quad \neg \operatorname{pos} 0$
(15.33) Axiom: $\quad b \neq 0 \quad \Rightarrow \quad(\operatorname{pos} b \equiv \neg \operatorname{pos}(-b))$
(15.34) Positivity of Squares: $b \neq 0 \Rightarrow \operatorname{pos}(b \cdot b)$
(15.35) pos $a \Rightarrow$ (pos $\quad \equiv \operatorname{pos}(a \cdot b)$
(15.36) Axiom, Less: $\quad a<b \equiv \operatorname{pos}(b-a)$
(15.37) Axiom, Greater: $a>b \equiv \operatorname{pos}(a-b)$
(15.38) Axiom, At most: $\quad a \leq b \equiv a<b \vee a=b$
(15.39) Axiom, At least: $\quad a \geq b \equiv a>b \vee a=b$
(15.40) Positive elements: $p o s b \equiv 0<b$

## LADM Theory of Integers - Ordering Properties

(15.41) Transitivity:
(a) $a<b \wedge b<c \Rightarrow a<c$
(b) $a \leq b \wedge b<c \Rightarrow a<c$
(c) $a<b \wedge b \leq c \Rightarrow a<c$
(d) $a \leq b \wedge b \leq c \Rightarrow a \leq c$
(15.42) Monotonicity of +:
$a<b \equiv a+d<b+d$
(15.43) Monotonicity of : $\quad 0<d \Rightarrow(a<b \quad \equiv a \cdot d<b \cdot d)$
(15.44) Trichotomy:

$$
\begin{aligned}
(a<b & \equiv a=b \\
\neg(a<b & \wedge a>b) \\
\wedge & \wedge
\end{aligned}
$$

(15.45) Antisymmetry of $\leq$ :
$a \leq b \wedge a \geq b \equiv a=b$
(15.46) Reflexivity of $\leq$ :

$$
a \leq a
$$

## Structured Proof Example from LADM

Theorems for pos
(15.34) $b \neq 0 \Rightarrow \operatorname{pos}(b \cdot b)$

We prove (15.34). For arbitrary nonzero $b$ in $D$, we prove $\operatorname{pos}(b \cdot b)$ by case analysis: either pos. $b$ or $\neg$ pos. $b$ holds (see (15.33)).
Case pos.b. By axiom (15.31) with $a, b:=b, b, \operatorname{pos}(b \cdot b)$ holds.
Case $\neg$ pos. $b \wedge b \neq 0$. We have the following.

$$
\begin{aligned}
& \operatorname{pos}(b \cdot b) \\
= & \langle(15.23), \text { with } a, b:=b, b\rangle \\
& \operatorname{pos}((-b) \cdot(-b)) \\
& \langle\text { Multiplication }(15.31)\rangle \\
= & \operatorname{pos}(-b) \wedge \operatorname{pos}(-b) \\
& \langle\operatorname{Idempotency} \text { of } \wedge(3.38)\rangle \\
= & \operatorname{pos}(-b) \\
& \langle\text { Double negation }(3.12) \text { - note that } b \neq 0 ;(15.33)\rangle \\
& \neg \text { pos.b -the case under consideration }
\end{aligned}
$$

## The Same Proof in CalcСheck

Theorem (15.34) "Positivity of squares": $b \neq 0 \Rightarrow \operatorname{pos}(b \cdot b)$
Proof:
Assuming `\(b \neq 0\) : By cases:`pos $b, ~ ` \neg \operatorname{pos} b$
Completeness: By "Excluded middle"
Case `pos b: By "Positivity under •" (15.31) with assumption `pos $b$ '
Case $\neg$ pos $b$ :
pos (b $\cdot b$ )
$\equiv\langle(15.23)-a \cdot-b=a \cdot b\rangle$
pos ((-b) • (-b))
$\Leftarrow\langle$ "Positivity under •" (15.31) $\rangle$
$\operatorname{pos}(-b) \wedge \operatorname{pos}(-b)$
$\equiv\langle$ "Idempotency of $\wedge$ ", "Double negation" $\rangle$
$\neg \neg \operatorname{pos}(-b)$
$\equiv\langle$ "Positivity under unary minus" (15.33) with assumption ` $b \neq 0$ 〉 $\rangle$
$\neg \operatorname{pos} b \quad$ - This is assumption $\frown \operatorname{pos} b$ '

## Case Analysis with Calculation for "Completeness:" . . .

By cases: 'pos b', `ᄀ pos b`

## Completeness:

pos $\mathrm{b} \vee \neg$ pos b
$\equiv$ ("Excluded Middle" )
true
Case `pos b': By (15.31a) with Assumption `pos b`

- After "Completeness:" goes a proof for the disjunction of all cases listed after "By cases:"
- This can be any kind of proof.
- Inside the "Case ' $p$ ':" block, you may use "Assumption ' $p$ '"

```
 Proof by Contrapositive in CalcCheск - Using
Theorem "Example for use of Contrapositive":}x+y\geq2=>x\geq1\veey\geq
Proof:
 Using "Contrapositive":
 Subproof for `}\neg(x\geq1\vee y\geq1)=>\neg(x+y\geq2)`
 \neg (x \geq 1 \vee ~ y ~ \geq 1)
 \equiv\"De Morgan")
 \neg(x\geq1)\wedge\neg(y\geq1)
 \equiv\ "Complement of <" with (3.14) \
 x<1^y<1
 =\ "<-Monotonicity of +" >
 x+y<1+1
 \equiv\ Evaluation >
 x}+\textrm{y}<
 \equiv\langle "Complement of <" with (3.14) \rangle
 \neg(x+y\geq2)
```

- "Using HintItem1: subproof1 subproof2"
is processed as "By HintItem1 with subproof1 and subproof2"
- If you get the subproof goals wrong, the with heuristic has no chance to succeed...


## Proof by Mutual Implication - Using

## (3.80) <br> Mutual implication: $\quad(p \Rightarrow q) \wedge(q \Rightarrow p) \equiv p \equiv q$

Theorem "Cancellation of unary minus": $-a=-b \equiv a=b$
Proof:
Using "Mutual implication":
Subproof: $\quad$-.... Subproof goals determined by the enclosed proof can be omitted. Assuming ${ }^{\prime} a=b$ :
$-a$
$=\langle$ Assumption ` $a=b\rangle$
-b
Subproof:
Assuming ${ }^{\text {- }}-a=-b:$
a
$=\langle$ "Self-inverse of unary minus" $\rangle$

-     - a
$=\left\langle\right.$ Assumption` \(\left.-a=-b^{`}\right\rangle\)
-     - b
$=\langle$ "Self-inverse of unary minus" $\rangle$
b


## The CalcCheck Language - Calculational Proofs on Steroids

- LADM emphasises use of axioms and theorems in calculations over other inference rules
Besides calculations, CALCCHECK has the following proof structures:
- By hint - for discharging simple proof obligations,
- Assuming 'expression':
- for assuming the antecedent,
- By cases: 'expression ${ }_{1}$, ...,'expression ${ }_{n}$, - for proofs by case analysis
- By induction on 'var : type': - for proofs by induction
- Using hint: —for turning theorems into inference rules
- For any 'var : type': — corresponding to $\forall$-introduction

This does not sound that different from LADM -

- but in CalcСheck, these are actually used!

Proofs Structures Can Be Freely Combined...
Theorem (15.35) "Positivity under positive $\cdot$ ": $\quad \operatorname{pos} a \Rightarrow(\operatorname{pos} b \equiv \operatorname{pos}(a \cdot b))$
Proof:
Assuming `os \(a\) : Using "Mutual implication": Subproof for \({ }^{`}\) pos $b \Rightarrow \operatorname{pos}(a \cdot b)$ `: \(\operatorname{pos} b \Rightarrow \operatorname{pos}(a \cdot b)\) \(\Leftarrow\langle\) "Positivity under \(\cdot\) " \(\rangle\) pos \(a\) - This is Assumption `pos $a^{`}$
Subproof for ${ }^{`} \operatorname{pos}(a \cdot b) \Rightarrow \operatorname{pos} b$ : Using "Contrapositive": Subproof for $\neg \neg \operatorname{pos} b \Rightarrow \neg \operatorname{pos}(a \cdot b)^{`}:$ By cases: `\(b=0`, `b \neq 0`\)

Completeness: By "Definition of $\neq$ ", "LEM"
Case `\(b=0\) : \(\neg \operatorname{pos} b \Rightarrow \neg \operatorname{pos}(a \cdot b)\) \(\equiv\langle\) Assumption` $b=0$, "Zero of $\cdot "\rangle$
$\neg \operatorname{pos} 0 \Rightarrow \neg$ pos $0-$ This is "Reflexivity of $\Rightarrow$ "
Case $\begin{aligned} & \\ & b\end{aligned}=0$ :
$\neg \operatorname{pos} b$
$\equiv\langle(15.33 b)$ with Assumption $` b \neq 0 `\rangle$

# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-09-25

## Part 2: General Quantification

## Recall: Quantification Examples

## ( $\sum i \mid 0 \leq i<4 \cdot i \cdot 8$ )

$=\langle$ Quantification expansion, substitution $\rangle$
$0 \cdot 8+1 \cdot 8+2 \cdot 8+3 \cdot 8$
(Пi| $0 \leq i<3 \bullet i+(i+1)$ )
$=\langle$ Quantification expansion, substitution $\rangle$
$(0+1) \cdot(1+2) \cdot(2+3)$
$(\forall i \mid 1 \leq i<3 \cdot i \cdot d \neq 6)$
$=$ 〈Quantification expansion, substitution $\rangle$
$1 \cdot d \neq 6 \wedge 2 \cdot d \neq 6$
( $\exists i \mid 0 \leq i<6 \cdot b i=0)$
$=\langle$ Quantification expansion, substitution $\rangle$
$b 0=0 \vee b 1=0 \vee b 2=0 \vee b 3=0 \vee b 4=0 \vee b 5=0$

## Recall: General Quantification

It works not only for $+, \wedge, \vee \ldots$
Let a type $T$ and an operator $\star: T \times T \rightarrow T$ be given.
If for an appropriate $u: T$ we have:

- Symmetry: $\quad b \star c=c \star b$
- Associativity: $(b * c) \star d=b \star(c \star d)$
- Identity $u$ : $u * b=b=b * u$
we may use $*$ as quantification operator:

$$
\left(\star x: T_{1}, y: T_{2} \mid R \bullet E\right)
$$

- $R: \mathbb{B}$ is the range of the quantification
- $E: T$ is the body of the quantification
- $E$ and $R$ may refer to the quantified variables $x$ and $y$
- The type of the whole quantification expression is $T$.


## Recall: General Quantification: Instances

Let a type $T$ and an operator $\star: T \times T \rightarrow T$ be given.
If for an appropriate $u: T$ we have:

- Symmetry: $\quad b \star c=c \star b$
- Associativity: $(b \star c) \star d=b \star(c \star d)$
- Identity $u$ : $u \star b=b=b \star u$
we may use $\star$ as quantification operator: $\left(\star x: T_{1}, y: T_{2} \mid R \bullet E\right)$
- _ $\vee_{-}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ is symmetric (3.24), associative (3.25), and has false as identity (3.30) - the "big operator" for $\vee$ is $\exists$ ":
$(\exists k: \mathbb{N} \mid k>0 \bullet k \cdot k<k+1)$
- _^_ $: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ is symmetric (3.36), associative (3.27), and has true as identity (3.39) - the "big operator" for $\wedge$ is $\forall$ ":
$(\forall k: \mathbb{N} \mid k>2$ • prime $k \Rightarrow \neg$ prime $(k+1))$
- _+_ : $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is symmetric (15.2), associative (15.1),
and has 0 as identity (15.3) - the "big operator" for + is $\sum^{\prime \prime}$ :
$\left(\sum n: \mathbb{Z} \mid 0<n<100 \wedge\right.$ primen $\left.n \cdot n \cdot n\right)$


## Recall: Meaning of General Quantification

Let a type $T$, and a symmetric and associative operator $\star: T \times T \rightarrow T$ with identity $u: T$ be given.

Further let $x$ be variable list, $R$ a Boolean expression, and $E$ an expression of type $T$.
The meaning of $(\star x \mid R \bullet E)$ in state $s$ is:

- the nested application of $\star$ to the meanings of $E$
- in all those states that satisfy $R$
- and are different from $s$ at most in variables in $x$,
or $u$, if there are no such states.

LADM section 8.3 axiomatizes this semantics and makes it accessible to syntactic reasoning.

## Trivial Range Axioms

(8.13) Axiom, Empty Range (where $u$ is the identity of $\star$ ):

$$
\begin{aligned}
(\star x \mid \text { false } \bullet P) & =u \\
(\forall x \mid \text { false } \bullet P) & =\text { true } \\
(\exists x \mid \text { false } \bullet P) & =\text { false } \\
\left(\sum x \mid \text { false } \bullet P\right) & =0 \\
(\Pi x \mid \text { false } \bullet P) & =1
\end{aligned}
$$

(8.14) Axiom, One-point Rule: Provided $\neg \operatorname{occurs}\left(' x^{\prime}, ~ ' E '\right.$ ),

$$
(\star x \mid x=E \bullet P)=P[x:=E]
$$

$\left(\sum i: \mathbb{N} \mid i<x \bullet i+1\right)=10$
example expression
Is this true or false? In which states?
We have: $\quad\left(\sum i: \mathbb{N} \mid i<x \bullet i+1\right)=10 \quad \equiv \quad x=4$
The value of this example expression in a state depends only on $x$, not on $i$ !
Renaming quantified variables does not change the meaning:

$$
\left(\sum i: \mathbb{N} \mid i<x \bullet i+1\right) \quad=\quad\left(\sum j: \mathbb{N} \mid j<x \bullet j+1\right)
$$

- Occurrences of quantified variables inside the quantified expression are bound
- Non-bound variable occurences are called free
- Variables of the same name may occur both free and bound in the same expression, e.g.: $\quad 3 \cdot i+\left(\sum i: \mathbb{N} \mid i<x \bullet 2 \cdot i\right)$
- The variable declarations after the quantification operator may be called binding occurrences.


## The occurs Meta-Predicate

Definition: occurs( ' $v$ ', ' $e$ ') means that at least one variable in the list $v$ of variables occurs free in at least one expression in expression list $e$.

$$
\begin{aligned}
& \operatorname{occurs}\left({ }^{i} i, n^{\prime},{ }^{\prime}\left(\sum i, n \mid 1 \leq i \cdot n \leq k \bullet n^{i}\right),\left(\sum n \mid 0 \leq n<k \bullet n^{i}\right)^{\prime}\right) \sqrt{ } \\
& \operatorname{occurs}\left({ }^{\prime} i^{\prime},{ }^{\prime}(i \cdot(5+i))[i:=k+2]^{\prime}\right) \times \quad \text { Substitution is a variable binder, too! } \\
& \operatorname{occurs}\left({ }^{\prime} i^{\prime}, '(i \cdot(5+i))[i:=i+2]^{\prime}\right) \sqrt{ }
\end{aligned}
$$

## The $\quad$ оссй $\operatorname{Proviso}$ for the One-point Rule

(8.14) Axiom, One-point Rule for $\sum$ : Provided $\neg \operatorname{Occurs}\left({ }^{\prime} x^{\prime}\right.$, ' $E$ '),

$$
\left(\sum x \mid x=E \bullet P\right)=P[x:=E]
$$

(8.14) Axiom, One-point Rule for $\Pi$ : Provided $\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}\right.$, ' $E$ '),

$$
(\Pi x \mid x=E \bullet P)=P[x:=E]
$$

## Examples:

- $\left(\sum x \mid x=1 \cdot x \cdot y\right) \quad=1 \cdot y$
- $(\Pi x \mid x=y+1 \cdot x \cdot x)=(y+1) \cdot(y+1)$
- $\left(\sum x \mid x=\left(\sum x \mid 1 \leq x<4 \bullet x\right) \cdot x \cdot y\right)=\left(\sum x \mid 1 \leq x<4 \bullet x\right) \cdot y=6 \cdot y$


## Counterexamples:

- $\left(\sum x \mid x=x+1 \bullet x\right) \quad ? \quad x+1$
—" "=" not valid!
- $(\Pi x \mid x=2 \cdot x \cdot y+x)$ ? $y+2 \cdot x$
—" "=" not valid!
(8.14) Axiom, One-point Rule: Provided $\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime},{ }^{\prime} E^{\prime}\right)$,

$$
\begin{aligned}
(\star x \mid x=E \bullet P) & =P[x:=E] \\
(\forall x \mid x=E \bullet P) & \equiv P[x:=E] \\
(\exists x \mid x=E \bullet P) & \equiv P[x:=E]
\end{aligned}
$$

## Examples:

- $(\forall x \mid x=1 \bullet x \cdot y=y) \quad \equiv 1 \cdot y=y$
- $(\exists x \mid x=y+1 \bullet x \cdot x>42) \equiv(y+1) \cdot(y+1)>42$

Counterexamples:

- $(\forall x \mid x=x+1 \bullet x=42) \quad ? \quad x+1=42 \quad-" \equiv "$ not valid!
- $(\exists x \mid x=2 \cdot x \bullet y+x=42)$ ? $y+2 \cdot x=42$ —" " ${ }^{\prime \prime}$ not valid!


## One-point Rule with Example Calculation

(8.14) Axiom, One-point Rule: Provided $\neg o c c u r s(' x$ ', ' $E$ '),

$$
(\star x \mid x=E \bullet P)=P[x:=E]
$$

## Example:

$$
\begin{aligned}
& \left(\sum i: \mathbb{N} \bullet 5+2 \cdot i<7 \mid 5+7 \cdot i\right) \\
= & \langle\ldots\rangle \\
& \left(\sum i: \mathbb{N} \bullet i=0 \mid 5+7 \cdot i\right) \\
= & \langle\text { One-point rule }\rangle \\
& (5+7 \cdot i)[i:=0] \\
= & \langle\text { Substitution }\rangle \\
& 5+7 \cdot 0
\end{aligned}
$$

## Automatic extraction of $\neg$ occurs Provisos

(8.14) Axiom, One-point Rule: Provided $\neg \operatorname{Occurs}(' x$ ', ' $E$ '),

$$
\begin{aligned}
(\forall x \mid x=E \bullet P) & \equiv P[x:=E] \\
(\exists x \mid x=E \bullet P) & \equiv P[x:=E]
\end{aligned}
$$

Investigate the binders in scope at the metavariables $P$ and $E$ :

- $P$ on the LHS occurs in scope of the binder $\forall x$
- $P$ on the RHS occurs in scope of the binder $[x:=\ldots]$

Therefore: Whether $x$ occurs in $P$ or not does not raise any problems.

- $E$ on the LHS occurs in scope of the binder $\forall x$
- $E$ on the RHS occurs in scope no binders

Therefore: An $x$ that is free in $E$ would be bound on the LHS, but escape into freedom on the RHS!

CalcСheck derives and checks $\neg$ occurs provisos automatically.

# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-09-27
Conditional Commands; General Quantification

Plan for Today

- More on Command Correctness: Chaining with $\Rightarrow$; Conditional Commands
$\Longrightarrow$ Another example of structured proofs
- General Quantification (LADM chapter 8, ctd.)
$\Longrightarrow$ Calculating with Quantifications


# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-09-27
Part 1: More Command Correctness

Recall: Partial Correctness for Pre-Postcond. Specs in Dynamic Logic Notation

- Program correctness statement in LADM (and much current use):

$$
\{P\} \subset\{Q\}
$$

This is called a "Hoare triple".

- Partial Correctness Meaning:

If command $C$ is started in a state in which the precondition $P$ holds then it will terminate only in states in which the postcondition $Q$ holds.

- Dynamic logic notation (used in CalcСheck):

$$
P \Rightarrow[C] Q
$$

## - Assignment Axiom:

- Hoare triple:

$$
\{Q[x:=E]\} x:=E\{Q\}
$$

- Dynamic logic notation (used in CalcСНесК): $\quad Q[x:=E] \Rightarrow[x:=E] Q$

```
Transitivity Rules for Calculational Command Correctness Reasoning
 Primitive inference rule "Sequence":
 \(` P \Rightarrow\left[C_{1}\right] Q, \quad \varrho \Rightarrow\left[C_{2}\right] R `\)
 \(\vdash \longrightarrow\)
 \(` P \Rightarrow\left[C_{1} ; C_{2}\right] R\)
```

Strengthening the precondition:


Weakening the postcondition:
$` P \Rightarrow E \quad \neq Q_{1} `, \quad Q_{1} \Rightarrow Q_{2} `$


- Activated as transitivity rules
- Therefore used implicitly in calculations, e.g., proving $P \Rightarrow\left[C_{1}{ }_{9} C_{2}\right] R \quad$ to the right

$$
\begin{aligned}
& P \\
& \Rightarrow\left[C_{1}\right]\langle\ldots\rangle \\
& Q \\
& \Rightarrow \quad\langle\ldots\rangle \\
& Q^{\prime} \\
& R
\end{aligned}
$$

## What Does this Program Fragment Do?

Let $x$ and $y$ be variables of type $\mathbb{Z}$.

$$
\begin{aligned}
& x:=x+y i \\
& y:=x-y i \\
& x:=x-y
\end{aligned}
$$

How can you specify that?
Can you prove it?

Example execution:

$$
\begin{aligned}
& {[(x, 5),(y, 6)] } \\
\leadsto & \langle\quad x:=x+y, \\
& {[(x, 11),(y, 6)] } \\
\leadsto & \langle\quad y:=x-y, \\
& \langle(x, 11),(y, 5)] \\
\leadsto & \langle x:=x-y \\
& \langle(x, 6),(y, 5)]
\end{aligned}
$$

Perhaps the values of $x$ and $y$ are swapped?

## Specification Pattern "Auxiliary Variables"

Let $x$ and $y$ be variables of type $\mathbb{Z}$. Specifying value swap:

$$
\begin{array}{rl}
x & =x_{0} \wedge y=y_{0} \\
\Rightarrow \mathrm{E} \\
x & :=x+y_{i} \\
y & :=x-y i \\
x & :=x-y \\
x & x
\end{array}
$$

You can prove that!

- Frequently, the postcondion needs to refer to values of the state variables "at the time of the precondition".
- With Hoare triples, the standard way to achieve this is the use of "auxiliary variables":
- "auxiliary variables" (here: $x_{0}$ and $y_{0}$ ) do not occur in the program
- they may occur in both precondition and postcondition
- throughout the correctness proof, the "have the same values"
- Other formalisms "decorate" variable names:
- Z: "Primed" postcondition variables:

$$
x^{\prime}=y \wedge y^{\prime}=x
$$

- ACSL: Referencing precondition variables as in the $\backslash$ old state:
$x \equiv \backslash \operatorname{old}(y) \quad \wedge \quad y \equiv \backslash \operatorname{old}(x)$


## Conditional Commands

- Pascal:

```
if condition then
statement1
else
 statement2
```

- Ada:
- C/Java:

```
if condition then
 statement1
else
 statement2
end if;
```

if (condition)
statement
else
statement2

- Python:

```
if condition:
 statement1
else:
```

    statement2
    ```
if condition
then
 statement1
else
 statement2
fi
```


## Conditional Rule

Primitive inference rule "Conditional":
Fact "Simple COND":
true $\Rightarrow \mathrm{E}$ if $\mathrm{x}=1$ then y := 42 else x := 1 fi $] \mathrm{x}=1$
Proof:
true
$\Rightarrow$ E if $x=1$ then $y$ := 42 else $x$ := 1 fi $\}$ ( Subproof:
Using "Conditional":
Subproof for `(true \(\wedge x=1) \Rightarrow\) y := 42 子 \(x=1 `:\)
?
Subproof for `(true ^ ᄀ (x = 1)) \(\Rightarrow\) [ x := 1 ] x = 1`:
?
)
$x=1$

```
Fact "Simple COND"
 true }=>[\mathrm{ if }x=1 then y := 42 else x := 1 fi] x = 1
Proof:
 true
 =>[if x = 1 then y := 42 else x := 1 fi] < Subproof:
 Using "Conditional":
 Subproof for `(true ^ x = 1) =>E y := 42] x = 1`:
 true ^ x = 1
 \equiv("Identity of ^")
 x = 1
 #(Substitution)
 (x = 1)[y := 42]
 #E y := 42] {"Assignment")
 x = 1
 Subproof for `(true ^ ᄀ (x = 1)) =>E x := 1] x = 1`:
 true ^ ᄀ (x = 1)
 =("Right-zero of =")
 true
 \equiv{ "Reflexivity of =")
 1 = 1
 \equiv\langle Substitution \rangle
 (x = 1)[x := 1]
 # [x := 1] ("Assignment")
 x = 1
)
 x = 1
```


# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-09-27

## Part 2: General Quantification

Bound / Free Variable Occurrences - The occurs Meta-Predicate
Renaming quantified variables does not change the meaning:

$$
(\forall i \bullet x \cdot i=0) \quad \equiv \quad(\forall j \bullet x \cdot j=0)
$$

- Occurrences of quantified variables inside the quantified expression are bound
- Variable occurences in an expression where they are not bound are free

$$
i>0 \vee(\forall i \mid 0 \leq i \bullet x \cdot i=0)
$$

- The variable declarations after the quantification operator may be called binding occurrences.

Definition: occurs (' $v$ ', ' $e$ ') means that at least one variable in the list $v$ of variables occurs free in at least one expression in expression list $e$.

CalcCheck derives and checks $\neg$ occurs provisos automatically.

## Textual Substitution Revisited

Let $E$ and $R$ be expressions and let $x$ be a variable. Original definition:

```
We write: E[x:= R] or E E R
to denote an expression that is the same as E but with all occurrences of
x replaced by (R).
```

This was for expressions $E$ built from constants, variables, operator applications only!
In presence of variable binders, such as $\sum, \Pi, \forall, \exists$ and substitution,

- only free occurrences of $x$ can be replaced
- and we need to avoid "capture of free variables":
(8.11) Provided $\neg \operatorname{occurs}\left({ }^{\prime} y\right.$ ', ' $x, F^{\prime}$ ),

$$
(\star y \mid R \bullet P)[x:=F]=(\star y \mid R[x:=F] \bullet P[x:=F])
$$

## LADM Chapter 8:

" $\star$ is a metavariable for operators _+_, $._{-}, \wedge_{-}, \vee_{-} "\left(\operatorname{resp} . \sum, \Pi, \forall, \exists\right)$
(8.11) is part of the Substitution keyword in CALCCHеск.

## Read LADM Chapter 8!

## Substitution Examples

(8.11) Provided $\neg$ occurs (' $y$ ', ' $x, F^{\prime}$ ),

$$
(\star y \mid R \bullet P)[x:=F]=(\star y \mid R[x:=F] \bullet P[x:=F])
$$

- $\quad\left(\sum x \mid 1 \leq x \leq 2 \bullet y\right)[y:=y+z]$
$=\langle$ substitution $\rangle$

$$
\left(\sum x \mid 1 \leq x \leq 2 \bullet y+z\right)
$$

- $\quad\left(\sum x \mid 1 \leq x \leq 2 \bullet y\right)[y:=y+x]$
$=\langle$ (8.21) Variable renaming $\rangle$
$\left(\sum z \mid 1 \leq z \leq 2\right.$ • $\left.y\right)[y:=y+x]$
$=\langle$ substitution $\rangle$
$\left(\sum z \mid 1 \leq z \leq 2 \bullet y+x\right)$


## Substitution Examples (ctd.)

(8.11) Provided $\neg$ occurs ( ${ }^{\prime} y^{\prime}$, ' $x, F^{\prime}$ ),

$$
(\star y \mid R \bullet P)[x:=F]=(\star y \mid R[x:=F] \bullet P[x:=F])
$$

- $\quad\left(\sum x \mid 1 \leq x \leq 2 \bullet y\right)[x:=y+x]$
$=\langle$ (8.21) Variable renaming $\rangle$
$\left(\sum z \mid 1 \leq z \leq 2\right.$ • $y$ ) $[x:=y+x]$
$=\langle$ Substitution $\rangle$
$\left(\sum z \mid 1 \leq z \leq 2 \bullet y\right)$
$=\langle$ (8.21) Variable renaming $\rangle$
$\left(\sum x \mid 1 \leq x \leq 2 \bullet y\right)$
(8.11f) Provided $\neg$ occurs ( ${ }^{\prime} x^{\prime}, ~ ‘ E '$ '),

$$
E[x:=F]=E
$$

## Renaming of Bound Variables

(8.21) Axiom, Dummy renaming ( $\alpha$-conversion):
$(\star x \mid R \bullet P)=(\star y \mid R[x:=y] \bullet P[x:=y]) \quad$ provided $\rightarrow o c c u r s\left(' y\right.$ ', ' $\left.R, P^{\prime}\right)$.
$\left(\sum i \mid 0 \leq i<k \bullet n^{i}\right)$
$=\left\langle\operatorname{Dummy}\right.$ renaming (8.21), $\rightarrow$ occurs ( $\left.\left.{ }^{\prime} j^{\prime},{ }^{\prime} 0 \leq i<k, n^{i}\right)\right\rangle$
$\left(\sum j \mid 0 \leq j<k \bullet n^{j}\right)$
$\left(\sum i \mid 0 \leq i<k \bullet n^{i}\right)$
? 〈Dummy renaming (8.21)〉 $\times$
$\left(\sum k \mid 0 \leq k<k \bullet n^{k}\right) \quad$...... $k$ captured!
Generally, use fresh variables for renaming to avoid variable capture!
In СацсСнеск, renaming of bound variables is part of "Reflexivity of =", but can also be mentioned explicitly.

## Leibniz Rules for Quantification

Try to use $\quad x+x=2 \cdot x$ and Leibniz (1.5) $\begin{aligned} X & =Y \\ E[z:=X] & =E[z:=Y]\end{aligned} \quad$ to obtain:

$$
\left(\sum x \mid 0 \leq x<9 \bullet x+x\right)=\left(\sum x \mid 0 \leq x<9 \bullet 2 \cdot x\right)
$$

- Choose $E$ as: $\quad\left(\sum x \mid 0 \leq x<9 \bullet z\right)$
- Perform substitution: $\quad\left(\sum x \mid 0 \leq x<9 \bullet z\right)[z:=x+x]$
( $\sum y \mid 0 \leq y<9 \bullet x+x$ )
- Not possible with (1.5)!
$-E[z:=X]=E[z:=Y]$ renames $x$ !

Special Leibniz rule for quantification:

$$
\begin{aligned}
P & =Q \\
\hline(* x \mid R \bullet E[z:=P]) & =(* x \mid R \bullet E[z:=Q])
\end{aligned}
$$

## LADM Leibniz Rules for Quantification

Rewrite equalities in the range context of quantifications:
(8.12) Leibniz

$$
\begin{aligned}
P & =Q \\
\hline(\star x \mid E[z:=P] \cdot S) & =(\star x \mid E[z:=Q] \cdot S)
\end{aligned}
$$

Rewrite equalities in the body context of quantifications:
(8.12) Leibniz $\quad \begin{aligned} R \quad \Rightarrow \quad(P & =Q) \\ (\star x \mid R \bullet E[z:=P]) & =(\star x \mid R \bullet E[z:=Q])\end{aligned}$
(These inference rules will also be used implicitly.)
Important: $P=Q$, repectively $R \Rightarrow(P=Q)$, needs to be a theorem!
These rules are not available for local Assumptions!
(Because $x$ may occur in $R, P, Q$.)
The CalcСheck versions use universally-quantified antecedents.
Axiom "Leibniz for $\sum$ range": $\left(\forall x \bullet R_{1} \equiv R_{2}\right) \Rightarrow\left(\sum x \mid R_{1} \bullet E\right)=\left(\sum x \mid R_{2} \bullet E\right)$
Axiom "Leibniz for $\sum$ body": $\left(\forall x \bullet R \Rightarrow E_{1}=E_{2}\right) \Rightarrow\left(\sum x \mid R \bullet E_{1}\right)=\left(\sum x \mid R \bullet E_{2}\right)$

## Formalise:

- The sum of the first $n$ odd natural numbers is equal to $n^{2}$.

Formalise it in a way that makes it easy to prove!
Theorem "Odd-number sum":
( $\Sigma \mathrm{i}: \mathbb{N} \mathrm{I} \mathrm{i}<\mathrm{n} \cdot \operatorname{suc} \mathrm{i}+\mathrm{i})=\mathrm{n} \cdot \mathrm{n}$

The sum of the first $n$ odd natural numbers is equal to $n^{2}$ Theorem "Odd-number sum":
$\left(\sum i: \mathbb{N} \mid i<n \cdot s u c i+i\right)=n \cdot n$
Proof:
By induction on $\mathrm{n}: \mathbb{N}^{`}$ :
Base case:
( $\sum$ i : $\mathbb{N}$ I i<0.suc i + i) =(? )
$=\langle\quad ?\rangle$
Induction step:
( $\sum \mathrm{i}: \mathbb{N} \mathrm{I}$ i $<$ suc n • suc $\left.i+i\right)$
=(? )
$=$ ( ? )
suc $\mathrm{n} \cdot$ suc n

## Empty Range Axioms

(8.13) Axiom, Empty Range:

$$
\begin{aligned}
& \left(\sum x \mid \text { false } \bullet E\right)=0 \\
& (\Pi x \mid \text { false } \bullet E)=1
\end{aligned}
$$

The sum of the first $n$ odd natural numbers is equal to $n^{2}$
Theorem "Odd-number sum":
$\left(\sum i: \mathbb{N} \mid i<n \cdot s u c i+i\right)=n \cdot n$
Proof:
By induction on `n : $\mathbb{N}$ : Base case:
( $\sum \mathrm{i}: \mathbb{N} \mid i<0$ - suc $i+i$ )
$=\langle$ "Nothing is less than zero" >
( $\sum \mathrm{i}: \mathbb{N}$ I false • suc $i+i$ )
$=\left\langle\right.$ "Empty range for $\left.\sum^{\prime \prime}\right\rangle$
0
$=\langle$ "Definition of $\cdot$ for 0 " 〉
0 • 0
Induction step:
( $\sum_{i}$ : $\mathbb{N}$ I i < suc $n$ • suc i + i)
$=\langle$ "Split off term at top", Substitution 〉
$\left(\sum i: \mathbb{N} \mid i<n \cdot s u c i+i\right)+(s u c n+n)$
$=\langle$ Induction hypothesis $\rangle$
suc $n+n+n \cdot n$
$=\left\langle\right.$ "Definition of $\cdot$ for ${ }^{\text {suc" " }\rangle}$
suc $n+n$ - suc $n$
$=\left\langle\right.$ "Definition of • for ${ }^{\text {suc" " }}$ >
suc n • suc n

## Manipulating Ranges

(8.23) Theorem Split off term: For $n: \mathbb{N}$ and dummies $i: \mathbb{N}$,

$$
\begin{aligned}
& (\star i \mid 0 \leq i<n+1 \bullet P)=\quad(\star i \mid 0 \leq i<n \bullet P) \star P[i:=n] \\
& (\star i \mid 0 \leq i<n+1 \bullet P)=P[i:=0] \star(\star i \mid 0<i<n+1 \bullet P)
\end{aligned}
$$

- Typical uses: Induction proofs, verification of loops
- Generalisation: $\mathbb{N} \longrightarrow \mathbb{Z}, \quad 0 \longrightarrow m: \mathbb{Z}$ (with $m \leq n$ )

The following work both with $m, n, i: \mathbb{N}$ and with $m, n, i: \mathbb{Z}$ :
Theorem: Split off term from top:
$m \leq n \quad \Rightarrow$
$(\star i \mid m \leq i<n+1 \bullet P)=(\star i \mid m \leq i<n \bullet P) \star P[i:=n]$
Theorem: Split off term from bottom:
$m \leq n \Rightarrow$
$(\star i \mid m \leq i<n+1 \bullet P)=P[i:=m] \star(\star i \mid m+1 \leq i<n+1 \bullet P)$

## Manipulating Ranges

(8.23) Theorem Split off term: For $n: \mathbb{N}$ and dummies $i: \mathbb{N}$,

$$
\begin{aligned}
& \left(\sum i \mid 0 \leq i<n+1 \bullet P\right) \\
& \left(\sum i \mid 0 \leq i<n+1 \bullet P\right)=P[i:=0]+\left(\sum i \mid 0<i<n+1 \bullet P\right)
\end{aligned}
$$

- Typical uses: Induction proofs, verification of loops
- Generalisation: $\mathbb{N} \longrightarrow \mathbb{Z}, \quad 0 \longrightarrow m: \mathbb{Z}$ (with $m \leq n$ )

The following work both with $m, n, i: \mathbb{N}$ and with $m, n, i: \mathbb{Z}$ :
Theorem: Split off term from top:
$m \leq n \quad \Rightarrow$

$$
\left(\sum i \mid m \leq i<n+1 \bullet P\right)=\left(\sum i \mid m \leq i<n \bullet P\right)+P[i:=n]
$$

## Theorem: Split off term from bottom:

$m \leq n \quad \Rightarrow$
$\left(\sum i \mid m \leq i<n+1 \bullet P\right)=P[i:=m]+\left(\sum i \mid m+1 \leq i<n+1 \bullet P\right)$

# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-09-29

## General Quantification 3, Predicate Logic 1

## Plan for Today

- General Quantification (LADM chapter 8) - last part
- Predicate Logic 1:

Axioms and Theorems about Universal and Existential Quantification (LADM chapter 9)

## Logical Reasoning for Computer Science

 COMPSCI 2LC3McMaster University, Fall 2023

Wolfram Kahl

2023-09-29
Part 1: General Quantification (ctd.)

## Distributivity

(8.15) Axiom, (Quantification) Distributivity:

$$
(\star x \mid R \bullet P) \star(\star x \mid R \bullet Q)=(\star x \mid R \bullet P \star Q),
$$

provided each quantification is defined.
CALCCHECK currently has no way to express or check this proviso -
— it remains in your responsibility!
$\left(\sum i: \mathbb{N} \mid i<n \bullet f i\right)+\left(\sum i: \mathbb{N} \mid i<n \bullet g i\right)$
$=\langle$ Quantification Distributivity (8.15) $\rangle$
$\left(\sum i: \mathbb{N} \mid i<n \bullet f i+g i\right)$
Note: Some quantifications are not defined, e.g.: $\left(\sum n: \mathbb{N} \bullet n\right)$
Note that quantifications over $\wedge$ or $\vee$ are always defined:
$(\forall x \mid R \bullet P \wedge Q)=(\forall x \mid R \bullet P) \wedge(\forall x \mid R \bullet Q)$
$(\exists x \mid R \bullet P \vee Q)=(\exists x \mid R \bullet P) \vee(\exists x \mid R \bullet Q)$

## Disjoint Range Split — LADM

(8.16) Axiom, Range split:

$$
\begin{aligned}
(\star x \mid R \vee S \bullet P) & =(\star x \mid R \bullet P) \star(\star x \mid S \bullet P) \\
\text { provided } R & \wedge S=\text { false and each quantification is defined. } \\
(\Sigma x \mid R \vee S \bullet P) & =(\Sigma x \mid R \bullet P)+(\Sigma x \mid S \bullet P) \\
\text { provided } R & \wedge S=\text { false and each sum is defined. } \\
(\forall x \mid R \vee S \bullet P) & =(\forall x \mid R \bullet P) \wedge(\forall x \mid S \bullet P) \\
\text { provided } R & \wedge S=\text { false. } \\
(\exists x \mid R \vee S \bullet P)= & (\exists x \mid R \bullet P) \vee(\exists x \mid S \bullet P) \\
& \text { provided } R \wedge S=\text { false. }
\end{aligned}
$$

## Disjoint Range Split for $\sum$ (LADM and CalcСнеск)

(8.16) Axiom, Range Split: $\quad(\Sigma x \mid R \vee S \bullet P)=(\Sigma x \mid R \bullet P)+(\Sigma x \mid S \bullet P)$ provided $R \wedge S=$ false and each sum is defined.
CALCCHECK currently cannot deal with "provided each sum is defined".
But once $\forall$ is available, $Q \wedge R=$ false does not need to be a proviso:
Theorem "Disjoint range split for $\sum$ ":

$$
\begin{aligned}
& (\forall x \bullet R \wedge S \equiv \text { false }) \Rightarrow \\
& \left(\left(\sum x \mid R \vee S \bullet E\right)=\left(\sum x \mid R \bullet E\right)+\left(\sum x \mid S \bullet E\right)\right)
\end{aligned}
$$

That is: Summing up over a large range can be done by adding the results of summing up two disjoint and complementary subranges.
$\Longrightarrow \quad$ "Divide and conquer" algorithm design pattern

DIVIDE ET IMPERA

- Gaius Julius Caesar


## Range Split "Axioms"

(8.16) Axiom, Range split:
$(\star x \mid R \vee S \bullet P)=(* x \mid R \bullet P) \star(* x \mid S \bullet P)$
provided $R \wedge S=$ false and each quantification is defined.
(8.17) Axiom, Range Split:
$(\star x \mid R \vee S \bullet P) \star(\star x \mid R \wedge S \bullet P)=(\star x \mid R \bullet P) \star(\star x \mid S \bullet P)$ provided each quantification is defined.
(8.18) Axiom, Range Split for idempotent $\star$ :
$(\star x \mid R \vee S \bullet P)=(* x \mid R \bullet P) \star(\star x \mid S \bullet P)$
provided each quantification is defined.
$(\forall x \mid R \vee S \bullet P)=(\forall x \mid R \bullet P) \wedge(\forall x \mid S \bullet P)$
$(\exists x \mid R \vee S \bullet P)=(\exists x \mid R \bullet P) \vee(\exists x \mid S \bullet P)$

## Variable Binding Rearrangements

(8.19) Axiom, Interchange of dummies:

$$
(\star x \mid R \bullet(\star y \mid S \bullet P))=(\star y \mid S \bullet(\star x \mid R \bullet P))
$$

provided $\neg \operatorname{occurs}\left(' y\right.$ ', ' $R$ ') and $\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}, ' S\right.$ '), and each quantification is defined.

## (8.20) Axiom, Nesting:

$$
\begin{gathered}
(\star x, y \mid R \wedge S \bullet P)=(\star x \mid R \bullet(\star y \mid S \bullet P)) \\
\text { provided } \neg \operatorname{occurs}\left({ }^{\prime} y^{\prime},{ }^{\prime} R^{\prime}\right) .
\end{gathered}
$$

(8.21) Axiom, Dummy renaming ( $\alpha$-conversion):

$$
\begin{gathered}
(\star x \mid R \bullet P)=(\star y \mid R[x:=y] \bullet P[x:=y]) \\
\text { provided } \neg \operatorname{occurs}\left({ }^{\prime} y^{\prime},{ }^{\prime} R, P^{\prime}\right) .
\end{gathered}
$$

Substitution (8.11) prevents capture of $y$ by binders in $R$ or $P$

## Permutation of Bound Variables

Apparently not provable for general quantification from the quantification axioms in the textbook:

## Dummy list permutation:

$$
(\star x, y \mid R \bullet P)=(\star y, x \mid R \bullet P)
$$

(without side conditions restricting variable occurrences!)

However, the following are easily provable from (8.19) Interchange of dummies -
Exercise:
Dummy list permutation for $\forall$ :

$$
(\forall x, y \mid R \bullet P)=(\forall y, x \mid R \bullet P)
$$

Dummy list permutation for $\exists$ :

$$
(\exists x, y \mid R \bullet P)=(\exists y, x \mid R \bullet P)
$$

## Proving Split-off Term

We have:

## (8.16) Axiom, Range Split:

$(\Sigma x \mid R \vee S \bullet P)=(\Sigma x \mid R \bullet P)+(\Sigma x \mid S \bullet P)$ provided $R \wedge S=$ false and each sum is defined.

How can you prove theorems like the following?
Theorem "Split off term" "Split off term at top":
( $\Sigma \mathrm{i}: \mathbb{N} \mathbf{I} i<\operatorname{suc} n \cdot E)=(\Sigma i: \mathbb{N} \mathbf{I} i<n \cdot E)+E[i:=n]$

- Use range split first -
$\Longrightarrow$ need to transform the LHS range expression $i<\operatorname{suc} n$ into an appropriate disjunction
$\Longrightarrow$ the first disjunct should be the range expression $i<n$ from the RHS
- The second range will have one element
$\Longrightarrow$ The second sum from the (8.16) RHS has range $i=n$
$\Longrightarrow$ That second sum disappears via the one-point rule


# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-09-29

## Part 2: Predicate Logic 1

## Generalising De Morgan to Quantification

$\neg(\exists i \mid 0 \leq i<4 \bullet P)$
$=\langle$ Expand quantification $\rangle$

$$
\neg(P[i:=0] \vee P[i:=1] \vee P[i:=2] \vee P[i:=3])
$$

$=\langle(3.47)$ De Morgan $\rangle$

$$
\neg P[i:=0] \wedge \neg P[i:=1] \wedge \neg P[i:=2] \wedge \neg P[i:=3]
$$

$=\langle$ Contract quantification $\rangle$

$$
(\forall i \mid 0 \leq i<4 \bullet \neg P)
$$

( $9.18 \mathrm{~b}, \mathrm{c}, \mathrm{a})$ Generalised De Morgan:

$$
\begin{aligned}
\neg(\exists x \mid R \bullet P) & \equiv(\forall x \mid R \bullet \neg P) \\
(\exists x \mid R \bullet \neg P) & \equiv \neg(\forall x \mid R \bullet P) \\
\neg(\exists x \mid R \bullet \neg P) & \equiv(\forall x \mid R \bullet P)
\end{aligned}
$$

## (9.17) Axiom, Generalised De Morgan:

$$
(\exists x \mid R \bullet P) \equiv \neg(\forall x \mid R \bullet \neg P)
$$

## "Trading" Range Predicates with Body Predicates in $\forall$ and $\exists$

(9.2) Axiom, Trading:

$$
(\forall x \mid R \bullet P) \equiv(\forall x \bullet R \Rightarrow P)
$$

Trading Theorems for $\forall$ :

| (9.3a) | $(\forall x \mid R \bullet P) \equiv(\forall x \bullet \neg R \vee P)$ |
| :---: | :---: |
| (9.3b) | $(\forall x \mid R \cdot P) \equiv(\forall x \cdot R \wedge P \equiv R)$ |
| (9.3c) | $(\forall x \mid R \bullet P) \equiv(\forall x \bullet R \vee P \equiv P)$ |
| (9.4a) | $(\forall x \mid Q \wedge R \bullet P) \equiv(\forall x \mid Q \bullet R \Rightarrow P)$ |
| (9.4b) | $(\forall x \mid Q \wedge R \bullet P) \equiv(\forall x \mid Q \cdot \neg R \vee P)$ |
| (9.4c) | $(\forall x \mid Q \wedge R \bullet P) \equiv(\forall x \mid Q \bullet R \wedge P \equiv R)$ |
| (9.4d) | $(\forall x \mid Q \wedge R \bullet P) \equiv(\forall x \mid Q \bullet R \vee P \equiv P)$ |
| (9.17) Axiom, Generalised De Morgan: | $(\exists x \mid R \bullet P) \equiv \neg(\forall x \mid R \bullet \neg P)$ |
| (9.19) Trading for $\exists$ : | $(\exists x \mid R \bullet P) \equiv(\exists x \cdot R \wedge P)$ |
| (9.20) Trading for $\exists$ : | $(\exists x \mid Q \wedge R \bullet P) \equiv(\exists x \mid Q \bullet R \wedge P)$ |

```
 P[x:= E]
 \equiv\langle(8.14) One-point rule \
 (}\forallx|x=E\bulletP
 \Leftarrow{(9.10) Range weakening for }\forall
 (}\forallx|\operatorname{true}vx=E\bulletP
 \equiv\langle(3.29) Zero of v \rangle
 (}\forallx|\mathrm{ true • P)
 \equiv \true range in quantification \
 (}\forallx\bulletP
```

This proves: (9.13) Instantiation: $(\forall x \bullet P) \Rightarrow P[x:=E]$

The one-point rule is "sharper" than Instantiation.
Using sharper rules often means fewer dead ends...
A sharp version obtained via (3.60):

$$
(\forall x \bullet P) \equiv(\forall x \bullet P) \wedge P[x:=E]
$$

## Using Instantiation for $\forall$

(9.13) Instantiation: $(\forall x \bullet P) \quad \Rightarrow \quad P[x:=E]$

A sharp version of Instantiation obtained via (3.60): $\quad(\forall x \bullet P) \equiv(\forall x \bullet P) \wedge P[x:=E]$
Proving $(\forall x \bullet x+1>x) \Rightarrow y+2>y$ :
$(\forall x \cdot x+1>x)$
$=\langle$ Instantiation (9.13) with (3.60) $\rangle$
$(\forall x \bullet x+1>x) \wedge y+1>y$
$\Rightarrow\langle$ Left-Monotonicity of $\wedge$ (4.3) with Instantiation (9.13) $\rangle$
$(y+1)+1>y+1 \quad \wedge \quad y+1>y$
$\Rightarrow\langle$ Transitivity of $>(15.41)\rangle$
$y+1+1>y$
$=\langle 1+1=2\rangle$
$y+2>y$

## Recall: with ${ }_{2}$

$\neg(\mathrm{a} \cdot \mathrm{b}=\mathrm{a} \cdot 0)$
$\equiv\langle$ "Cancellation of $\cdot "$ with Assumption `a \(\neq 0\) ` $\rangle$
$\neg(\mathrm{b}=0)$
In a hint of shape "HintItem1 with HintItem2 and HintItem3":

- If HintItem1 refers to a theorem of shape $p \Rightarrow q$,
- then HintItem2 and HintItem3 are used to prove $p$
- and $q$ is used in the surrounding proof.

Here:

- HintItem1 is "Cancellation of ": $\quad z \neq 0 \Rightarrow(z \cdot x=z \cdot y \equiv x=y)$
- HintItem2 is "Assumption $a \neq 0$ "
- The surrounding proof uses:

$$
a \cdot b=a \cdot 0 \equiv b=0
$$

## Monotonicity with.

$(\forall x \cdot x+1>x) \wedge y+1>y$
$\Rightarrow\langle$ Left-Monotonicity of $\wedge$ (4.3) with Instantiation (9.13) $\rangle$
$(y+1)+1>y+1 \wedge y+1>y$
In a hint of shape "HintItem1 with HintItem2 and HintItem3":

- If HintItem1 refers to a theorem of shape $p \Rightarrow q$,
- then HintItem2 and HintItem3 are used to prove $p$
- and $q$ is used in the surrounding proof.

Here:

- HintItem1 is "Left-Monotonicity of $\wedge$ ":

$$
(p \Rightarrow q) \Rightarrow((p \wedge r) \Rightarrow(q \wedge r))
$$

- HintItem2 is "Instantiation":
$(\forall x \bullet x+1>x)$
$\Rightarrow \quad(y+1)+1>y+1$
- The surrounding proof uses:

$$
\left.\begin{array}{rl} 
& (\forall x \bullet x+1>x) \\
\Rightarrow & \wedge y+1>y \\
& (y+1)+1>y+1
\end{array}\right) y+1>y
$$



Theorem (4.3) "Left-monotonicity of $\wedge ":(p \Rightarrow q) \Rightarrow((p \wedge r) \Rightarrow(q \wedge r))$
Proof:
Assuming ${ }^{`} p \Rightarrow q$ :
$p \wedge r$
$\equiv\langle$ Assumption $` p \Rightarrow q$ ` with "Definition of $\Rightarrow$ from $\wedge$ " $\rangle$
$p \wedge q \wedge r$
$\Rightarrow\langle$ "Weakening" $\rangle$
$q \wedge r$
(9.13) Instantiation: $(\forall x \bullet P) \quad \Rightarrow \quad P[x:=E]$

A sharp version of Instantiation obtained via (3.60): $\quad(\forall x \bullet P) \equiv(\forall x \bullet P) \wedge P[x:=E]$
Theorem: $(\forall x: \mathbb{Z} \bullet x<x+1) \Rightarrow y<y+2$
Proof:
$(\forall x: \mathbb{Z} \bullet x<x+1)$
$\equiv\langle$ "Instantiation" (9.13) with "Definition of $\Rightarrow$ via $\wedge$ " (3.60) — explicit substitution needed! 〉
$(\forall x: \mathbb{Z} \bullet x<x+1) \wedge(x<x+1)[x:=y+1]$
$\equiv\left\langle\right.$ Substitution, Fact $\left.{ }^{`} 1+1=2{ }^{`}\right\rangle$
$(\forall x: \mathbb{Z} \bullet x<x+1) \wedge y+1<y+2$
$\Rightarrow\langle$ "Monotonicity of $\wedge$ " with "Instantiation" $\rangle$
$(x<x+1)[x:=y] \wedge y+1<y+2$
$\equiv\langle$ Substitution $\rangle$
$y<y+1 \wedge y+1<y+2$
$\Rightarrow\langle$ "Transitivity of $<$ " $\rangle$

$$
y<y+2
$$

## Theorems and Universal Quantification

(9.16) Metatheorem: $P$ is a theorem $\operatorname{iff}(\forall x \bullet P)$ is a theorem.

This is another justification for implicit use of "Instantiation" (9.13)
$(\forall x \bullet P) \quad \Rightarrow \quad P[x:=E]:$
Theorem: $(\forall x: \mathbb{Z} \bullet x<x+1) \Rightarrow y<y+2$
Proof:
Assuming (1) $\forall x: \mathbb{Z} \bullet x<x+1$ ’:
$y$
$<\langle$ Assumption (1) - implicit instantiation with E := y $\rangle$
$y+1$
$<\langle$ Assumption (1) —implicit instantiation with $\mathrm{E}:=\mathrm{y}+1\rangle$
$y+1+1$
$=\left\langle\right.$ Fact $\left.^{`} 1+1=2^{`}\right\rangle$
$y+2$

## Implicit Universal Quantification in Theorems 1

(9.16) Metatheorem: $P$ is a theorem $\operatorname{iff}(\forall x \bullet P)$ is a theorem.
(If proving " $x+1>x$ " is considered to really mean proving " $\forall x \bullet x+1>x$ ", then the $x$ in " $x+1>x$ " is called implicitly universally quantified.)

Proof method: To prove $(\forall x \bullet P)$, we prove $P$ for arbitrary $x$.

That is really a prose version of the following inference rule:
$\frac{P}{\forall x \bullet P} \forall$-Intro (prov. $x$ not free in assumptions)
In CalcCheck:

- Proving $(\forall v: \mathbb{N} \bullet P): \quad$ For any ${ }^{\prime} v: \mathbb{N}^{\prime}: \quad$ (Non-local assumptions Proof for $P$ with free $v$ are not usable.)

In CalcCheck:

- Proving $(\forall v: \mathbb{N} \bullet P)$ :

```
For any 'v: N':
 Proof for P
```

```
Proving }\forallx:\mathbb{N}\bulletx<x+1
```

    For any \({ }^{`} x: \mathbb{N}^{\prime}\) :
        \(x<x+1\)
    \(\equiv\langle\) Identity of +\(\rangle\)
        \(x+0<x+1\)
    \(\equiv\langle\) Cancellation of +\(\rangle\)
    \(0<1\)
    \(\equiv\left\langle\right.\) Fact \(\left.{ }^{`} 1=\operatorname{suc} 0 `\right\rangle\)
    \(0<\) suc 0
    \(\equiv\langle\) Zero is less than successor \(\rangle\)
    true
    
## Implicit Universal Quantification in Theorems 2

(9.16) Metatheorem: $P$ is a theorem $\operatorname{iff}(\forall x \bullet P)$ is a theorem.

LADM Proof method: To prove $(\forall x \mid R \bullet P)$, we prove $P$ for arbitrary $x$ in range $R$.

That is:

- Assume $R$ to prove $P$ (and assume nothing else that mentions $x$ )
- This proves $R \Rightarrow P$
- Then, by (9.16), $(\forall x \bullet R \Rightarrow P)$ is a theorem.
- With (9.2) Trading for $\forall$, this is transformed into $(\forall x \mid R \bullet P)$.

In CalcCheck:

- Proving $(\forall v: \mathbb{N} \bullet P)$ : $\quad$ For any ${ }^{\wedge} v: \mathbb{N}^{\prime}$ :
- Proving $(\forall v: \mathbb{N} \mid R \bullet P)$ :

For any ' $v: \mathbb{N}^{\prime}$ satisfying ' $R$ ':
Proof for $P$ using Assumption ' $R$ '

```
 Using "For any ... satisfying" for "Proof by Generalisation"
In CalcCheck:
```



```
 Proof for P using Assumption ' }R\mathrm{ '
Proving \(\forall x: \mathbb{N} \mid x<2 \bullet x<3\) :
For any \(\begin{gathered} \\ x\end{gathered} \mathbb{N}^{`}\) satisfying \(` x<2\) :
\(x\)
\(<\left\langle\right.\) Assumption \({ }^{`} x<2\) ` \(\rangle\)
2
\(<\left\langle\right.\) Fact \(\left.^{`} 2<3^{`}\right\rangle\)
3
```


# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

## Wolfram Kahl

2023-10-02

## Predicate Logic (2)

## Warm-Up

- What does "assuming the antecedent" mean?
- Give the rule for quantification nesting.
- State the one-point rule and the empty range axiom.
- State the quantification distributivity axiom.
- Give the rule for disjoint range split.
- Give the rule for substitution into quantification.
- State the basic trading laws for $\forall$ and $\exists$.
- State the theorem of instantiation for $\forall$.


## Plan for Today

- Predicate Logic 2:

Selected Important Properties of Universal and Existential Quantifications (LADM chapter 9)

Coming up:

- Types (see also LADM section 8.1) and Sets (LADM chapter 11)


## Combined Quantification Examples

- "There is a least integer."
- "There exists an integer $b$ such that every integer $n$ is at least $b$ ".
- "There exists an integer $b$ such that for every integer $n$, we have $b \leq n$ ".
$(\exists b: \mathbb{Z} \bullet(\forall n: \mathbb{Z} \bullet b \leq n))$
- " $\pi$ can be enclosed within rational bounds that are less than any $\varepsilon$ apart"
- "For every positive real number $\varepsilon$, there are rational numbers $r$ and $s$ with $r<s<r+\varepsilon$, such that $r<\pi<s^{\prime \prime}$
$(\forall \varepsilon: \mathbb{R} \mid 0<\varepsilon$
- $(\exists r, s: \mathbb{Q} \mid r<s<r+\varepsilon \bullet r<\pi<s))$

Proof Patterns Corresponding to the Elimination and Introduction Rules for $\forall$ $\frac{\forall x \bullet P}{P[x:=E]} \forall$-Elim $\quad \frac{P}{\forall x \bullet P} \quad \forall$-Intro (prov. $x$ not free in assumptions)
(9.13) Instantiation: $(\forall x \bullet P) \Rightarrow P[x:=E]$
$y+2$
$<\left\langle\right.$ Assumption ${ }^{`} \forall x: \mathbb{Z} \bullet x<x+1$ - implicit instantiation w. $\left.\mathrm{E}:=\mathrm{y}+2\right\rangle$
$y+2+1$
$(\forall x: \mathbb{Z} \bullet x<x+1)$
$\equiv$ 〈"Instantiation" (9.13) with "Definition of $\Rightarrow$ via $\wedge$ " (3.60) — explicit substitution needed! 〉
$(\forall x: \mathbb{Z} \bullet x<x+1) \wedge(x<x+1)[x:=y+1]$

- Proving $(\forall v: \mathbb{N} \bullet P): \quad$ For any $\begin{array}{r} \\ v: \mathbb{N}: \\ \text { (Non-local assumptions }\end{array}$ Proof for $P \quad$ with free $v$ are not usable.)
- Proving $(\forall v: \mathbb{N} \mid R \bullet P)$ :

For any ${ }^{`} v: \mathbb{N}^{`}$ satisfying `\(R\) : Proof for \(P\) using Assumption` $R$ `

## $\exists$-Introduction

Recall: (9.13) Instantiation: $\quad(\forall x \bullet P) \Rightarrow P[x:=E]$
Dual: (9.28) $\exists$-Introduction: $\quad P[x:=E] \Rightarrow(\exists x \bullet P)$
An expression $E$ with $P[x:=E]$ is called a "witness" of $(\exists x \bullet P)$.
Proving an existential quantification via $\exists$-Introduction requires "exhibiting a witness".

## Inference rule:

$$
\frac{P[x:=E]}{\exists x \bullet P} \exists \text {-Intro } \quad \frac{\forall x \bullet P}{P[x:=E]} \forall \text {-Elim }
$$

## Using $\exists$-Introduction for "Proof by Example"

(9.28) $\exists$-Introduction: $P[x:=E] \Rightarrow(\exists x \bullet P)$

An expression $E$ with $P[x:=E]$ is called a "witness" of $(\exists x \bullet P)$.
Proving an existential quantification via $\exists$-Introduction requires "exhibiting a witness".
$(\exists x: \mathbb{N} \bullet x \cdot x<x+x)$
$\Leftarrow\langle\exists$-Introduction $\rangle$
$(x \cdot x<x+x)[x:=1]$
$\equiv\langle$ Substitution $\rangle$
$1 \cdot 1<1+1$
$\equiv\langle$ Evaluation $\rangle$
true

## Using $\exists$-Introduction for "Proof by Counter-Example"

(9.28) $\exists$-Introduction: $P[x:=E] \Rightarrow(\exists x \bullet P)$
$\neg(\forall x: \mathbb{N} \bullet x+x<x \cdot x)$
$\equiv\langle$ Generalised De Morgan $\rangle$
$(\exists x: \mathbb{N} \bullet \neg(x+x<x \cdot x))$
$\Leftarrow\langle\exists$-Introduction $\rangle$
$(\neg(x+x<x \cdot x))[x:=2]$
$\equiv\langle$ Substitution $\rangle$
$\neg(2+2<2 \cdot 2)$
$\equiv\left\langle\right.$ Fact ${ }^{`} 2+2<2 \cdot 2 \equiv$ false $\left.{ }^{`}\right\rangle$
$\rightarrow$ false
$\equiv\langle$ Negation of false $\rangle$
true

## Witnesses

(9.30v) Metatheorem Witness: If $\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}, ~ ' ~ Q '\right)$, then:
$(\exists x \mid R \bullet P) \Rightarrow Q$ is a theorem iff $\quad(R \wedge P) \Rightarrow Q$ is a theorem
Theorem "Witness": $(\exists x \mid R \bullet P) \Rightarrow Q \equiv(\forall x \bullet R \wedge P \Rightarrow Q)$ prov. $\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}, ' Q\right.$ ') Proof:
$(\exists x \mid R \bullet P) \Rightarrow Q$
$=\langle$ (9.19) Trading for $\exists\rangle$
$(\exists x \bullet R \wedge P) \Rightarrow Q$
$=\langle(3.59) p \Rightarrow q \equiv \neg p \vee q$, (9.18b) Gen. De Morgan $\rangle$
$(\forall x \bullet \neg(R \wedge P)) \vee Q$
$=\left\langle\right.$ (9.5) Distributivity of $\vee$ over $\left.\forall-\neg \operatorname{occurs}\left(' x^{\prime}, ~ ' Q '\right)\right\rangle$
$(\forall x \bullet \neg(R \wedge P) \vee Q)$
$=\langle(3.59) p \Rightarrow q \equiv \neg p \vee q\rangle$
$(\forall x \bullet R \wedge P \Rightarrow Q)$
The last line is, by Metatheorem (9.16), a theorem iff $(R \wedge P) \Rightarrow Q$ is.

LADM Theory of Integers - Axioms and Some Theorems
(15.1)

$$
\begin{array}{ll}
\text { Axiom, Associativity: } \quad & (a+b)+c=a+(b+c) \\
& (a \cdot b) \cdot c=a \cdot(b \cdot c) \tag{15.2}
\end{array}
$$

Axiom, Symmetry: $\quad a+b=b+a$
$a \cdot b=b \cdot a$
Axiom, Additive identity: $\quad 0+a=a$
Axiom, Multiplicative identity: $\quad 1 \cdot a=a$
Axiom, Distributivity: $\quad a \cdot(b+c)=a \cdot b+a \cdot c$
(15.6) Axiom, Additive Inverse:
$(\exists x \cdot x+a=0)$
Axiom, Cancellation of : $\quad c \neq 0 \Rightarrow(c \cdot a=c \cdot b \equiv a=b)$
Cancellation of + :

$$
\begin{align*}
& a+b=a+c \quad \equiv \quad b=c  \tag{15.8}\\
& \quad a \neq 0 \Rightarrow(a \cdot z=a \equiv z=1) \\
& x+a=0 \wedge y+a=0 \Rightarrow x=y
\end{align*}
$$

(15.10b) Unique mult. identity:
(15.12) Unique additive inverse:

```
Theorem (15.8) "Cancellation of +": a + b =a + c \equivb = c
Proof:
 Using "Mutual implication":
 Subproof for `b = c m a + b = a + c`:
 Assuming `b = c`:
 a + b
 =(Assumption `b = c`)
 a + c
 Subproof for `a + b = a + c = b = c`
 a + b =a + c mb = c
 \equiv("Left-identity of =", "Additive inverse" with `a := a`)
 (\existsx:\mathbb{Z}\cdotx+a=0) => a + b = a + c m b = c
 \equiv{ "Witness", "Trading for \forall")
 \forallx:\mathbb{Z I x + a=0 • a + b=a +c m b = c}
 Proof for this:
 For any `x : \mathbb{Z` satisfying `x + a = 0`:}
 Assuming `a + b = a + c`:
 =(" "Identity of +")
 0 + b
 ={ Assumption `x + a = 0` \rangle
 x + a + b
 =(Assumption `a + b = a + c`)
 x + a + c
 ={ Assumption ` }x+a=0`
 0 + c
 =("Identity of +")
 c
```

"Witness":
$(\exists x \mid R \bullet P) \Rightarrow Q$
$\equiv \quad(\forall x \bullet R \wedge P \Rightarrow Q)$
prov. $\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}\right.$, ' $Q$


Assuming witness ${ }^{\prime} x\{: \text { type }\}^{\text {? }}$ satisfying ${ } P^{\prime}$ :

- introduces the bound variable ' $x$ '
- makes $P$ available as assumption to the contained proof.
- This proves $(\exists x:$ type $-P) \Rightarrow R$ if the contained proof proves $R$,

Assuming witness $` x\{: \text { type }\}^{\text {? }}$ satisfying ${ }^{~} P$ ` by hint :
- introduces the bound variable ' $x$ '
- makes $P$ available as assumption to the contained proof.

- hint needs to prove ( $\exists x$ : type $\bullet P$ )
- This then proves $R$
if the contained proof proves $R$ (with the additional assumnption $P$ )
- This can be understood as providing $\exists$-elimination: It uses hint to discharge the antecedent $(\exists x:$ type $\bullet P)$ and then has inferred proof goal $R$.


## Recall: Monotonicity With Respect To $\Rightarrow$

Let _s_ be an order on $T$, and let $f: T \rightarrow T$ be a function on $T$. Then $f$ is called

- monotonic iff $x \leq y \Rightarrow f x \leq f y$
- antitonic iff $x \leq y \Rightarrow f y \leq f x$
(4.2) Left-Monotonicity of $\vee: \quad(p \Rightarrow q) \Rightarrow(p \vee r \Rightarrow q \vee r)$
(4.3) Left-Monotonicity of $\wedge$
$(p \Rightarrow q) \Rightarrow p \wedge r \Rightarrow q \wedge r$
Antitonicity of $\neg$ :
$(p \Rightarrow q) \Rightarrow \neg q \Rightarrow \neg p$
Left-Antitonicity of $\Rightarrow$ :
$(p \Rightarrow q) \Rightarrow(q \Rightarrow r) \Rightarrow(p \Rightarrow r)$
Right-Monotonicity of $\Rightarrow$ :
$(p \Rightarrow q) \Rightarrow(r \Rightarrow p) \Rightarrow(r \Rightarrow q)$
Guarded Right-Monotonicity of $\Rightarrow:(r \Rightarrow(p \Rightarrow q)) \Rightarrow(r \Rightarrow p) \Rightarrow(r \Rightarrow q)$


## Transitivity Laws are Monotonicity Laws

Notice: The following two "are" transitivity of $\Rightarrow$ :

- Left-Antitonicity of $\Rightarrow$ :

$$
\begin{aligned}
& (p \Rightarrow q) \Rightarrow(q \Rightarrow r) \Rightarrow(p \Rightarrow r) \\
& (p \Rightarrow q) \Rightarrow(r \Rightarrow p) \Rightarrow(r \Rightarrow q)
\end{aligned}
$$

- Right-Monotonicity of $\Rightarrow$ :

This works also for other orders - with general monotonicity: Let

- _ $\leq_{1}$ be an order on $T_{1}$, and _ $\leq_{2}$ be an order on $T_{2}$,
- $f: T_{1} \rightarrow T_{2}$ be a function from $T_{1}$ to $T_{2}$.

Then $f$ is called

- monotonic iff $x \leq_{1} y \Rightarrow f x \leq_{2} f y$,
- antitonic iff $x \leq_{1} y \Rightarrow f y \leq_{2} f x$.

Transitivity of $\leq$ is antitonitcity of $\left(_\leq r\right): \mathbb{Z} \rightarrow \mathbb{B}$ :

- Left-Antitonicity of $\leq$ :

$$
(p \leq q) \Rightarrow(q \leq r) \Rightarrow(p \leq r)
$$

- Right-Monotonicity of $\leq: \quad(p \leq q) \Rightarrow(r \leq p) \Rightarrow(r \leq q)$

Weakening/Strengthening for $\forall$ and $\exists —$ "Cheap Antitonicity/Monotonicity"
(9.10) Range weakening/strengthening for $\forall: \quad(\forall x \mid Q \vee R \bullet P) \Rightarrow(\forall x \mid Q \bullet P)$
(9.11) Body weakening/strengthening for $\forall: \quad(\forall x \mid R \bullet P \wedge Q) \Rightarrow(\forall x \mid R \bullet P)$
(9.25) Range weakening/strengthening for $\exists: \quad(\exists x \mid R \bullet P) \Rightarrow(\exists x \mid Q \vee R \bullet P)$
(9.26) Body weakening/strengthening for $\exists$ :
$(\exists x \mid R \bullet P) \Rightarrow(\exists x \mid R \bullet P \vee Q)$
Recall:
(9.2) Trading for $\forall$ :
$(\forall x \mid R \bullet P) \equiv(\forall x \bullet R \Rightarrow P)$
(9.19) Trading for $\exists$ :
$(\exists x \mid R \cdot P) \equiv(\exists x \cdot R \wedge P)$

## Monotonicity for $\forall$

(9.12) Monotonicity of $\forall$ :

$$
\left(\forall x \mid R \bullet P_{1} \Rightarrow P_{2}\right) \Rightarrow\left(\left(\forall x \mid R \bullet P_{1}\right) \Rightarrow\left(\forall x \mid R \bullet P_{2}\right)\right)
$$

## Range-Antitonicity of $\forall$ :

$$
\left(\forall x \bullet R_{2} \Rightarrow R_{1}\right) \Rightarrow\left(\left(\forall x \mid R_{1} \bullet P\right) \Rightarrow\left(\forall x \mid R_{2} \bullet P\right)\right)
$$

$\left(\forall x \bullet R_{2} \Rightarrow R_{1}\right)$
$\Rightarrow\langle(9.12)$ with shunted (3.82a) Transitivity of $\Rightarrow\rangle$
$\left(\forall x \bullet\left(R_{1} \Rightarrow P\right) \Rightarrow\left(R_{2} \Rightarrow P\right)\right)$
$\Rightarrow\langle$ (9.12) Monotonicity of $\forall\rangle$
$\left(\forall x \bullet R_{1} \Rightarrow P\right) \Rightarrow\left(\forall x \bullet R_{2} \Rightarrow P\right)$
$=\langle$ (9.2) Trading for $\forall\rangle$
$\left(\forall x \mid R_{1} \bullet P\right) \Rightarrow\left(\forall x \mid R_{2} \bullet P\right)$
(9.27) (Body) Monotonicity of $\exists$ :

$$
\left(\forall x \mid R \bullet P_{1} \Rightarrow P_{2}\right) \Rightarrow\left(\left(\exists x \mid R \bullet P_{1}\right) \Rightarrow\left(\exists x \mid R \bullet P_{2}\right)\right)
$$

Range-Monotonicity of $\exists$ :

$$
\left(\forall x \bullet R_{1} \Rightarrow R_{2}\right) \Rightarrow\left(\left(\exists x \mid R_{1} \bullet P\right) \Rightarrow\left(\exists x \mid R_{2} \bullet P\right)\right)
$$

## Predicate Logic Laws You Really Need To Know Already Now

(8.13) Empty Range:
$(\forall x \mid$ false $\bullet P)=$ true
$(\exists x \mid$ false $\bullet P)=$ false
(8.14) One-point Rule: Provided $\neg$ occurs ( ${ }^{\prime} x^{\prime},{ }^{\prime} E$ ' $), \quad(\forall x \mid x=E \bullet P) \quad \equiv P[x:=E]$ $(\exists x \mid x=E \bullet P) \equiv P[x:=E]$
(9.17) Generalised De Morgan: $\quad(\exists x \mid R \bullet P) \equiv \neg(\forall x \mid R \bullet \neg P)$
(9.2) Trading for $\forall$ :
$(\forall x \mid R \bullet P) \equiv(\forall x \bullet R \Rightarrow P)$
(9.4a) Trading for $\forall$ :
$(\forall x \mid Q \wedge R \bullet P) \equiv(\forall x \mid Q \bullet R \Rightarrow P)$
(9.19) Trading for $\exists$ :
$(\exists x \mid R \cdot P) \equiv(\exists x \cdot R \wedge P)$
(9.20) Trading for $\exists$ :
$(\exists x \mid Q \wedge R \bullet P) \equiv(\exists x \mid Q \bullet R \wedge P)$
(9.13) Instantiation:
$(\forall x \bullet P) \Rightarrow P[x:=E]$
(9.28) $\exists$-Introduction:
$P[x:=E] \quad \Rightarrow \quad(\exists x \bullet P)$
... and correctly handle substitution, Leibniz, renaming of bound variables, monotonicity/antitonicity, For any ...

## Sentences: Predicate Logic Formulae without Free Variables

Definition: A sentence is a Boolean expression without free variables.

- Expressions without free variables are also called "closed":

A sentence is a closed Boolean expression.

- Recall: The value of an expression (in a state) only depends on its free variables.
- Therefore: The value of a closed expression does not depend on the state.
- That is, a closed Boolean expression, or sentence,
- either always evaluates to true
- or always evaluates to false
- In other words: A closed Boolean expression, or sentence,
- is either valid
- or a contradiction
- Also: For a closed Boolean expression, or sentence, $\varphi$
- either $\varphi$ is valid
- or $\neg \varphi$ is valid
- This means: For a closed Boolean expression, or sentence, $\varphi$, only one of $\varphi$ and $\neg \varphi$ can have a proof!

Prove one of the following two theorem statements - only one is valid. (Should be easy in less than ten steps.)

Theorem "M2-3A-1-yes": ( $\exists \mathrm{x}: \mathbb{Z} \cdot \forall \mathrm{y}: \mathbb{Z} \cdot(\mathrm{x}-2) \cdot \mathrm{y}+1=\mathrm{x}-1)$
Theorem "M2-3A-1-no": ᄀ(ヨ x : $\mathbb{Z} \cdot \forall y: \mathbb{Z} \cdot(x-2) \cdot y+1=x-1)$

- For a closed Boolean expression, or sentence, $\varphi$, only one of $\varphi$ and $\neg \varphi$ can have a proof!
- "Practice with $\forall$ and $\exists$ " starts with H12.


# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

## Wolfram Kahl

2023-10-04

## Sequences, Types, Sets

## Warm-Up

- What is an order?
- What does "assuming the antecedent" mean?
- Give the rule for quantification nesting.
- State the one-point rule and the empty range axiom.
- State the quantification distributivity axiom.
- Give the rule for disjoint range split.
- Give the rule for substitution into quantification.
- State the basic trading laws for $\forall$ and $\exists$.
- State the theorem of instantiation for $\forall$.
- State the $\exists$-introduction theorem.
- State monotonicity and antitonicity theorems for $\forall$ and $\exists$.
- What can you prove with "For any `\(x: T\) ’ satisfying` ${ }^{`}$ `:"?


## Plan for Today

- Sequences - a brief start (LADM chapter 13)
- Some remarks about Types (see also LADM section 8.1)
- "A Theory of Sets" (LADM chapter 11)

Coming up:

- Relations (see also LADM chapter 14)


# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

## Wolfram Kahl

## 2023-10-04

## Part 1: Sequences

## Sequences

- We may write $[33,22,11]$ (Haskell notation) for the sequence that has
- " 33 " as its first element,
- " 22 " as its second element,
- " 11 " as its third element, and
- no further elements.
(Notation "[...]" for sequences is not supported by CalcCheck. LADM writes "(...)".)
- Sequence matters: $[33,22,11]$ and $[11,22,33]$ are different!
- Multiplicity matters: $[33,22,11]$ and $[33,22,22,11]$ are different!
- We consider the type $\operatorname{Seq} A$ of sequences with elements of type $A$ as generated inductively by the following two constructors:

```
: Seq A leps empty sequence
^ : A->Seq A->Seq A \cons "cons"
```

$\triangle$ associates to the right.

- Therefore: $[33,22,11]=33 \triangleleft[22,11]$

$$
=33 \triangleleft 22 \triangleleft[11]
$$

$$
=33 \triangleleft 22 \triangleleft 11 \triangleleft \epsilon
$$

Sequences - "cons" and "snoc"

- We consider the type $\operatorname{Seq} A$ of sequences with elements of type $A$ as generated inductively by the following two constructors:
$\epsilon: \operatorname{Seq} A$ leps empty sequence
___ : $A \rightarrow \operatorname{Seq} A \rightarrow \operatorname{Seq} A$ lcons "cons"
$\triangle$ associates to the right.
- Therefore: $[33,22,11]=33 \triangleleft[22,11]$

$$
\begin{aligned}
& =33 \triangleleft 22 \triangleleft[11] \\
& =33 \triangleleft 22 \triangleleft 11 \triangleleft \epsilon
\end{aligned}
$$

- Appending single elements "at the end":

$$
\square_{-}: \operatorname{Seq} A \rightarrow A \rightarrow \operatorname{Seq} A \quad \text { snoc "snoc" }
$$

$\triangleright$ associates to the left.

- (Con-)catenation:
__ : $\operatorname{Seq} A \rightarrow \operatorname{Seq} A \rightarrow \operatorname{Seq} A \quad$ Ccatenate
- associates to the right.


## Sequences - Induction Principle

- The set of all sequences over type $A$ is written $\operatorname{Seq} A$.
- The empty sequence " $\epsilon$ " is a sequence over type $A$.
- If $x$ is an element of $A$ and $x$ is a sequence over type $A$,
then " $x \triangleleft x s^{\prime \prime}$ (pronounced: " $x$ cons $x s$ ") is a sequence over type $A$, too.
- Two sequences are equal iff they are constructed the same way from $\epsilon$ and $\triangleleft$.


## Induction principle for sequences:

- if $P(\epsilon) \quad$ If $P$ holds for $\epsilon$
- and if $P(x s)$ implies $P(x \triangleleft x s)$ for all $x: A$, and whenever $P$ holds for $x s$, it also holds for any $x \triangleleft x s$,
- then for all $x s$ : Seq $A$ we have $P(x s)$.
then $P$ holds for all sequences over $A$.


## Sequences - Induction Proofs

## Induction principle for sequences:

- if $P(\epsilon)$
- and if $P(x s)$ implies $P(x \triangleleft x s)$ for all $x: A$,
and whenever $P$ holds for $x s$, it also holds for any $x \triangleleft x s$,
- then for all $x s$ : $\operatorname{Seq} A$ we have $P(x s)$.
then $P$ holds for all sequences over $A$.
An induction proof using this looks as follows:
Theorem: $P$
Proof:
By induction on $x s$ : $\operatorname{Seq} A$ :


## Base case:

Proof for $P[x s:=\epsilon]$
Induction step:
Proof for $(\forall x: A \bullet P[x s:=x \triangleleft x s])$
using Induction hypothesis $P$

## Concatenation

Axiom (13.17) "Left-identity of $\quad$ "
"Definition of - for $\epsilon$ ": $\quad$ - ys = ys
Axiom (13.18) "Mutual associativity of $\triangleleft$ with -" "Definition of - for $\triangleleft ": \quad(x \triangleleft x s)-y s=x \triangleleft(x s-y s)$
$\Longrightarrow \quad \mathrm{H} 13, \mathrm{Ex} 5.2$
(Work through H13 before your tutorial!)

# Logical Reasoning for Computer Science COMPSCI 2LC3 

McMaster University, Fall 2023

Wolfram Kahl

2023-10-04

## Part 2: Types

## Types

A type denotes a set of values that

- can be associated with a variable
- an expression might evaluate to

Some basic types: $\quad \mathbb{B}, \mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
Some constructed types: $\quad \operatorname{Seq} \mathbb{N}, \quad \mathbb{N} \rightarrow \mathbb{B}, \quad \operatorname{Seq}(\operatorname{Seq} \mathbb{N}) \rightarrow \operatorname{Seq} \mathbb{B}, \quad$ set $\mathbb{Z}$
"E $: \mathbf{t}$ " means: "Expression $E$ is declared to have type $t$ ".
Examples:

- constants: true: $\mathbb{B}, \pi: \mathbb{R}, 2: \mathbb{Z}, 2: \mathbb{N}$
- variable declarations: $p: \mathbb{B}, k: \mathbb{N}, d: \mathbb{R}$
- type annotations in expressions:
- $(x+y) \cdot x \quad \longrightarrow \quad(x: \mathbb{N}+y) \cdot x$
- $(x+y) \cdot x \quad \longrightarrow \quad((((x: \mathbb{N})+(y: \mathbb{N})): \mathbb{N}) \cdot(x: \mathbb{N})): \mathbb{N}$


## Function Types - LADM Version

- If the parameters of function $f$ have types $t_{1}, \ldots, t_{n}$
- and the result has type $r$,
- then $f$ has type $t_{1} \times \cdots \times t_{n} \rightarrow r$

We write: $f: t_{1} \times \cdots \times t_{n} \rightarrow r$
Examples: $\quad \neg_{-}: \mathbb{B} \rightarrow \mathbb{B} \quad \quad{ }^{+}+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \quad \quad \lll: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{B}$
Forming expressions using _<_ : $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{B}$ :

- if expression $a_{1}$ has type $\mathbb{Z}$, and $a_{2}$ has type $\mathbb{Z}$
- then $a_{1}<a_{2}$ is a (well-typed) expression
- and has type $\mathbb{B}$.

In general: For $f: t_{1} \times \cdots \times t_{n} \rightarrow r$,

- if expression $a_{1}$ has type $t_{1}$, and $\ldots$, and $a_{n}$ has type $t_{n}$
- then function application $f\left(a_{1}, \ldots, a_{n}\right)$ is an expression
- and has type $r$.


## Function Types - Mechanised Mathematics Version

- If the parameters of function $f$ have types $\left.t_{1}, \ldots, t_{n}\right\}$
- and the result has type $r$,
- then $f$ has type $t_{1} \rightarrow \cdots \rightarrow t_{n} \rightarrow r$
(The function type constructor $\rightarrow$ associates to the right!)
Examples: $\quad \neg: \mathbb{B} \rightarrow \mathbb{B} \quad \quad^{+}-: \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \quad \quad$ _-_ $: \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{B}$
Forming expressions using $<_{-}: \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{B}: \quad \frac{a_{1}: \mathbb{Z} a_{2}: \mathbb{Z}}{\left(a_{1}<a_{2}\right): \mathbb{B}}$
In general: For $f: A \rightarrow B$,
- if expression $x$ has type $A$,
- then function application $f x$ is an expression
$\frac{f: A \rightarrow B \quad x: A}{f x: B}$
- and has type $B$.

Well-typed Expressions?

$$
2+k \sqrt{ } \quad 42 \text {-true } \times \quad \neg(3 \cdot x) \times \quad(1 /(x: \mathbb{R})): \mathbb{R} \sqrt{ }
$$

Non-well-typed expressions make no sense!

## Function Application - LADM Version

Consider function $g$ defined by:

$$
\begin{equation*}
g(z)=3 \cdot z+6 \tag{1.6}
\end{equation*}
$$

- Special function application syntax for argument that is identifier or constant:

$$
g . z=3 \cdot z+6
$$

```
- \([x:=e] \quad\) (textual substitution)
- . (function application)
- unary prefix operators \(+,-, \neg, \#, \sim, \mathcal{P}\)
- **
- . / \(\div \bmod \mathrm{gcd}\)
- + - U \(\cap \times\) - •
- \(\downarrow \uparrow\)
- \#
- \(\triangleleft \triangleright\)
\(\bullet=\neq \ll \subset \subseteq \supset \supseteq \mid\)
(conjunctional)
- \(\vee \wedge\)
\(\bullet \Rightarrow \nRightarrow \nLeftarrow\)
\(\bullet \equiv \not \equiv \quad\) (lowest precedence)
All non-associative binary infix operators associate to the left, except \(* *, \triangleleft, \Rightarrow, \rightarrow\), which associate to the right.

\section*{Function Application - Mechanised Mathematics Version}

Consider function \(g\) defined by:
\(g z=3 \cdot z+6\)
- Function application is denoted by juxtaposition
("putting side by side")
- Lexical separation for argument that is identifier or constant: space required:
\[
h z=g(g z)
\]

Superfluous parentheses (e.g., " \(h(z)=g(g(z))\) ") are allowed, ugly, and bad style.
- Function application still has higher precedence than other binary operators.
- As non-associative binary infix operator, function application associates to the left: If \(f: \mathbb{Z} \rightarrow(\mathbb{Z} \rightarrow \mathbb{Z})\), then \(f 23=(f 2) 3\), and \(f 2: \mathbb{Z} \rightarrow \mathbb{Z}\)
- Typing rule for function application:
\[
\frac{f: A \rightarrow B \quad x: A}{f x: B}
\]
```

COMPSCI 2LC3 Fall }2023\mathrm{ CalcCheck Default Table of Precedences

- ( ): _[_:=_ ] (textual substitution)
(highest precedence)
- 140: unary postfix operators: _! _ - _ _+ _(| |)

```

```

- 120: __ (function application), @
- 115: **
- 110: . / \div mod gcd
- 105: % /
- 100: + - U \cap × o \oplus ¢ \triangleleft \& \triangleright
- 97: }\leftrightarrow (relation type
- 95: }->\mathrm{ (function type)
- 90: \downarrow \uparrow
- 70: \#
- 60: \triangleleft \triangleright -
- 50: = \# < > \epsilonc\preceq つ \supseteq | _(_)_ (conjunctional)
- 40: \vee ^
- 20: }=>\not=>\Leftarrow\not
- 10: \equiv 春
- 9: := (assignment command, two characters)
- 5: ́ (command sequencing)

```


\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

\section*{Wolfram Kahl}

2023-10-04

\section*{Part 3: Sets}

\section*{LADM Chapter 11: A Theory of Sets}
"A set is simply a collection of distinct (different) elements."
- 11.1 Set comprehension and membership
- 11.2 Operations on sets
- 11.3 Theorems concerning set operations (many! - mostly easy...)
- 11.4 Union and intersection of families of sets (quantification over \(\cup\) and \(\cap\))
- ...

\section*{The Language of Set Theory - Overview}
- The type set \(t\) of sets with elements of type \(t\)
- Set membership: For \(e: t\) and \(S:\) set \(t: \quad e \in S\)
- Set comprehension: \(\{x: t \mid R \bullet E\}\) - following the pattern of quantification
- Set enumeration: \(\{6,7,9\}\)
- Set size: \(\#\{6,7,9\}=3\)
- Set inclusion: \(\subset, \subseteq, \supset, \supseteq\)
- Set union and intersection: \(\cup, \cap\)
- Set difference: \(S-T\)
- Set complement: \(\sim S\)
- Power set (set of subsets): \(\mathbb{P} S\)
- Cartesian product (cross product, direct product) of sets: \(S \times T \quad\) (Section 14.1)

\section*{Set Membership versus Type Annotation}

Let \(T\) be a type; let \(S\) be a set, that is, an expression of type set \(T\), and let \(e\) be an expression ot type \(T\), then
- \(e \in S\) is an expression
- of type \(\mathbb{B}\)
- and denotes " \(e\) is in \(S\) " or " \(e\) is an element of \(S\) "
Because: _ \(\epsilon_{-}: T \rightarrow\) set \(T \rightarrow \mathbb{B}\)

\section*{Note:}
- \(e: T\) is nothing but the expression \(e\), with type annotation \(T\).
- If \(e\) has type \(T\), then \(e: T\) has the same value as \(e\).

\section*{Cardinality of Finite Sets}
(11.12) Axiom, Size: Provided \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}, ~ ‘ S '\right)\),
\[
\# S=(\Sigma x \mid x \in S \bullet 1)
\]

This uses: \(\quad \#_{-}: \boldsymbol{s e t} t \rightarrow \mathbb{N}\)

Note: • (\(\Sigma x \mid x \in S \bullet 1)\) is defined if and only if \(S\) is finite.
- \# \(\{n: \mathbb{N} \mid\) true \(\cdot n\}\) is undefined!
- "\# \(\mathbb{N}^{\prime}\) is a type error! —because \(\mathbb{N}\) : Type
- Types are not sets - like in Haskell:
```

Integer :: *
Data.Set.Set Integer :: *

```

The Axioms of Set Theory - Overview
(11.2) Provided \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}\right.\), ' \(e_{0}, \ldots, e_{n-1}\) '),
\[
\left\{e_{0}, \ldots, e_{n-1}\right\}=\left\{x \mid x=e_{0} \vee \cdots \vee x=e_{n-1} \bullet x\right\}
\]
(11.3) Axiom, Set membership: Provided \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}\right.\), ' \(F\) '),
\[
F \in\{x \mid R \bullet E\} \equiv(\exists x \mid R \bullet E=F)
\]
(11.2f) Empty Set: \(v \in\} \equiv\) false

Axiom, Extensionality: Provided \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}, \quad\right.\) ' \(S, T^{\prime}\)),
\[
\begin{equation*}
S=T \equiv(\forall x \bullet x \in S \equiv x \in T) \tag{11.4}
\end{equation*}
\]
(11.13T)Axiom, Subset: Provided \(\neg \operatorname{occurs('~} x\) ', 'S, \(T^{\prime}\)),
\[
S \subseteq T \equiv(\forall x \bullet x \in S \Rightarrow x \in T)
\]
(11.14) Axiom, Proper subset:
\[
S \subset T \equiv S \subseteq T \wedge S \neq T
\]
\[
\text { (11.20) Axiom, Union: } \quad v \in S \cup T \equiv v \in S \vee v \in T
\]
\[
\text { (11.21) Axiom, Intersection: } \quad v \in S \cap T \equiv v \in S \wedge v \in T
\]
\[
\text { (11.22) Axiom, Set difference: } \quad v \in S-T \equiv v \in S \wedge v \notin T
\]
\[
\text { (11.23) Axiom, Power set: } \quad v \in \mathbb{P} S \equiv v \subseteq S
\]

\section*{Set Comprehension}

Set comprehension examples: \(\quad\{i: \mathbb{N} \mid i<4 \cdot 2 \cdot i+1\}=\{1,3,5,7\}\)
\(\{x: \mathbb{Z} \mid 1 \leq x<5 \cdot x \cdot x\}=\{1,4,9,16\}\)
\[
\{i: \mathbb{Z} \mid 5 \leq i<8 \bullet i \triangleleft i \triangleleft \epsilon\}=\{(5 \triangleleft 5 \triangleleft \epsilon),(6 \triangleleft 6 \triangleleft \epsilon),(7 \triangleleft 7 \triangleleft \epsilon)\}
\]
(11.1) Set comprehension general shape: \(\{x: t \mid R \bullet E\}\)
- This set comprehension binds variable \(x\) in \(R\) and \(E\) !

Evaluated in state \(s\), this denotes the set containing the values of \(E\) evaluated in those states resulting from \(s\) by changing the binding of \(x\) to those values from type \(t\) that satisfy \(R\).
Note: The braces " \(\{\ldots\}\) " are only used for set notation!
Abbreviation for special case: \(\quad\{x \mid R\}=\{x \mid R \bullet x\}\)
(11.2) Provided \(\rightarrow\) occurs (' \(x^{\prime}\) ', ' \(e_{0}, \ldots, e_{n-1}\) '),
\[
\left\{e_{0}, \ldots, e_{n-1}\right\}=\left\{x \mid x=e_{0} \vee \cdots \vee x=e_{n-1} \bullet x\right\}
\]

Note: This is covered by "Reflexivity of \(=\) " in CalcСНеск.

\section*{Set Membership}
(11.3) Axiom, Set membership: Provided \(\neg\) occurs (\(\left.{ }^{\prime} x^{\prime}, ~ ' ~ F ~ ' ~\right), ~\)
\[
F \in\{x \mid R \bullet E\} \quad \equiv \quad(\exists x \mid R \bullet E=F)
\]
\(F \in\{x \mid R\}\)
\(=\langle\) Expanding abbreviation \(\rangle\)
\(F \in\{x \mid R \bullet x\}\)
\(=\left\langle(11.3)\right.\) Axiom, Set membership - provided \(\left.\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime},{ }^{\prime} F^{\prime}\right)\right\rangle\)
\((\exists x \mid R \bullet x=F)\)
\(=\langle\) (9.19) Trading for \(\exists\rangle\)
\((\exists x \mid x=F \bullet R)\)
\(=\left\langle\right.\) (8.14) One-point rule - provided \(\left.\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime},{ }^{\prime}{ }^{\prime} F^{\prime}\right)\right\rangle\)
\(R[x:=F]\)
This proves: Simple set compr. membership: Prov. \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime},{ }^{\prime} F^{\prime}\right.\) '),
\[
F \in\{x \mid R\} \equiv R[x:=F]
\]

\section*{Set Equality and Inclusion}

Axiom, Extensionality: Provided \(\neg \operatorname{occurs('~} x\) ', 'S, \(T^{\prime}\)),
\[
\begin{equation*}
S=T \equiv(\forall x \bullet x \in S \equiv x \in T) \tag{11.4}
\end{equation*}
\]
(11.13T)Axiom, Subset: Provided \(\neg \operatorname{occurs('~} x\) ', 'S, \(T^{\prime}\)),
\[
S \subseteq T \equiv(\forall x \bullet x \in S \Rightarrow x \in T)
\]
(11.11b) Metatheorem Extensionality:

Let \(S\) and \(T\) be set expressions and \(v\) be a variable.
Then \(S=T\) is a theorem iff \(v \in S \equiv v \in T\) is a theorem. - Using "Set extensionality"

\section*{(11.13m) Metatheorem Subset:}

Let \(S\) and \(T\) be set expressions and \(v\) be a variable. - Using "Set inclusion"
Then \(S \subseteq T\) is a theorem iff \(v \in S \Rightarrow v \in T\) is a theorem.
Extensionality (11.11b) and Subset (11.13m) will, by LADM, mostly be used as the following inference rules:

Using Set Extensionality — LADM-Style

Extensionality (11.11b) inference rule: \(\quad \frac{v \in S \equiv v \in T}{S=T}\)
Ex. 8.2(a) Prove: \(\{E, E\}=\{E\} \quad\) for each expression \(E\).
By extensionality (11.11b):
Proving \(v \in\{E, E\} \equiv v \in\{E\}\) :
\[
v \in\{E, E\}
\]
\(\equiv\langle\) Set enumerations (11.2) \(\rangle\)
\[
v \in\{x \quad \mid x=E \vee x=E\}
\]
\(\equiv\langle\) Idempotency of \(\vee(3.26)\rangle\)
\[
v \in\{x \mid x=E\}
\]
\(\equiv\langle\) Set enumerations (11.2) \(\rangle\)
\[
v \in\{E\}
\]
```

            Using Set Extensionality - More CalcCheck-Style
    Axiom (11.4) "Set extensionality": }S=T\equiv(\forallx\bulletx\inS\equivx\inT
— provided \negoccurs(' }x\mathrm{ ', 'S, T')
Example (8.2a): {E,E}={E}
Proof:
Using "Set extensionality":
Subproof for``vv \bullet v\in{E,E} \equiv
For any `v`:
v\in{E,E}
\equiv\langleSet enumerations (11.2) \rangle
v\in{x | x = E\vee x=E }
\equiv\langle Idempotency of \vee (3.26)}
v\in{x | x = E}
\equiv\langleSet enumerations (11.2)}
v\in{E}

```

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-06
Typed Set Theory, Introduction to Relations

\section*{Plan for Today}
- Continuing with LADM chapter 11: Set Theory - emphasizing types
- Starting with Relations (see also LADM chapter 14)

Coming up (interleaved):
- Explicit Induction Principles
- Induction (LADM Chapter 12)
- More Program Correctness (LADM chapter 10, section 12.6)
- Relations (LADM Chapter 14)
- Sequences (LADM Chapter 13) will be further developed mainly in Exercises, Assignments, ...

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-06

\section*{Part 0: Set Theory}

The Axioms of Set Theory - Overview
(11.2) Provided \(\neg\) occurs (' \(x^{\prime}\) ', ' \(e_{0}, \ldots, e_{n-1}\) '),
\[
\left\{e_{0}, \ldots, e_{n-1}\right\}=\left\{x \mid x=e_{0} \vee \cdots \vee x=e_{n-1} \bullet x\right\}
\]
(11.3) Axiom, Set membership: Provided \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime},{ }^{\prime} F^{\prime}\right.\)),
\[
F \in\{x \mid R \bullet E\} \equiv(\exists x \mid R \bullet E=F)
\]
(11.2f) Empty Set: \(v \in\} \equiv\) false
(11.4) Axiom, Extensionality: Provided \(\neg\) occurs (\({ }^{\prime} x^{\prime}, ~ ' S, T^{\prime}\)),
\[
S=T \equiv(\forall x \bullet x \in S \equiv x \in T)
\]
(11.13T)Axiom, Subset: Provided \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}, ‘ ऽ, T^{\prime}\right)\),
\[
S \subseteq T \equiv(\forall x \bullet x \in S \Rightarrow x \in T)
\]
(11.14) Axiom, Proper subset:
\[
S \subset T \equiv S \subseteq T \wedge S \neq T
\]
(11.20) Axiom, Union: \(\quad v \in S \cup T \equiv v \in S \vee v \in T\)
(11.21) Axiom, Intersection: \(\quad v \in S \cap T \equiv v \in S \wedge v \in T\)
(11.22) Axiom, Set difference: \(\quad v \in S-T \equiv v \in S \wedge v \notin T\)
(11.23) Axiom, Power set: \(\quad v \in \mathbb{P} S \equiv v \subseteq S\)

\section*{Set Equality and Inclusion}
（11．4）Axiom，Extensionality：Provided \(\neg\) occurs（ \(\left(x\right.\)＇，＇\(S, T^{\prime}\) ），
\[
S=T \equiv(\forall x \bullet x \in S \equiv x \in T)
\]
（11．13T）Axiom，Subset：Provided \(\rightarrow\) occurs（ \(\left(x^{\prime}, ‘\right.\) ， \(\mathcal{S}, T^{\prime}\) ），
\[
S \subseteq T \equiv(\forall x \bullet x \in S \Rightarrow x \in T)
\]

\section*{（11．11b）Metatheorem Extensionality：}

Let \(S\) and \(T\) be set expressions and \(v\) be a variable．
Then \(S=T\) is a theorem iff \(v \in S \equiv v \in T\) is a theorem．－Using＂Set extensionality＂

\section*{（11．13m）Metatheorem Subset：}

Let \(S\) and \(T\) be set expressions and \(v\) be a variable．－Using＂Set inclusion＂
Then \(S \subseteq T\) is a theorem iff \(v \in S \Rightarrow v \in T\) is a theorem．
Extensionality（11．11b）and Subset（11．13m）will，by LADM， mostly be used as the following inference rules：
\[
\begin{aligned}
v \in S & \equiv v \in T \\
\hline S & =T
\end{aligned}
\]
\[
\begin{aligned}
& v \in S \Rightarrow v \in T \\
& \hline S \subseteq T
\end{aligned}
\]

\section*{LADM Set Equality via Equivalence}

Axiom，Extensionality：Provided \(\neg\) occurs（ \({ }^{\prime} x^{\prime}, ‘\)＇,\(T^{\prime}\) ），
\[
\begin{equation*}
S=T \equiv(\forall x \bullet x \in S \equiv x \in T) \tag{11.4}
\end{equation*}
\]
（11．9）＂Simple set comprehension equality＂：\(\{x \mid Q\}=\{x \mid R\} \equiv(\forall x \bullet Q \equiv R)\)
（11．10）Metatheorem set comprehension equality：
\[
\{x \mid Q\}=\{x \mid R\} \text { is valid } \quad \text { iff } \quad Q \equiv R \text { is valid. }
\]
（11．11）Methods for proving set equality \(S=T\) ：
（a）Use Leibniz directly
（b）Use axiom Extensionality（11．4）and prove \(\quad v \in S \equiv v \in T\)
（c）Prove \(Q \equiv R\) and conclude \(\{x \mid Q\}=\{x \mid R\}\) via（11．9）／（11．10）
Note：
－In the informal setting，confusion about variable binding is easy！
－Using＂Set extensionality＂or Using（11．9）
followed by For any ．．．make variable binding clear．

\section*{Using Set Extensionality－CalcСнеск Example}

Axiom（11．4）＂Set extensionality＂：\(\quad S=T \equiv(\forall x \bullet x \in S \equiv x \in T)\) — provided \(\neg\) occurs（ \({ }^{\prime} x^{\prime}, ‘ S, T^{\prime}\) ）

Theorem（11．26）＂Symmetry of \(\cup\)＂：\(S \cup T=T \cup S\)
Proof：
Using＂Set extensionality＂：
Subproof for \(\forall e \bullet e \in S \cup T \equiv e \in T \cup S\) ：
For any＇\(e\) ：
\(e \in S \cup T\)
\(\equiv\) 〈＂Union＂〉
\(e \in S \quad v e \in T\)
\(\equiv\langle\)＂Symmetry of \(\vee\)＂\(\rangle\)
\(e \in T \vee e \in S\)
\(\equiv\) 〈＂Union＂\(\rangle\)
\(e \in T \cup S\)

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

\section*{Wolfram Kahl}

2023-10-06

\section*{Part 1: Typed Set Theory}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{4 Anything Wrong?} \\
\hline Let the set \(Q\) be defin\&d by the following: & \(\epsilon_{-}, \notin-\quad: A \rightarrow \operatorname{set} A \rightarrow \mathbb{B}\) \\
\hline (R) \(\quad Q=\{S \mid S \notin S\}\) & "The mother of all type errors" \\
\hline \multicolumn{2}{|l|}{Then:} \\
\hline \(Q \in Q\) & \(\Longrightarrow\) birth of type theory... \\
\hline \(\equiv\langle(\mathrm{R})\rangle\) & \\
\hline \(Q \in\{S\) | \(S \notin S\}\) & \\
\hline \(\equiv\langle(11.3)\) Membership in set comprehension \(\rangle\) & \\
\hline (\(\exists\) S | S \(\ddagger\) - Q = S & \\
\hline \(\equiv\langle\) (9.19) Trading for \(\exists\), (8.14) One-point rule \(\rangle\) & \\
\hline \(Q \notin Q\) & \\
\hline \(\equiv\langle(11.0)\) Def. \(\notin\rangle\) & \\
\hline \(\neg(Q \in Q)\) & \\
\hline
\end{tabular}

With (3.15) \(p \equiv \neg p \equiv\) false, this proves:
(\(\mathrm{R}^{\prime}\)) false

> —"Russell's paradox"

\section*{The universe}

A theory of sets concerns sets constructed from some collection of elements. There is a theory of sets of integers, a theory of sets of characters, a theory of sets of sets of integers, and so forth. This collection of elements is called the domain of discourse or the universe of values; it is denoted by \(\mathbf{U}\). The universe can be thought of as the type of every set variable in the theory. For example, if the universe is \(\operatorname{set}(\mathbb{Z})\), then \(v: \operatorname{set}(\mathbb{Z})\).
When several set theories are being used at the same time, there is a different universe for each. The name \(\mathbf{U}\) is then overloaded, and we have to distinguish which universe is intended in each case. This overloading is similar to using the constant 1 as a denotation of an integer, a real, the identity matrix, and even (in some texts, alas) the boolean true.

Overloading via type polymorphism: \(\quad\}, U\) : set \(t\)
\[
\begin{array}{ll}
(\}: \text { set } \mathbb{B})=\{ \} & (U: \text { set } \mathbb{B})=\{\text { false }, \text { true }\} \\
(\}: \text { set } \mathbb{N})=\{ \} & (U: \boldsymbol{s e t} \mathbb{N})=\{k: \mathbb{N} \mid \text { true }\}
\end{array}
\]

\section*{"The Universe" and Complement in LADM}
the domain of discourse or the universe of values; it is denoted by \(\mathbf{U}\). The universe can be thought of as the type of every set variable in the theory. For example, if the universe is \(\operatorname{set}(\mathbb{Z})\), then \(v: \operatorname{set}(\mathbb{Z})\).

\section*{Complement}

The complement of \(S\), written \(\sim S,{ }^{4}\) is the set of elements that are not in \(S\) (but are in the universe). In the Venn diagram in this paragraph, we have shown set \(S\) and universe U. Th non-filled area represents \(\sim S\).
(11.17) Axiom, Complement: \(v \in \sim S \equiv v \in \mathbf{U} \wedge v \notin S\)

For example, for \(\mathbf{U}=\{0,1,2,3,4,5\}\), we have
\[
\begin{aligned}
& \sim\{3,5\}=\{0,1,2,4\}, \\
& \sim \dot{\mathbf{U}}=\emptyset, \quad \sim \emptyset=\mathbf{U} .
\end{aligned}
\]

We can easily prove
(11.18) \(v \in \sim S \equiv v \notin S \quad(\) for \(v\) in \(\mathbf{U})\).

\section*{"The" Universe}

Frequently, a "domain of discourse" is assumed, that is, a set of "all objects under consideration".

This is often called a "universe". Special notation: \(U\) - |universe

Declaration: \(U\) : set \(t\)
Axiom "Universal set": \(x \in U \quad\) _remember: _ \(\epsilon_{-}: t \rightarrow \boldsymbol{s e t} t \rightarrow \mathbb{B}\)
Theorem: \((U: \operatorname{set} t)=\{x: t \bullet x\}\)
Types are not sets! - \((U\) : set \(t)\) is the set containing all values of type \(t\).

We define a nicer notation: \(\left.{ }_{\iota} t\right\lrcorner=(U: \mathbf{s e t} t)\)
"Definition of \({ }_{\llcorner-}\),": \(\forall x: t \bullet x \in\llcorner\),
Example: \(\quad \mathbb{B}\lrcorner=\{\) false, true \(\}\)

\section*{Set Complement}

\section*{(11.17) Axiom, Complement: \\ \[
v \in \sim S \equiv v \in U \wedge v \notin S
\]}

Complement can be expressed via difference: \(\sim S=U-S\)
Complement \(\sim\) always implicitly depends on the universe \(U\) !
Example: \(\sim\{\) true \(\}=, \mathbb{B},-\{\) true \(\}=\{\) false, true \(\}-\{\) true \(\}=\{\) false \(\}\)
LADM: "We can easily prove
\[
\begin{equation*}
v \in \sim S \equiv v \notin S \quad(\text { for } v \text { in } U) . " \tag{11.18}
\end{equation*}
\]

Consider \(\quad \mathbb{Z}_{+}:\)set \(\mathbb{Z}\) defined as \(\mathbb{Z}_{+}=\{x: \mathbb{Z} \mid \operatorname{pos} x\}\) :
- Let \(S\) be a subset of \(\mathbb{Z}_{+}\). For example: \(S=\{2,3,7\}\)
- Consider the complement \(\sim S\)
- Is \(\quad-5 \in \sim S \quad\) true or false?

\section*{Power Set}
（11．23）Axiom，Power set：\(v \in \mathbb{P} S \equiv v \subseteq S\)
Declaration：\(\quad \mathbb{P}_{\mathbf{\prime}}: \operatorname{set} t \rightarrow \boldsymbol{s e t}(\boldsymbol{s e t} t)\)
\[
\text { — remember: set : Type } \rightarrow \text { Type }
\]
\(\mathbb{P}\{0,1\}=\{\{ \},\{0\},\{1\},\{0,1\}\}\)
－For a type \(t\) ，the type of subsets of \(t\) is set \(t\)
－According to the textbook，type annotations \(v: t\) ，in particular in variable declarations in quantifications and in set comprehensions，may only use types \(t\) ．
－（The specification notation \(\mathbf{Z}\) allows the use of sets in variable decl／rations — this makes \(\forall\) and \(\exists\) rules more complicated．）
If you find a place where I accidentally still follow Z in writing＂ \(\mathbb{P} t\)＂for a type \(t\) （instead of writing＂set \(t\)＂or＂ \(\mathbb{P}_{\llcorner } t\), ＂），please point it out to me．

\section*{Calculate！}

The size of a finite set \(S\) ，that is，the number of its elements， is written \(\# S\)
－\(\# \stackrel{B}{ }\) 」
－\(\#\{S: \boldsymbol{s e t} \mathbb{B} \mid\) true \(\in S \bullet S\}\)
－\(\#\{T\) ：set \(\boldsymbol{\operatorname { s e t }} \mathbb{B} \mid\{ \} \notin T \bullet T\}\)
－\(\#\{S: \boldsymbol{\operatorname { s e t }} \mathbb{N} \mid(\forall x: \mathbb{N} \mid x \in S \bullet x<n) \wedge \# S=k \bullet S\}\)
－ \(\mathbb{B}_{\lrcorner}=\{\)false, true \(\}\)
－\(S \in_{\llcorner }\)set \(\mathbb{B} 」 \equiv S \subseteq{ }_{\llcorner } \mathbb{B}\) 」
－\(_{\text {L }}\) set \(\mathbb{B}{ }_{\lrcorner}=\{\{ \},\{\)false \(\},\{\)true \(\},\{\)false，, true \(\}\}\)

\section*{Metatheorem（11．25）：Sets \(\Longleftrightarrow\) Propositions}

\section*{Let}
－\(P, Q, R, \ldots\) be set variables
－\(p, q, r, \ldots\) be propositional variables
－\(E, F\) be expressions built from these set variables and \(\cup, \cap, \sim, U,\{ \}\) ．

Define the Boolean expressions \(E_{p}\) and \(F_{p}\) by replacing
\begin{tabular}{ll|lll}
\(P, Q, R, \ldots\) & with \(p, q, r, \ldots\) & \(\sim\) & with \(\neg\) \\
\(\cup\) & with \(\vee\) & & \\
\(\cap\) & with \(\wedge\) & with true \\
\(\cap\) & \(\}\) & with false
\end{tabular}

Then：
－\(E=F\) is valid iff \(E_{p} \equiv F_{p}\) is valid．
－\(E \subseteq F\) is valid iff \(E_{p} \Rightarrow F_{p}\) is valid．
－\(E=U\) is valid iff \(E_{p}\) is valid．
\[
\text { Metatheorem (11.25): Sets } \Longleftrightarrow \text { Propositions — Examples }
\]

Let \(E, F\) be expressions built from set variables \(P, Q, R, \ldots\)
and \(\cup, \cap, \sim, U,\{ \}\).
Define the Boolean expressions \(E_{p}\) and \(F_{p}\) by replacing
\begin{tabular}{ll|ll}
\(P, Q, R, \ldots\) & with \(p, q, r, \ldots\) & \(\sim\) & with \(\neg\) \\
\(\cup\) & with \(\vee\) & \begin{tabular}{l}
\(U\) \\
with \\
true
\end{tabular} \\
\(\cap\) & with \(\wedge\) & \(\}\) with false
\end{tabular}

Then:
- \(E=F\) is valid iff \(E_{p} \equiv F_{p}\) is valid.
- \(E \subseteq F\) is valid iff \(E_{p} \Rightarrow F_{p}\) is valid.
- \(E=U\) is valid iff \(E_{p}\) is valid.

Free theorems!
\[
\begin{aligned}
& P \cap(P \cup Q)=P \\
& P \cap(Q \cup R)=(P \cap Q) \cup(P \cap R) \\
& P \cup(Q \cap R) \subseteq P \cup Q \\
& \quad \vdots
\end{aligned}
\]

\section*{Tuples and Tuple Types in CalcСheck}

Tuples can have arbitrary "arity" at least 2.
Example: A triple with type: \(\langle 2\), true, "Hello" \(\rangle:\langle\mathbb{Z}, \mathbb{B}\), String \(\rangle\)
Example: A seven-tuple: \(\langle 3\), true \(, 5 \triangleleft \epsilon,\langle 5\), false \(\rangle, "\) Hello", \(\{2,8\},\{42 \triangleleft \epsilon\}\rangle\)
The type of this: \(\quad\langle\mathbb{Z}, \mathbb{B}, \operatorname{Seq} \mathbb{Z},\langle\mathbb{Z}, \mathbb{B}\rangle\), String, set \(\mathbb{Z}\), set \((\operatorname{Seq} \mathbb{Z})\rangle\)
- Tuples are enclosed in \(\langle\ldots\rangle\) as in LADM. (type " \(\backslash<\) " and " \(\backslash>\) ")
- Tuple types are enclosed in \(\langle\ldots\rangle\). (type " \(\backslash<\) !" and " \(\backslash>\) !")
- Otherwise, tuples and tuple types "work" as in Haskell.
- In particular, there is no implicit nesting:
\(\langle\langle A, B\rangle, C\rangle\) and \(\langle A, B, C\rangle\) and \(\langle A,\langle B, C\rangle\rangle\) are three different types!

\section*{Pairs and Cartesian Products}

If \(b\) and \(c\) are expressions, then \(\langle b, c\rangle\) is their 2-tuple or ordered pair
— "ordered" means that there is a first constituent (b) and a second constituent (c).
(14.2) Axiom, Pair equality:
(14.3) Axiom, Cross product:
(14.4) Membership:

Cartesian product of types: Two-tuple types:
Axiom, Pair projections: \(\quad f_{s t}:\left\langle t_{1}, t_{2}\right\rangle \rightarrow t_{1}\)
\[
\text { snd }:\left\langle t_{1}, t_{2}\right\rangle \rightarrow t_{2}
\]
\[
\langle b, c\rangle=\left\langle b^{\prime}, c^{\prime}\right\rangle \equiv b=b^{\prime} \wedge c=c^{\prime}
\]
\[
S \times T=\{b, c \quad \mid b \in S \wedge c \in T \bullet\langle b, c\rangle\}
\]
\[
\langle b, c\rangle \in S \times T \equiv b \in S \wedge c \in T
\]
\[
b: t_{1} ; c: t_{2} \quad \text { iff } \quad\langle b, c\rangle:\left\langle t_{1}, t_{2}\right\rangle
\]
\[
f_{s t}\langle b, c\rangle=b
\]
snd \(\langle b, c\rangle=c\)

Pair equality: For \(p, q:\left\langle t_{1}, t_{2}\right\rangle\),
\[
p=q \equiv \text { fst } p=\text { fst } q \wedge \text { snd } p=\text { snd } q
\]

\section*{Some Cross Product Theorems}
(14.5) \(\langle x, y\rangle \in S \times T \equiv\langle y, x\rangle \in T \times S\)
(14.6) \(S=\{ \} \Rightarrow S \times T=T \times S=\{ \}\)
(14.7) \(S \times T=T \times S \equiv S=\{ \} \vee T=\{ \} \vee S=T\)
(14.8) \(\quad\) Distributivity of \(\times\) over \(\cup: S \times(T \cup U)=(S \times T) \cup(S \times U)\)
\((S \cup T) \times U=(S \times U) \cup(T \times U)\)
(14.9) Distributivity of \(\times\) over \(\cap: \quad S \times(T \cap U)=(S \times T) \cap(S \times U)\)
\((S \cap T) \times U=(S \times U) \cap(T \times U)\)
(14.10) Distributivity of \(\times\) over -: \(\quad S \times(T-U)=(S \times T)-(S \times U)\)
\((S-T) \times U=(S \times U)-(T \times U)\)
(14.12) Monotonicity: \(S \subseteq S^{\prime} \wedge T \subseteq T^{\prime} \Rightarrow S \times T \subseteq S^{\prime} \times T^{\prime}\)

\section*{Some Spice...}

Converting between "different ways to take two arguments":
\[
\begin{aligned}
& \text { curry } \quad: \quad(\langle A, B\rangle \rightarrow C) \rightarrow(A \rightarrow B \rightarrow C) \\
& \text { curryf } x y=f\langle x, y\rangle \\
& \text { uncurry : } \quad(A \rightarrow B \rightarrow C) \rightarrow(\langle A, B\rangle \rightarrow C) \\
& \text { uncurry } g\langle x, y\rangle=g x y
\end{aligned}
\]

These functions correspond to the "Shunting" law:
(3.65)

Shunting:
\[
p \wedge q \Rightarrow r \equiv p \Rightarrow(q \Rightarrow r)
\]

The "currying" concept is named for Haskell Brooks Curry (1900-1982), but goes back to Moses Ilyich Schönfinkel (1889-1942) and Gottlob Frege (1848-1925).

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-16
Relations in Set Theory

\section*{Plan for Today}
- A Set Theory Exercise: Relative Pseudocomplement
- Correctness Variations: Ghost Variables
- Relations

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-16

\section*{Part 1: A Set Theory Exercise: Relative Pseudocomplement}
Let \(c\) be defined by: \(\quad x \leq c \quad \equiv \quad x \leq 5\)

What do you know about \(c\) ? Why? (Prove it!)
Note: \(x\) is implicitly univerally quantified!
Proving \(5 \leq c\) :
\(5 \leq c\)
\(\equiv\langle\) The given equivalence, with \(x:=5\rangle\)
\(5 \leq 5\) - This is Reflexivity of \(\leq\)
Proving \(c \leq 5\) :
\(c \leq 5\)
\(\equiv\langle\) Given equivalence, with \(x:=c\rangle\)
\(c \leq c \quad\) - This is Reflexivity of \(\leq\)
With antisymmetry of \(\leq\) (that is, \(a \leq b \wedge b \leq a \Rightarrow a=b\)), we obtain \(c=5\) - An instance of: (15.47) Indirect equality: \(a=b \equiv(\forall z \bullet z \leq a \equiv z \leq b)\)

\section*{Relative Pseudocomplement}

Let \(A, B\) ：set \(t\) be two sets of the same type．
The relative pseudocomplement \(A \Leftrightarrow B\) of \(A\) with respect to \(B\) is defined by：
\[
X \subseteq(A \Rightarrow B) \quad \equiv \quad X \cap A \subseteq B
\]

Calculate the relative pseudocomplement \(A \Rightarrow B\) as a set expression not using \(\Rightarrow\) ！That is：
\[
\text { Calculate } \quad A \Leftrightarrow B=\text { ? }
\]

Using set extensionality，that is：
\[
\text { Calculate } \quad x \in A \Rightarrow B \quad \equiv \quad x \in \text { ? }
\]

Characterisation of relative pseudocomplement of sets：\(X \subseteq(A \Rightarrow B) \equiv X \cap A \subseteq B\) \(x \in A \Rightarrow B\)
\(\equiv\langle e \in S \equiv\{e\} \subseteq S \quad-\quad\) Exercise！\(\rangle\)
\[
\{x\} \subseteq A \Rightarrow B
\]
\(\equiv\langle\) Def．\(\Rightarrow\) ，with \(\mathrm{X}:=\{x\}\rangle\)
\(\{x\} \cap A \subseteq B\)
\(\equiv\langle(11.13)\) Subset \(\rangle\)
\((\forall y \mid y \in\{x\} \cap A \bullet y \in B)\)

\section*{Theorem：\(\quad A \Rightarrow B=\sim A \cup B\)}
\(\equiv\langle(11.21)\) Intersection 〉
\((\forall y \mid y \in\{x\} \wedge y \in A \bullet y \in B)\)
\(\equiv\langle y \in\{x\} \equiv y=x \quad-\quad\) Exercise！\(\rangle\)
\((\forall y \mid y=x \wedge y \in A \bullet y \in B)\)
\(\equiv\langle(9.4 \mathrm{~b})\) Trading for \(\forall\) ，Def．\(\notin\rangle\)
\((\forall y \mid y=x \cdot y \notin A \vee y \in B)\)
\(\equiv\langle(8.14)\) One－point rule \(\rangle\)
\(x \notin A \vee x \in B\)
\(\equiv\) 〈（11．17）Set complement，（11．20）Union 〉
\(x \in \sim A \cup B\)

Characterisation of relative pseudocomplement of sets：\(X \subseteq A \Rightarrow B \quad X \cap A \subseteq B\)
Theorem＂Pseudocomplement via \(\cup\)＂：\(A \Rightarrow B=\sim A \cup B\)

\section*{Calculation：}
\(x \in A \Rightarrow B\)
\(\equiv\langle\) Pseudocomplement via \(\cup\rangle\)
\(x \in \sim A \cup B\)
\(\equiv\langle\)（11．20）Union，（11．17）Set complement \(\rangle\)
\(\neg(x \in A) \vee x \in B\)
\(\equiv\langle(3.59)\) Material implication \(\rangle\)
\(x \in A \Rightarrow x \in B\)
Corollary＂Membership in pseudocomplement＂：
\(x \in A \Rightarrow B \equiv x \in A \Rightarrow x \in B\)

Easy to see：On sets，relative pseudocomplement wrt．\｛\} is complement:
\(A \Rightarrow\}=\sim A\)

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University，Fall 2023

Wolfram Kahl

2023－10－16

\section*{Part 2：Correctness Variations：Ghost Variables}

\section*{Goal of Assignment 1．3：Correctness of a Program Containing a while－Loop}

Theorem＂Correctness of｀elem＂：Proof：
```

true

# xs:= xso i

        b:= false;
        while xs = \epsilon do
            if head xs = x
            then b:= true
                else skip
                fi ;
                xs := tail xs
        od
    }
    (b\equivx\inx\mp@subsup{s}{0}{}) ...... Parentheses!
    ```
 \(\Rightarrow \mathrm{true} \mathrm{xs}:=x s_{0}\) i
 \(b:=\) false
 J 〈"Initialisation for `elem" \({ }^{\prime}\) 〉
 (\(\exists\) us • (us \(\left.-\mathrm{xs}=x s_{0}\right) \wedge(b \equiv x \in\) us \(\left.)\right)\)
 \(\Rightarrow\) E while \(\mathrm{xs} \neq \epsilon\) do
 if head \(\mathrm{xs}=x\)
 then \(b:=\) true
 else skip
 fi \(i\)
 xs : = tail xs
 od
] 〈"While" with "Invariant for `elem" >
 \(\neg(\mathrm{xs} \neq \epsilon) \wedge\left(\exists \mathrm{us} \cdot\left(\mathrm{us}-\mathrm{xs}=x s_{0}\right) \wedge(b \equiv x \in \mathrm{us})\right)\)
 \(\Rightarrow \quad\) 〈"Postcondition for `elem" \({ }^{\prime}\) 〉
 \(\left(b \equiv x \in x s_{0}\right)\)

Invariant involves quantifier：Good for practice with quantifier reasoning．．．
Easier to Prove than Assignment 1．3：With Ghost Variable－Ex6．1
Theorem＂Correctness of elem＂
```

        true
    # [ xs:= xso;
    ```
 us : = \(\epsilon_{\text {i }} \quad\)....... Ghost variable: Does not influence program flow or result
 \(b:=\) false ;
 Invariant: (us \(\left.\sim \mathrm{xs}=\mathrm{xs} \mathrm{s}_{0}\right) \wedge(\mathrm{b} \equiv \mathrm{x} \in \mathrm{us})\)
 while xs \(\neq \epsilon\) do
 if head \(\mathrm{xs}=x\) then \(b:=\) true else skip \(\mathrm{fi}_{i}\)
 us : = us \(\triangleright\) head \(x s\); Ghost assignment
 xs : = tail xs
 od
 〕
 (\(b \equiv x \in x s_{0}\)) Parentheses needed because of precedences!
＂Ghost variables＂can make proofs easier：They can be used to keep track of values that are important for understanding the logic of the program．
With language support for＂ghost variables＂，they are compiled away，to avoid run－time cost．

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-16

\section*{Part 3: Introduction to Relations}

Predicates and Tuple Types — Relations are Tuple Sets — Think Database Tables!
called : \(P \rightarrow P \rightarrow \mathbb{B}\)
(uncurry_called_) : \(\langle P, P\rangle \rightarrow \mathbb{B}\) is the characteristic function of the set
\(R_{\text {called }}\) : set \(\langle P, P\rangle\)
\(R_{\text {called }}=\{p, q: P \mid p\) called \(q \bullet\langle p, q\rangle\}\)
\(R_{\text {called }}\) is a (binary) relation.
\(D \quad: \quad P \rightarrow C i t y \rightarrow C i t y \rightarrow \mathbb{B}\)
\(D p a b \equiv p\) drove from \(a\) to \(b\)
\(R_{D}: \operatorname{set}\langle P\), City, City \(\rangle\)
\(R_{D}=\{p: P ; a, b:\) City | Dpab \(\bullet\langle p, a, b\rangle\}\)
\(R_{D}\) is a (ternary) relation.

\section*{Relations are Everywhere in Specification and Reasoning in CS}
- Operations are easily defined and understood via set theory
- These operations satisfy many algebraic properties
- Formalisation using relation-algebraic operations needs no quantifiers
- Similar to how matrix operations do away with quantifications and indexed variables \(a_{i j}\) in linear algebra
- Like linear algebra, relation algebra
- raises the level of abstraction
- makes reasoning easier by reducing necessity for quantification
- Starting with lots of quantification over elements, while proving properties via set theory.
- Moving towards abstract relation algebra (avoiding any mention of and quantification over elements)

\section*{Relations}
－LADM：A relation on \(B_{1} \times \cdots \times B_{n}\) is a subset of \(B_{1} \times \cdots \times B_{n}\)
\[
\text { - where } B_{1}, \ldots, B_{n} \text { are sets }
\]
－CALCCHECK：Normally：A relation on \(\left\langle t_{1}, \ldots, t_{n}\right\rangle\) is a subset of \({ }_{2}\left\langle t_{1}, \ldots, t_{n}\right\rangle\) ， that is，an item of type set \(\left\langle t_{1}, \ldots, t_{n}\right\rangle\)
－where \(t_{1}, \ldots, t_{n}\) are types
－A relation on the tuple（Cartesian product）type \(\left\langle t_{1}, \ldots, t_{n}\right\rangle\) is an \(n\)－ary relation．
＂Tables＂in relational databases are \(n\)－ary relations．
－A relation on the pair（Cartesian product）type \(\left\langle t_{1}, t_{2}\right\rangle\) is a binary relation．
－The type of binary relations on \(\left\langle t_{1}, t_{2}\right\rangle\) is written \(t_{1} \leftrightarrow t_{2}\) ，with
\[
t_{1} \leftrightarrow t_{2}=\operatorname{set}\left\langle t_{1}, t_{2}\right\rangle \quad-\backslash \text { rel }
\]
－The set of binary relations on \(B \times C\) is written \(B \leftrightarrow C\) ，with
\[
B \leftrightarrow C=\mathbb{P}(B \times C) \quad-\backslash \operatorname{Rel}
\]

\section*{Binary Relation Types Contain Subsets of Cartesian Products}
－The type of binary relations between types \(t_{1}\) and \(t_{2}\) ：
\[
t_{1} \leftrightarrow t_{2}=\operatorname{set}\left\langle t_{1}, t_{2}\right\rangle \quad-\backslash \text { rel }
\]
－The set of binary relations between sets \(B\) and \(C\) ：
\[
B \leftrightarrow C=\mathbb{P}(B \times C) \quad-\quad \text { Rel }
\]

Note that for a type \(t\) ，the universal set \(U\) ：set \(t\)
is the set of all members of \(t\) ．
Or，（ \(U\) ： \(\boldsymbol{\operatorname { s e t }} t)\) is＂type \(t\) as a set＂．
We abbreviate：\({ }_{\llcorner } t,:=(U: \operatorname{set} t)\) ，
（\llcorner．．．\lrcorner）and have：
\[
S \in_{\llcorner } \operatorname{set} t, \equiv S \subseteq{ }_{L} t
\]

Consider \(R: t_{1} \leftrightarrow t_{2}\) and \(x: t_{1}\) and \(y: t_{2}\) ．
\[
\begin{aligned}
& R \in{ }_{\iota} \leftrightarrow t_{2}, \\
& \equiv\langle\text { Def. } \leftrightarrow\rangle \\
& R \in{ }_{\llcorner } \text {set }\left\langle t_{1}, t_{2}\right\rangle . \\
& \equiv\left\langle\text { Membership in }{ }_{\llcorner } \text {set }{ }_{-}\right\rangle \\
& R \subseteq{ }_{\mathrm{L}}\left\langle t_{1}, t_{2}\right\rangle \text {, } \\
& \equiv\langle\text { Def. set, Def. } \times \text {, Def. 」 」 }\rangle \\
& R \subseteq t_{1}, \times{ }_{\llcorner } t_{2} \\
& \equiv\langle\text { Def. } \mathbb{P}, \text { Def. } \leftrightarrow\rangle \\
& \left.R \in t_{1}\right\lrcorner \leftrightarrow t_{2},
\end{aligned}
\]

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University，Fall 2023

Wolfram Kahl

\section*{Plan for Today}
- with \(_{2}\) and with \(_{3}\)
- Relations
- Relationship notation and reasoning
- Set operations as relation operations
- Set-theoretic definition of relational operations: Converse, composition

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-18
Part 1: with \(_{2}\) and with \({ }_{3}\)

\section*{with - Overview}

САцсСнеск currently knows three kinds of "with":
- "with \(1^{\prime \prime}\) : For explicit substitutions: "Identity of + " with ' \(x:=2\) '
- ThmA with ThmB and ThmB \(B_{2}\)...
- "with \({ }_{2}\) ": If ThmA gives rise to an implication \(A_{1} \Rightarrow A_{2} \Rightarrow \ldots(L=R)\) :

Perform conditional rewriting, rigidly applying \(L \sigma \mapsto R \sigma\)
if using ThmB and \(T h m B_{2} \ldots\) to prove \(A_{1} \sigma, A_{2} \sigma, \ldots\) succeeds

\section*{Using \(h i_{1}\) :}
\(s p_{1}\)
is essentially syntactic sugar for: By \(h i_{1}\) with \(s p_{1}\) and \(s p_{2}\)
\(s p_{2}\)
- "with \({ }_{3}\) ": ThmA with ThmB
- If ThmB gives rise to an equality/equivalence \(L=R\) :

Rewrite ThmA with \(L \mapsto R\) to Thm \(A^{\prime}\), and use ThmA' for rewriting the goal.

\section*{with \(_{2}\) : Conditional Rewriting}

\section*{ThmA with ThmB and \(\operatorname{ThmB}_{2} \ldots\)}
- If Thm \(A\) gives rise to an implication \(A_{1} \Rightarrow A_{2} \Rightarrow \ldots(L=R)\), where \(F \operatorname{Var}(L)=F \operatorname{Var}\left(A_{1} \Rightarrow A_{2} \Rightarrow \ldots(L=R)\right)\) :
- Find substitution \(\sigma\) such that \(L \sigma\) matches goal
- Resolve \(A_{1} \sigma, A_{2} \sigma, \ldots\) using ThmB and ThmB \(B_{2} \ldots\)
- Rewrite goal applying \(L \sigma \mapsto R \sigma\) rigidly.
- E.g.: "Cancellation of ." with Assumption ' \(m+n \neq 0\) '
when trying to prove \((m+n) \cdot(n+2)=(m+n) \cdot 5 \cdot k\) :
- "Cancellation of " is: \(c \neq 0 \Rightarrow(c \cdot a=c \cdot b \equiv a=b)\)
- We try to use: \(c \cdot a=c \cdot b \mapsto a=b\), so \(L\) is \(c \cdot a=c \cdot b\)
- Matching L against goal produces \(\sigma=[a, b, c:=(n+2),(5 \cdot k),(m+n)]\)
- \((c \neq 0) \sigma \quad\) is \(\quad(m+n) \neq 0\)
and can be proven by "Assumption ' \(m+n \neq 0\) '"
- The goal is rewritten to \((a=b) \sigma\), that is, \((n+2)=5 \cdot k\).

\section*{Limitations of Conditional Rewriting Implementation of with \({ }_{2}\)}
- If \(T h m A\) gives rise to an implication \(A_{1} \Rightarrow A_{2} \Rightarrow \ldots(L=R)\) :
- Find substitution \(\sigma\) such that \(L \sigma\) matches goal
- Resolve \(A_{1} \sigma, A_{2} \sigma, \ldots\) using ThmB and ThmB \(B_{2}\).
\(\operatorname{Thm} A\) with \(\operatorname{ThmB}\) and \(\operatorname{ThmB}_{2} \ldots\)
- Rewrite goal applying \(L \sigma \mapsto R \sigma\) rigidly.
- E.g.: "Transitivity of \(\subseteq\) " with Assumptions ` \(Q \cap S \subseteq Q\) and ` \(Q \subseteq R\) '
when trying to prove ` \(Q \cap S \subseteq R\) '
- "Transitivity of \(\subseteq\) " is: \(Q \subseteq R \Rightarrow R \subseteq S \Rightarrow Q \subseteq S\)
- For application, a fresh renaming is used: \(q \subseteq r \Rightarrow r \subseteq s \Rightarrow q \subseteq s\)
- We try to use: \(q \subseteq s \mapsto\) true, so \(L\) is: \(q \subseteq s\)
- Matching \(L\) against goal produces \(\sigma=[q, s:=Q \cap S, R]\)
- \((q \subseteq r) \sigma \quad\) is \(\quad(Q \cap S \subseteq r)\), and \(\quad(r \subseteq s) \sigma \quad\) is \(\quad r \subseteq R\)
- which cannot be proven by "Assumption ' \(Q \cap S \subseteq Q^{\prime \prime}\)
resp. by "Assumption ' \(Q \subseteq R^{\prime \prime}\)
- Narrowing or unification would be needed for such cases
- not yet implemented
- Adding an explicit substitution should help:
"Transitivity of \(\subseteq\) " with \(` R:=Q\) and assumption \(` Q \cap S \subseteq Q\) ' and assumption \(` Q \subseteq R\)
```

with $_{3}$ : Rewriting Theorems before Rewriting
$\operatorname{Thm} A$ with ThmB
- If ThmB gives rise to an equality/equivalence $L=R$ :
Rewrite ThmA with $L \mapsto R$
- E.g.: $\quad$ Assumption ${ }^{`} p \Rightarrow q$ ' with (3.60) ${ }^{`} p \Rightarrow q \equiv p \wedge q \equiv q$ `
The local theorem $p \Rightarrow q$ (resulting from the Assumption)
rewrites via: $\quad p \Rightarrow q \mapsto p \equiv p \wedge q \quad$ (from (3.60))
to: $p \equiv p \wedge q$
which can be used for the rewrite: $\quad p \quad \mapsto \quad p \wedge q$

```
Theorem (4.3) "Left-monotonicity of \(\wedge ":(p \Rightarrow q) \Rightarrow((p \wedge r) \Rightarrow(q \wedge r))\)
Proof:
 Assuming \({ }^{`} p \Rightarrow q\) :
 \(p \wedge r\)
 \(\equiv\left\langle\right.\) Assumption \({ }^{`} p \Rightarrow q\) ` with "Definition of \(\Rightarrow\) via \(\wedge\) " \(\rangle\)
 \(p \wedge q \wedge r\)
 \(\Rightarrow\langle\) "Weakening" \(\rangle\)
 \(q \wedge r\)

\section*{ThmA with ThmB}
- If \(T h m B\) gives rise to an equality/equivalence \(L=R\) :

Rewrite Thm \(A\) with \(L \mapsto R\)
- E.g.: "Instantiation" with (3.60)
"Instantiation" \((\forall x \bullet P) \Rightarrow P[x:=E] \quad\) rewrites via (3.60) ` \(q \Rightarrow r \mapsto q \equiv q \wedge r\)
to: \(\quad(\forall x \bullet P) \equiv(\forall x \bullet P) \wedge P[x:=E]\)
which can be used as: \(\quad(\forall x \bullet P) \quad \mapsto \quad(\forall x \bullet P) \wedge P[x:=E]\)

H11:
\[
\begin{array}{rlrl}
& (\forall x: \mathbb{Z} \bullet 5<f x) & & \\
\equiv & \langle\text { "Instantiation" with "Definition of } \Rightarrow \text { via } \wedge \text { " }(3.60)\rangle & & \\
& (\forall x: \mathbb{Z} \bullet 5<f x) \wedge(5<f x)[x:=9] & \text { with }_{3} \\
\Rightarrow & \langle\text { "Monotonicity of } \wedge \text { " with "Instantiation" }\rangle & \\
& (5<f x)[x:=8] \quad \wedge(5<f x)[x:=9] & \text { with }_{2}
\end{array}
\]

\[
\begin{aligned}
& \text { How can you simplify if you know } S_{1} \subseteq S_{2} \quad \text { ? } \\
& \vdots \\
& =\langle\ldots\rangle=\langle\ldots\rangle \\
& \ldots \cup S_{1} \cup S_{2} \cup \ldots \\
& =\langle\quad ?\rangle \\
& \text { ? } \\
& =\langle\ldots\rangle \\
& \ldots \cap S_{1} \cap S_{2} \cap \ldots \\
& =\langle\quad ?\rangle \\
& \text { ? }
\end{aligned}
\]
\(\longrightarrow\) Set Theory:
- "Set inclusion via \(\cup\) " \(S \subseteq T \equiv S \cup T=T\)
- "Set inclusion via \(\cap\) "
\(S \subseteq T \equiv S \cap T=S\)

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-18
Part 2: Introduction to Relations (ctd.)

What is a Relation?

\section*{A relation \\ is a subset of a Cartesian product.}

What is a Binary Relation?

\section*{A binary relation is a set of pairs.}

\section*{(Graphs), Simple Graphs}

A graph consists of:
- a set of "nodes" or "vertices"
- a set of "edges" or "arrows"
- "incidence" information specifying how edges connect nodes
- more details another day.

A simple graph consists of:
- a set of "nodes", and
- a set of "edges", which are pairs of nodes.
(A simple graph has no "parallel edges".)

Formally: A simple graph \(\langle N, E\rangle\) is a pair consisting of
- a set \(N\), the elements of which are called "nodes", and
- a relation \(E\) with \(E \in N \leftrightarrow N\), the element pairs of which are called "edges".

\section*{Simple Graphs}

A simple graph consists of:
- a set of "nodes", and
- a set of "edges", which are pairs of nodes.
(A simple graph has no "parallel edges".)

Formally: A simple graph \(\langle N, E\rangle\) is a pair consisting of
- a set \(N\), the elements of which are called "nodes", and
- a relation \(E\) with \(E \in N \leftrightarrow N\), the element pairs of which are called "edges".

Even more formally: A simple graph \(\langle N, E\rangle\) is a pair consisting of
- a set \(N\), and
- a relation \(E\) with \(E \in N \leftrightarrow N\).

Given a simple graph \(\langle N, E\rangle\), the elements of \(N\) are called "nodes" and the elements of \(E\) are called "edges".

\section*{Simple Graphs: Example}

Formally: A simple graph \(\langle N, E\rangle\) is a pair consisting of
- a set \(N\), the elements of which are called "nodes", and
- a relation \(E\) with \(E \in N \leftrightarrow N\), the element pairs of which are called "edges".

Example: \(\quad G_{1}=\langle\{2,0,1,9\},\{\langle 2,0\rangle,\langle 9,0\rangle,\langle 2,2\rangle\}\rangle\)
Graphs are normally visualised via graph drawings:

\section*{Simple graphs are essentially just relations!}

Reasoning with relations is reasoning about graphs!
```

            Visualising Binary Relations
    \& Person 」 = {Bob,Jill,Jane,Tom,Mary,Joe,Jack}
parentOf = {\langleJill, Bob \rangle,\langleJill, Jane \rangle,\langleTom, Bob \rangle,\langleTom, Jane \rangle,
\langleBob,Mary\rangle, \Bob, Joe\rangle, \Jane, Jack\rangle}

```

parentOf : Person \(\leftrightarrow\) Person

```

parents $=$ Dom parentOf $=\{$ Bob, Jill,Jane,Tom $\}$
children $=$ Ran parentOf $=\{$ Bob, Jane, Mary,Joe, Jack $\}$

```

Expressing relationship: \(\langle J i l l, B o b\rangle \in\) parentOf \(\equiv\) Jill (parentOf) Bob

\section*{Notation for Relationship}

Notations for " \(x\) is related via \(R\) with \(y\) ":
- explicit membership notation: \(\langle x, y\rangle \in R\)
- ambiguous traditional infix notation: \(x R y\)
- CalcCheck: \(x(R) y\)

Type " \(\backslash((\ldots \backslash))\) " for these "tortoise shell bracket" Unicode codepoints
The operator
\[
Z_{-}()_{-}: t_{1} \rightarrow\left(t_{1} \leftrightarrow t_{2}\right) \rightarrow t_{2} \rightarrow \mathbb{B}
\]
- is conjunctional:
\((1=x(R) y<5) \quad \equiv \quad(1=x) \wedge(x(R) y) \wedge(y<5)\)
- and calculational:
\[
\langle R\rangle \int_{y}^{x}\langle\text { Reason why } x(R\rangle y\rangle
\]

\section*{Experimental Key Bindings}
— US keyboard only! Firefox only?
- Alt-= for \(\equiv\) in addition to \(\backslash==\)
- Alt-< for \(\langle\) in addition to \(|<\)
- Alt-> for \(\rangle\) in addition to \(\mid>\)
- Alt-(for \(\leqslant\) in addition to \(\backslash(1\)
- Alt-) for \()\) in addition to \\))

Set Operations Used as Operations on Binary Relations
Relation union: \(\quad\langle u, v\rangle \in(R \cup S) \equiv\langle u, v\rangle \in R \vee\langle u, v\rangle \in S\)
\[
u(R \cup S) v \equiv u(R) v \vee u(S) v
\]

Relation intersection: \(\quad u(R \cap S) v \equiv u(R) v \wedge u(S) v\)
Relation difference: \(\quad u(R-S) v \equiv u(R) v \wedge \neg(u \backslash S\rangle v)\)
Relation complement: \(\quad u(\sim R) v \equiv \neg(u \backslash R) v)\)
Relation extensionality: \(R=S \equiv(\forall x \bullet \forall y \bullet x(R) y \equiv x(S) y)\)
\(R=S \quad \equiv \quad(\forall x, y \bullet x(R) y \equiv x(S) y)\)
Relation inclusion: \(\quad R \subseteq S \equiv(\forall x \bullet \forall y \bullet x(R) y \Rightarrow x(S) y)\)
\(R \subseteq S \equiv(\forall x \bullet \forall y \mid x(R) y \bullet x(S) y)\)
\(R \subseteq S \equiv(\forall x, y \bullet x(R) y \Rightarrow x(S) y)\)
\(R \subseteq S \equiv(\forall x, y \mid x(R) y \cdot x(S) y)\)

\section*{Empty and Universal Binary Relations}
- The empty relation on \(\left\langle t_{1}, t_{2}\right\rangle\) is \(\left\}: t_{1} \leftrightarrow t_{2}\right.\)
\[
\begin{aligned}
x(\}) y & \equiv \text { false } \\
\langle x, y\rangle \in\} & \equiv \text { false }
\end{aligned}
\]
- The universal relation on \(\left\langle t_{1}, t_{2}\right\rangle\) is \(\left\langle t_{1}, t_{2}\right\rangle,: t_{1} \leftrightarrow t_{2}\) or \(U: t_{1} \leftrightarrow t_{2}\)
\[
\begin{array}{rlrll}
x \backslash,\left\langle t_{1}, t_{2}\right\rangle, 〕 y & \equiv \text { true } & x \backslash U\rangle y & \equiv \text { true } \\
\langle x, y\rangle \in,\left\langle t_{1}, t_{2}\right\rangle, & \equiv \text { true } & \langle x, y\rangle \in U & \equiv \text { true }
\end{array}
\]
- The universal relation on \(B \times C\) is \(B \times C\)
\[
\begin{align*}
x(B \times C) y & \equiv x \in B \wedge y \in C \\
\langle x, y\rangle \in B \times C & \equiv x \in B \wedge y \in C \tag{14.4}
\end{align*}
\]

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-20
Relations in Set Theory

\section*{Plan for Today}
- Relations
- Set-theoretic definition of relational operations: Converse, composition

\section*{Relation-Algebraic Operations: Operations on Relations}
- Set operations \(\sim, \cup, \cap,-, \rightarrow\) are all available.
- If \(R: B \leftrightarrow C, \quad B \xrightarrow{R} C\) then its converse \(R^{\wedge}: C \leftrightarrow B\)
(in the textbook called "inverse" and written: \(R^{-1}\))
stands for "going \(R\) backwards":
- If \(R: B \leftrightarrow C\) and \(S: C \leftrightarrow D\),
\[
c\left(R^{-}\right) b \equiv b(R) c
\]
then their composition \(R ; S\)
(in the textbook written: \(R \circ S\))
is a relation in \(B \leftrightarrow D\), and stands for
"going first a step via \(R\), and then a step via \(S\) ":
```

b(R;S)d \equiv (\existsc:C\bulletb(R)c(S)d)

```

The resulting relation algebra
- allows concise formalisations without quantifications,
- enables simple calculational proofs.

Proving Self-inverse of Converse: \(\left(R^{\smile}\right)^{\curvearrowleft}=R\)
\(\left(R^{\smile}\right)^{\smile}=R\)
\(\equiv\langle\) Relation extensionality \(\rangle\)
\(\forall x, y \bullet x\left(\left(R^{\sim}\right)^{\sim}\right) y \equiv x(R) y\)
\(\equiv\langle\ldots\rangle\)
true

Using "Relation extensionality":

For any \(x, y\) :
\[
\begin{aligned}
& \left.x \backslash\left(R^{\sim}\right)^{\wedge}\right\rangle y \\
\equiv & \langle\text { Converse }\rangle \\
& y\left\langle R^{\sim}\right\rangle x \\
\equiv & \langle\text { Converse }\rangle \\
& x(R\rangle y
\end{aligned}
\]

Proving \(R \subseteq S \equiv R^{\sim} \subseteq S^{\sim}\) ：
\(R \backsim \subseteq S\)
\(\equiv\langle\) Relation inclusion 〉
\(\forall y, x \mid y\left(R^{\sim}\right) x \bullet y\left(S^{\sim}\right) x\)
\(\equiv\langle\) Converse，dummy permutation 〉
\(\forall x, y \mid x(R) y \bullet x(S) y\)
\(\equiv\langle\) Relation inclusion 〉
\(R \subseteq S\)

\section*{Operations on Relations：Composition \(\quad B \xrightarrow{R} C \xrightarrow{S} D\)}

If \(R: B \leftrightarrow C\) and \(S: C \leftrightarrow D\) ，then their composition \(R ; S: B \leftrightarrow D\) is defined by：
\[
\begin{equation*}
b(R \circ S) d \equiv(\exists c: C \bullet b(R) c(S) d) \tag{14.20}
\end{equation*}
\]
（for \(b: B, d: D\) ）
（14．20）
\[
b(R, S) d \equiv(\exists c: C \bullet b(R) c \wedge c(S) d)
\]
（for \(b: B, d: D\) ）
parentOf \(=\{\langle J\) jill，Bob \(\rangle,\langle J i l l\), Jane \(\rangle,\langle\) Tom，Bob \(\rangle,\langle\) Tom，Jane \(\rangle\),
〈Bob，Mary〉，〈Bob，Joe〉，〈Jane，Jack〉\}
grandparentOf \(=\) parentOf；parentOf
\(=\{\langle J i l l\), Mary \(\rangle,\langle J i l l, J o e\rangle,\langle J i l l, J a c k\rangle\)
\(\langle\) Tom，Mary \(\rangle,\langle\) Tom，Joe〉，\(\langle T o m, J a c k\rangle\}\)

\section*{Sub－identity and Identity Relations}
－The（sub－）identity relation on \(B:\) set \(t\) is \(\operatorname{id} B: t \leftrightarrow t\)

\[
\begin{array}{r}
\text { id } B=\{x: t \mid x \in B \bullet\langle x, x\rangle\}: \\
x \text { (id } B) y \equiv x=y \in B \\
\langle x, y\rangle \in \operatorname{id} B \equiv x=y \wedge y \in B
\end{array}
\]
— LADM writes \(\iota_{B}\)
— Writing＂id \(B\)＂follows the \(Z\) notation
－The identity relation on \(t:\) Type is \(\mathbb{I}: t \leftrightarrow t\) with \(\mathbb{I}=\operatorname{id} U\)

\[
\begin{aligned}
x(\mathbb{I}\rangle y & \equiv x=y \\
\langle x, y\rangle \in \mathbb{I} & \equiv x=y
\end{aligned}
\]
－The＂id＂and＂ \(\mathbb{I}\)＂notations are different from some previous years！

\section*{Domain and Range of Binary Relations}

For \(R: t_{1} \leftrightarrow t_{2}\), we define \(\operatorname{Dom} R:\) set \(t_{1}\) and \(\operatorname{Ran} R:\) set \(t_{2}\) as follows:
(14.16) \(\operatorname{Dom} R=\left\{x: t_{1} \|\left(\exists y: t_{2} \bullet x(R) y\right)\right\}=\{p \mid p \in R \bullet f s t p\}=\operatorname{map}_{\text {set }}\) fst \(R\)
(14.17) \(\operatorname{Ran} R=\left\{y: t_{2} \mid\left(\exists x: t_{1} \bullet x(R) y\right)\right\}=\{p \mid p \in R \bullet\) snd \(p\}=\operatorname{map}_{\text {set }}\) snd \(R\)
"Membership in `Dom":
\[
x \in \operatorname{Dom} R \equiv\left(\exists y: t_{2} \bullet x(R) y\right)
\]
"Membership in `Ran":
\[
y \in \operatorname{Ran} R \equiv\left(\exists x: t_{1} \bullet x(R) y\right)
\]

```

parents = Dom parentOf = {Bob,Jill,Jane,Tom}
children = Ran parentOf = {Bob,Jane,Mary,Joe,Jack}

```

\section*{Formalise Without Quantifiers!}
\(P \quad=\) type of persons
\(C: \quad P \leftrightarrow P\)
\(p(C) q \equiv p\) called \(q\)
Remember: For \(R: t_{1} \leftrightarrow t_{2}\) :
"Membership in `Dom":
\[
x \in \operatorname{Dom} R \equiv\left(\exists y: t_{2} \bullet x(R) y\right)
\]
"Membership in `Ran"":
\[
y \in \operatorname{Ran} R \equiv\left(\exists x: t_{1} \bullet x(R) y\right)
\]
(1) Helen called somebody.

Helen \(\in \operatorname{Dom} C \equiv(\exists y: P \bullet\) Helen (C) \(y)\)
(2) For everybody, there is somebody they haven't called.
\[
\begin{aligned}
& \operatorname{Dom}(\sim C)=\_P, \\
& \operatorname{Dom}(\sim C)=U
\end{aligned}
\]

\section*{Combining Several Operations}

How to define siblings?
- First attempt: childOf \(\ddagger\) parentOf, with childOf = parentOf \(\smile\)

- Improved: sibling \(=\) childOf;parentOf -id _Person ,

If \(R: B \leftrightarrow C\) ，then its converse \(R^{\sim}: C \leftrightarrow B\) is defined by：
（14．18）\(\quad\langle c, b\rangle \in R^{-} \equiv\langle b, c\rangle \in R \quad\)（for \(b: B\) and \(c: C\) ）
（14．18）\(\quad c\left(R^{\sim}\right) b \equiv b(R) c \quad\)（for \(b: B\) and \(c: C\) ）
（14．19）Properties of Converse：Let \(R, S: B \leftrightarrow C\) be relations．
（a） \(\operatorname{Dom}\left(R^{\hookrightarrow}\right)=\operatorname{Ran} R\)
（b） \(\operatorname{Ran}\left(R^{\bullet}\right)=\operatorname{Dom} R\)
（c）If \(R \in S \leftrightarrow T\) ，then \(R^{\curvearrowleft} \in T \leftrightarrow S\)
（d）\(\quad\left(R^{\sim}\right)^{\llcorner }=R\)
（e）\(R \subseteq S \equiv R^{\hookrightarrow} \subseteq S^{\hookrightarrow}\)

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University，Fall 2023

Wolfram Kahl

2023－10－20

\section*{Part 2：Relation－Algebraic Formalisation Examples}
\(P \quad=\) type of persons
C ：\(P \leftrightarrow P\)－＂called＂
\(B \quad: \quad P \leftrightarrow P \quad\)－＂brother of＂
Aos ：\(P\)
Jun ：\(P\)
Convert into English（via predicate logic）：
\[
\begin{aligned}
& \text { Aos (C) Jun } \\
& \text { Aos (} C ; B \text {) Jun } \\
& \operatorname{Aos}(\sim(C ; \sim B) \text {) Jun } \\
& \text { Aos }(\sim(\sim C ; B) \text { 〕Jun } \\
& \operatorname{Aos}\left(\sim\left(\left(C \cap \sim\left(B ; C^{\sim}\right)\right) \% \sim B\right) \boldsymbol{\jmath} u n\right. \\
& \left(B \%\left(\{J u n\} \times{ }_{\imath} P 」\right)\right) \cap\left(C_{9} C^{\smile}\right) \subseteq i d \_P \text {, }
\end{aligned}
\]

Translating between Relation Algebra and Predicate Logic
\[
\begin{array}{ccc}
R=S & \equiv & (\forall x, y \bullet x(R) y \equiv x(S) y) \\
R \subseteq S & \equiv & (\forall x, y \bullet x(R) y \Rightarrow x(S) y) \\
u(\}) v & \equiv & f a l s e \\
u(U) v & \equiv & t r u e \\
u(A \times B) v & \equiv & u \in A \wedge v \in B \\
u(\sim S) v & \equiv & \neg u(S) v) \\
u(S \cup T) v & \equiv & u(S) v \vee u(T) v \\
u(S \cap T) v & \equiv & u(S) v \wedge u(T) v \\
u(S-T) v & \equiv & u(S) v \wedge \neg(u(T) v) \\
u(S \Rightarrow T) v & \equiv & u(S) v \Rightarrow(u(T) v) \\
u(\mathbb{I}) v & \equiv & u=v \\
u(i d A) v & \equiv & u=v \in A \\
u\left(R R^{\sim}\right) v & \equiv & v(R) u \\
u(R ; S) v & \equiv & (\exists x \bullet u(R) x(S) v)
\end{array}
\]
\[
\begin{array}{lll}
P & = & \text { type of persons } \\
C & : & P \leftrightarrow P
\end{array} \quad \text {-"called" } " \text { " }
\]

Convert into English（via predicate logic）：
\[
\begin{aligned}
& \operatorname{Aos}\langle C ; B\rangle J u n \\
\equiv & \langle(14.20) \text { Relation composition }\rangle \\
& (\exists b \bullet \operatorname{Aos}(C\rangle b(B\rangle J u n)
\end{aligned}
\]
＂Aos called some brother of Jun．＂
＂Aos called a brother of Jun．＂
\[
\begin{aligned}
& \text { Aos (} \sim(C ; \sim B) \text {) Jun } \\
& \equiv\langle(11.17 \mathrm{r}) \text { Relation complement }\rangle \\
& \neg(\text { Aos } \text { (} C ; \sim B \text {) Jun }) \\
& \equiv\langle(14.20) \text { Relation composition 〉 } \\
& \neg(\exists p \bullet \operatorname{Aos}(C) p(\sim B) J u n) \\
& \equiv\langle(11.17 \mathrm{r}) \text { Relation complement }\rangle \\
& \neg(\exists p \text { • } \operatorname{Aos} \text { 〈 } C \text { 〕 } p \wedge \neg(p \text { (B) Jun })) \\
& \equiv\langle(9.18 \mathrm{~b}) \text { Generalised De Morgan }\rangle \\
& (\forall p \bullet \neg(\operatorname{Aos} \text { (} C \text { 〉 } p \wedge \neg(p \text { (} B \text { 〕Jun }))) \\
& \equiv\langle(3.47) \text { De Morgan, (3.12) Double negation 〉 } \\
& (\forall p \bullet \neg(A o s \text { (} C) p) \vee p(B) J u n) \\
& \equiv\langle(9.3 \mathrm{a}) \text { Trading for } \forall\rangle \\
& (\forall p \mid \operatorname{Aos}(C) p \bullet p(B) J u n)
\end{aligned}
\]
＂Everybody Aos called is a brother of Jun．＂
＂Aos called only brothers of Jun．＂

\section*{Formalise Without Quantifiers! (2)}
\(P \quad:=\) type of persons
\(C \quad: \quad P \leftrightarrow P\)
\(p(C) q: \equiv p\) called \(q\)
(1) Helen called somebody who called her.
(2) For arbitrary people \(x, z\), if \(x\) called \(z\), then there is sombody whom \(x\) called, and who was called by somebody who also called \(z\).
(3) For arbitrary people \(x, y, z\), if \(x\) called \(y\), and \(y\) was called by somebody who also called \(z\), then \(x\) called \(z\).
(9) Obama called everybody directly, or indirectly via at most two intermediaries.

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-23

\section*{Relations in Set Theory}

\section*{Plan for Today}
- Relations
- Some properties of relation composition, e.g., \(\circ\) is monotonic
- Some properties of relations, e.g., " \(R\) is transitive", " \(E\) is an order"

Moving towards relation-algebraic formalisations and reasoning

Translating between Relation Algebra and Predicate Logic
\[
\begin{array}{ccc}
R=S & \equiv & (\forall x, y \bullet x(R) y \equiv x(S) y) \\
R \subseteq S & \equiv & (\forall x, y \bullet x(R) y \Rightarrow x(S) y) \\
u(\}) v & \equiv & \text { false } \\
u(U) v & \equiv & \text { true } \\
u(A \times B) v & \equiv & u \in A \wedge v \in B \\
u(\sim S) v & \equiv & \neg(u \backslash S) v) \\
u(S \cup T) v & \equiv & u(S) v \vee u(T) v \\
u(S \cap T) v & \equiv & u(S) v \wedge u(T) v \\
u(S-T) v & \equiv & u(S) v \wedge \neg(u(T) v) \\
u(S \Rightarrow T) v & \equiv & u(S) v \Rightarrow(u(T) v) \\
u(\mathbb{I}) v & \equiv & u=v \\
u(i d A) v & \equiv & u=v \in A \\
u(R \sim) v & \equiv & v(R) u \\
u(R ; S) v & \equiv & (\exists x \bullet u(R) x(S) v)
\end{array}
\]
\[
\begin{array}{lll}
P & = & \text { type of persons } \\
C & : & P \leftrightarrow P
\end{array} \quad-\text { "called" } " \text { " }
\]

Convert into English（via predicate logic）：
```

Aos(C) Jun
Aos(C;B) Bun
Aos(~ (C;~B) )Jun
Aos(~ (~C;B) ) Jun
Aos\~((C\cap~ (B;C`)) %~B) \Jun (B;({Jun}\timesU))\cap(C;C`) \subseteq\mathbb{I}

```
 \(\operatorname{Aos}\left(\sim\left(\left(C \cap \sim\left(B ; C^{\sim}\right)\right) ; \sim B\right)\right.\) 〕Jun
\(\equiv\langle\) Relation complement \(\rangle\)
 \(\neg\left(A o s\right.\) (\(\left(C \cap \sim\left(B ; C^{\sim}\right)\right) ; \sim B\)) Jun)
\(\equiv\langle\) Relation composition \(\rangle\)
 \(\neg\left(\exists p\right.\) • \(\left.\operatorname{Aos}\left(C \cap \sim\left(B ; C^{\sim}\right)\right) p(\sim B) J u n\right)\)
\(\equiv\langle\) Relation intersection〉
 \(\neg\left(\exists p\right.\) • \(\operatorname{Aos}(C) p \wedge \operatorname{Aos}\left(\sim\left(B \circ C^{\wedge}\right)\right.\)) \(\left.p \wedge p(\sim B) J u n\right)\)
\(\equiv\langle\) Relation complement \(\rangle\)
 \(\neg\left(\exists p\right.\) • \(\operatorname{Aos}\) 〈 \(C\)) \(p \wedge \neg\left(\operatorname{Aos}\right.\) (\(B \circ C^{\sim}\)) \(\left.p\right) \wedge \neg(p(B\) 〕Jun \())\)
\(\equiv\langle\) Relation composition \(\rangle\)
 \(\neg\left(\exists p \bullet \operatorname{Aos}\right.\) (C) \(p \wedge \neg\left(\exists q \bullet \operatorname{Aos}(B) q\left(C^{\sim}\right) p\right) \wedge \neg(p\) (B)Jun \(\left.)\right)\)
\(\equiv\langle(9.18 \mathrm{~b})\) Generalised De Morgan 〉

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

\section*{Wolfram Kahl}

2023-10-20

\section*{Part 2: Some Properties of Relation Composition}

\section*{First Simple Properties of Composition}

If \(R: B \leftrightarrow C\) and \(S: C \leftrightarrow D\), then their composition \(R ; S: B \leftrightarrow D\) is defined by:
(14.20) \(b(R ; S) d \equiv(\exists c: C \bullet b(R) c \wedge c(S) d)\)
(for \(b: B, d: D\))
(14.22) Associativity of \(\%: \quad Q ;(R ; S)=(Q ; R) \% S\)

Left- and Right-identities of 9 : If \(R \in X \leftrightarrow Y\), then: \(\quad\) id \(X ; R=R=R ;\) id \(Y\)
We defined: \(\quad \mathbb{I}=\operatorname{id} U \quad\) with: \(\quad\) Relationship via \(\mathbb{I}: \quad x(\mathbb{I}) y \equiv x=y\)
\(\mathbb{I}\) is "the" identity of composition: Identity of \(\mathfrak{g}\) : \(\mathbb{I} ; R=R=R ; \mathbb{I}\)

Contravariance: \(\quad(R ; S)^{\leftrightharpoons}=S^{\sim} ; R^{\complement}\)

\section*{Distributivity of Relation Composition over Union}

Composition distributes over union from both sides:
(14.23) \(\quad Q ;(R \cup S)=Q ; R \cup Q ; S\)
\[
(P \cup Q) \varsubsetneqq R=P \varsubsetneqq R \cup Q \varsubsetneqq R
\]

In control flow diagrams (NFA) - boxed variables are free; others existentially quantified; alternative paths correspond to disjunction:

\((\exists b \bullet a(Q) b(R \cup S) c) \equiv\)
\(\quad\left(\exists b_{1}, b_{2} \bullet a(Q) b_{1}(R) c \vee a(Q) b_{2}(S) c\right)\)

Composition sub-distributes over intersection from both sides:
\[
\begin{align*}
Q ;(R \cap S) & \subseteq Q ; R \cap Q ; S \tag{14.24}\\
(P \cap Q) ; R & \subseteq \\
\hline & P ; R \cap Q ; R
\end{align*}
\]

In constraint diagrams (boxed variables are free; others existentially quantified; alternative paths are conjunction):
\[
\left(\exists b_{1}, b_{2} \cdot a(Q) b_{1}(R) c \wedge a(Q) b_{2}(S) c\right)
\]
\((\exists b \cdot a(Q) b(R \cap S) c) \Rightarrow\)
Counterexample for \(\Leftarrow\) :
\[
Q:=\text { neighbour of } \quad R:=\text { brother of } \quad S:=\text { parent of }
\]

\section*{Monotonicity of Relation Composition}

Relation composition is monotonic in both arguments:
\[
\begin{aligned}
& Q \subseteq R \quad \Rightarrow \quad Q ; S \subseteq \quad R ; S \\
& Q \subseteq R \quad \Rightarrow \quad P ; Q \quad \subseteq \quad D ; R
\end{aligned}
\]

We could prove this via "Relation inclusion" and "For any", but we don't need to:
Assume \(Q \subseteq R\), which by "Definition of \(\subseteq\) via \(\cup\) " is equivalent to \(Q \cup R=R\) :
Proving \(Q ; S \subseteq R ; S\) :
\(R ; S\)
\(=\langle\) Assumption \(Q \cup R=R\rangle\)
\((Q \cup R) ; S\)
\(=\langle(14.23)\) Distributivity of \(\%\) over \(\cup\rangle\)
\(Q ; S \cup R ; S\)
\(\supseteq\langle(11.31)\) Strengthening \(S \subseteq S \cup T\rangle\)
\(Q ; S\)
with \(_{3}\) : Rewriting Theorems before Rewriting
ThmA with ThmB
- If \(T h m B\) gives rise to an equality/equivalence \(L=R\) :

Rewrite ThmA with \(L \mapsto R\)
- E.g.: Assumption ` \(Q \subseteq R\) ' with "Relation inclusion":
\(Q \subseteq R \quad\) rewrites via \(\quad Q \subseteq R \mapsto \forall x \bullet \forall y \cdot x(Q) y \Rightarrow x(R) y\)
to: \(\forall x \bullet \forall y \cdot x(Q) y \Rightarrow x(R) y\)
which can be instantiated to: to: \(a(Q) b \Rightarrow a(R) b\)
ヨ b •a (Q) b ^b (S) c \(\Rightarrow\) ("Body monotonicity of \(\mathrm{G}^{\prime}\) " with "Monotonicity of \(\Lambda\) " with assumption \(\mathbf{Q} \mathrm{Q} \subseteq \mathrm{R}\) ' with "Relation inclusion")

```

                                    with}\mp@subsup{2}{2}{}\mathrm{ and with}\mp@subsup{\mp@code{3}}{3}{}\mathrm{ : Example
    \exists b • a ( Q ) b ^ b ( S ) c
    { "Body monotonicity of ق" with "Monotonicity of \Lambda"
with assumption `Q \subseteq R` with "Relation inclusion" )
\exists b - a ( R ) b ^ b ( S ) c
- assumption 'Q\subseteqR' gives you Q Q\subseteqR
- assumption ' Q\subseteqR' with "Relation inclusion"
gives you via with}3: \forallx \bullet\forally \bulletx\Q) y=>x(R) y
and then via implicit "Instantiation" triggered by the next with2:
a(Q)b=>a(R)b
"Monotonicity of }\wedge\mathrm{ " with
assumption ' }Q\subseteqR\mathrm{ ' with "Relation inclusion"
gives you via with2: }\quada(Q)b\wedgeb(S)c>a(R)b\wedgeb(S)
" "Body monotonicity of \exists" with "Monotonicity of }\wedge\mathrm{ " with
assumption 'Q\subseteqR' with "Relation inclusion"
gives you via with2:
(\existsb\bulleta\Q)b\wedgeb\S)c) }=>(\existsb\bulleta(R)b\wedgeb(S)c

```

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-25

\section*{Properties of Relations}

\section*{Plan for Today}
- Some properties of relations, e.g., " \(R\) is univalent", " \(F\) is bijective"
- Symbols following the Z Notation: Function Set Arrows, Domain- and Range-Restrictions
Moving towards relation-algebraic formalisations and reasoning

Properties of Homogeneous Relations (ctd.)
\begin{tabular}{|c|c|c|}
\hline reflexive & \(\mathbb{I} \subseteq R\) & \((\forall b: B \bullet b(R) b)\) \\
\hline irreflexive & \(\mathbb{I} \cap \mathrm{R}=\{ \}\) & \((\forall b: B \bullet \neg(b\) (\(R\)) \(b)\)) \\
\hline symmetric & \(R^{\sim}=R\) & \(\left(\forall b, c: B \bullet b(R){ }_{c} \equiv c(R) b\right)\) \\
\hline antisymmetric & \(R \cap R^{\smile} \subseteq \mathbb{I}\) & \((\forall b, c \bullet b(R) c \wedge c(R) b \Rightarrow b=c)\) \\
\hline asymmetric & \(R \cap R^{\sim}=\{ \}\) & \((\forall b, c: B \bullet b(R) c \Rightarrow \neg(c \backslash R\rangle b))\) \\
\hline transitive & \(R ̊ R \subseteq R\) & \((\forall b, c, d \bullet b(R) c \wedge c(R) d \Rightarrow b(R) d)\) \\
\hline
\end{tabular}
\(R\) is an equivalence (relation) on \(B\) iff it is reflexive, transitive, and symmetric.
\(R\) is a (partial) order on \(B\) iff it is reflexive, transitive, and antisymmetric.
\[
\text { (E.g., } \leq, \geq, \subseteq, \supseteq, \mid \text {) }
\]
\(R\) is a strict-order on \(B\) iff it is irreflexive, transitive, and asymmetric.
(E.g., <, >, c, っ)

\section*{Hasse diagram for an order:}
- Edge direction is upwards
- Loops not drawn
- Transitive edges not drawn
- antisymmetric
- reflexive
- transitive

\section*{Properties of Heterogeneous Relations}

A relation \(R: B \leftrightarrow C\) is called:
\begin{tabular}{|c|c|c|}
\hline univalent determinate & \(R^{\sim} ; R \subseteq \mathbb{I}\) & \(\forall b, c_{1}, c_{2} \bullet b(R) c_{1} \wedge b(R) c_{2} \Rightarrow c_{1}=c_{2}\) \\
\hline total & \[
\begin{aligned}
\operatorname{Dom} R & =U \\
\operatorname{Dom} R & =\mathcal{L}, \\
\mathbb{I} & \subseteq R \& R^{\breve{C}}
\end{aligned}
\] & \(\forall b: B \bullet(\exists c: C \bullet b(R) c)\) \\
\hline injective & \(R_{9} R^{\wedge} \subseteq \mathbb{I}\) & \(\forall b_{1}, b_{2}, c \bullet b_{1}(R){ }_{c} \wedge b_{2}(R) c \Rightarrow b_{1}=b_{2}\) \\
\hline surjective & \[
\begin{aligned}
\operatorname{Ran} R & =U \\
\operatorname{Ran} R & =C, \\
\mathbb{I} & \subseteq R^{\sim} ; R
\end{aligned}
\] & \(\forall c: C \bullet(\exists b: B \bullet b(R) c)\) \\
\hline a mapping & \multicolumn{2}{|l|}{iff it is univalent and total} \\
\hline bijective & \multicolumn{2}{|l|}{iff it is injective and surjective} \\
\hline
\end{tabular}

Univalent relations are also called (partial) functions.
Mappings are also called total functions.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Properties of Heterogeneous Relations - Examples 1} \\
\hline univalent & \(R^{\sim} ; R \subseteq \mathbb{I}\) & \(\forall b, c_{1}, c_{2} \bullet b(R) c_{1} \wedge b(R) c_{2} \Rightarrow c_{1}=c_{2}\) \\
\hline total & \[
\begin{aligned}
\operatorname{Dom} R & =U \\
\mathbb{I} & \subseteq R \circ R
\end{aligned}
\] & \(\forall b: B \bullet(\exists c: C \bullet b(R) c)\) \\
\hline a mapping & iff it is univalent & and total \\
\hline \multicolumn{2}{|l|}{} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Properties of Heterogeneous Relations - Examples} \\
\hline injective & \(R \% R^{\wedge} \subseteq \mathbb{I}\) & \(\forall b_{1}, b_{2}, c \bullet b_{1}(R) c \wedge b_{2}(R) c \Rightarrow b_{1}=b_{2}\) \\
\hline surjective & \(\begin{aligned} \text { Ran } R & =U \\ \mathbb{I} & \subseteq R^{\sim}{ }_{9} R\end{aligned}\) & \(\forall c: C \bullet(\exists b: B \bullet b(R) c)\) \\
\hline bijective & iff it is injective & and surjective \\
\hline \multicolumn{2}{|l|}{} & \\
\hline
\end{tabular}

\section*{Function Types versus Sets of Univalent Relations}

A relation \(R: B \leftrightarrow C\) is called:
\begin{tabular}{|l|r|l|l|}
\hline univalent & \(R^{\sim}{ }_{q} R \subseteq \mathbb{I}\) & \(\forall b, c_{1}, c_{2} \bullet b(R) c_{1} \wedge b(R) c_{2} \Rightarrow c_{1}=c_{2}\) \\
\hline total & \(\operatorname{Dom} R=U\) & \(\forall b: B \bullet(\exists c: C \bullet b(R) c)\) \\
\hline a mapping & \multicolumn{2}{|c|}{ iff it is univalent and total } \\
\hline
\end{tabular}

Univalent relations are also called (partial) functions.
Mappings are also called total functions.
— These are of different type that functions of function type \(B \rightarrow \mathbf{C}\) !
The distinction corresponds to the way in which elements of the Haskell datatype Data.Map.Map \(a b\) are distinct from Haskell functions of type \(a \rightarrow b\).
- A (set-theoretic) relation \(R: B \leftrightarrow C\) is a set of pairs - "data"
- A function \(f: B \rightarrow C\) is a different kind of entity — in Haskell, "computation" If \(b: B\), then \(f b\) is never undefined.
(But may be unspecified, such as head \(\epsilon\) in A1.3.)
Properties of Heterogeneous Relations - Notes
\begin{tabular}{|l|r|l|l|}
\hline univalent & \(R^{\wedge} \circ R \subseteq \mathbb{I}\) & \(\forall b, c_{1}, c_{2} \bullet b(R) c_{1} \wedge b(R) c_{2} \Rightarrow c_{1}=c_{2}\) \\
\hline surjective & \(\mathbb{I} \subseteq R^{\wedge} \circ R\) & \(\forall c: C \bullet(\exists b: B \bullet b(R) c)\) \\
\hline total & \(\mathbb{I} \subseteq R \varsubsetneqq R^{\wedge}\) & \(\forall b: B \bullet(\exists c: C \bullet b(R) c)\) \\
\hline injective & \(R g R^{\wedge} \subseteq \mathbb{I}\) & \(\forall b_{1}, b_{2}, c \bullet b_{1}(R) c \wedge b_{2}(R) c \Rightarrow b_{1}=b_{2}\) \\
\hline
\end{tabular}

All these properties are defined for arbitrary relations! (Not only for functions!)
- \(R\) is univalent and surjective
- \(R\) is total and injective
iff \(\quad R^{\sim} ; R=\mathbb{I}\)
iff \(R ; R^{\hookrightarrow}=\mathbb{I}\)
iff \(\quad R^{\smile}\) is a left-inverse of \(R\)
iff \(\quad R^{\smile}\) is a right-inverse of \(R\)

It is convenient to have abbreviations, for example:
\(\left.\begin{array}{ll}f \text { is a partial function from } X \text { to } Y: & f \in X \leftrightarrow Y \\ f \text { is an injective mapping from } X \text { to } Y: & f \in X \leftrightarrow Y\end{array}\right\} \quad \longrightarrow \quad\) Z arrows! \(f\) is a partial surjection from \(X\) to \(Y: \quad f \in X \rightarrow Y\)

\section*{The Z Specification Notation}
- Mathematical notation intended for software specification

Used for requirements contracts with customers who would be given a two-page "Z Reference Card"
- Very influential in Formal Methods; ISO-standardised
- Two parts:
- Z is a typed set theory in first-order predicate logic
- very close to the logic and set theory you are using in CALCCHECK
- except that in Z :
- types are maximal sets
- sets can be used in variable declarations: \(\forall x: S\) | \(\ldots\) - ..., - which makes quantifier reasoning harder.
- functions are univalent relations
(CALCCHECK and Haskell are type theories with embedded typed set theories.)
- "Schemas" modelling of states and state transitions
- Avenue \(\longrightarrow\) Resources \(\longrightarrow\) Links \(\longrightarrow\) Z Specification Notation

\section*{Function Sets - Z Definition and Description [Spivey 1992]}
\[
\begin{aligned}
& \text { In } Z, X \leftrightarrow Y=\mathbb{P}(X \times Y) \text {, and } x \mapsto y=(x, y) \text { is an abbreviation for pairs. } \\
& X \rightarrow Y==\left\{f: X \leftrightarrow Y \mid\left(\forall x: X ; y_{1}, y_{2}: Y \bullet\right.\right. \\
& \left.\left.\left(x \mapsto y_{1}\right) \in f \wedge\left(x \mapsto y_{2}\right) \in f \Rightarrow y_{1}=y_{2}\right)\right\} \\
& \rightarrow-\text { Partial functions } \\
& \rightarrow \text { - Total functions } \\
& \longrightarrow \text { - Partial injections } \\
& \longrightarrow \quad \text { Total injections } \\
& \mapsto \text { - Partial surjections } \\
& \rightarrow \text { - Total surjections } \\
& \text { Bijections } \\
& X \rightarrow Y==\{f: X \rightarrow Y \mid \operatorname{dom} f=X\} \\
& X \nrightarrow Y==\left\{f: X \nmid Y \mid\left(\forall x_{1}, x_{2}: \operatorname{dom} f \bullet f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right)\right\} \\
& X \hookrightarrow Y==(X \nrightarrow Y) \cap(X \rightarrow Y) \\
& X \rightarrow Y==\{f: X \rightarrow Y \mid \operatorname{ran} f=Y\} \\
& X \rightarrow Y==(X \rightarrow Y) \cap(X \rightarrow Y) \\
& X \rightarrow Y==(X \rightarrow Y) \cap(X \hookrightarrow Y)
\end{aligned}
\]

If \(X\) and \(Y\) are sets, \(X \rightarrow Y\) is the set of partial functions from \(X\) to \(Y\). These are relations which relate each member \(x\) of \(X\) to at most one member of \(Y\). This member of \(Y\), if it exists, is written \(f(x)\). The set \(X \rightarrow Y\) is the set of total functions from \(X\) to \(Y\). These are partial functions whose domain is the whole of \(X\); they relate each member of \(X\) to exactly one member of \(Y\).

Function Sets - Z Definition and Laws (1) [Spivey 1992]
In \(Z, X \leftrightarrow Y=\mathbb{P}(X \times Y)\), and \(x \mapsto y=(x, y)\) is an abbreviation for pairs, and \(S \circ R=R ; S\).
\(X \rightarrow Y==\left\{f: X \leftrightarrow Y \mid\left(\forall x: X ; y_{1}, y_{2}: Y \bullet\right.\right.\)
\[
\left.\left.\left(x \mapsto y_{1}\right) \in f \wedge\left(x \mapsto y_{2}\right) \in f \Rightarrow y_{1}=y_{2}\right)\right\}
\]
\(X \rightarrow Y==\{f: X \rightarrow Y \mid \operatorname{dom} f=X\}\)
\(X \nrightarrow Y==\left\{f: X \nrightarrow Y \mid\left(\forall x_{1}, x_{2}: \operatorname{dom} f \bullet f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right)\right\}\)
\(X \nrightarrow Y==(X \nrightarrow Y) \cap(X \rightarrow Y)\)

\section*{Laws:}
\[
\begin{aligned}
& f \in X \nrightarrow Y \Leftrightarrow f \circ f^{\sim}=\operatorname{id}(\operatorname{ran} f) \\
& f \in X \nrightarrow Y \Leftrightarrow f \in X \nrightarrow Y \wedge f^{\sim} \in Y \nrightarrow X \\
& f \in X \nVdash Y \Leftrightarrow f \in X \rightarrow Y \wedge f^{\sim} \in Y \nrightarrow X \\
& f \in X \nrightarrow Y \Rightarrow f(S \cap T D=f(S D \cap f(T D
\end{aligned}
\]

\section*{Function Sets - Z Definition and Laws [Spivey 1992]}

In \(Z, X \leftrightarrow Y=\mathbb{P}(X \times Y)\), and \(x \mapsto y=(x, y)\) is an abbreviation for pairs, and \(S \circ R=R ; S\).
\[
\begin{aligned}
& X \mapsto Y=\left\{f: X \leftrightarrow Y \mid\left(\forall x: X ; y_{1}, y_{2}: Y \bullet\right.\right. \\
&\left.\left.\left(x \mapsto y_{1}\right) \in f \wedge\left(x \mapsto y_{2}\right) \in f \Rightarrow y_{1}=y_{2}\right)\right\} \\
& X \rightarrow Y=\{f: X \mapsto Y \mid \operatorname{dom} f=X\} \\
& X \mapsto Y=\{f: X \mapsto Y \mid \operatorname{ran} f=Y\} \\
& X \rightarrow Y=(X \rightarrow Y) \cap(X \rightarrow Y) \\
& X \hookrightarrow Y=(X \rightarrow Y) \cap(X \hookrightarrow Y)
\end{aligned}
\]

\section*{Laws:}
\(f \in X \hookrightarrow Y \Leftrightarrow f \in X \rightarrow Y \wedge f^{\sim} \in Y \rightarrow X\) \(f \in X \rightarrow Y \Rightarrow f \circ f^{\sim}=\operatorname{id} Y\)

\section*{Z Function Sets in CalcСheck}

For two sets \(X\) : set \(t_{1}\) and \(Y\) : set \(t_{2}\), we define the following function sets:
\begin{tabular}{|c|c|c|c|}
\hline CalcCheck & & & Z \\
\hline \(f \in X \rightarrow Y\) \tfun & total function & \(\operatorname{Domf}=X \wedge f^{\sim} \stackrel{\circ}{\text { f }} \subseteq\) id \(Y\) & \(f \in X \rightarrow Y\) \\
\hline \(f \in X \rightarrow Y\) \pfun & partial function & \(\operatorname{Domf} \subseteq X \wedge f^{\sim}{ }_{\circ} f \subseteq\) id \(Y\) & \(f \in X \rightarrow Y\) \\
\hline \(f \in X \mapsto Y \quad\) Itinj & total injection & \(f_{q} f^{\sim}=\mathrm{id} X \wedge f^{\sim} \mathrm{g}\) f \(\subseteq \mathrm{id} Y\) & \(f \in X \rightarrow Y\) \\
\hline \(f \in X \nrightarrow Y \quad\) pinj & partial injection & \(f_{\circ} f^{\sim} \subseteq \mathrm{id} X \wedge f^{\sim} ; f^{\text {¢ }}\) id \(Y\) & \(f \in X \nVdash Y\) \\
\hline \(f \in X \rightarrow Y\) \tsurj & total surjection & \(\operatorname{Domf}=X \wedge f^{\sim}{ }_{9} f=\operatorname{id} Y\) & \(f \in X \rightarrow Y\) \\
\hline \(f \in X \rightarrow Y\) \psurj & partial surjection & \(\operatorname{Domf} \subseteq X \wedge f^{\sim}{ }_{\circ} f=\operatorname{id} Y\) & \(f \in X>Y\) \\
\hline \(f \in X \rightsquigarrow Y\) \tbij & total bijection & \(f \circ f^{\sim}=\operatorname{id} X \wedge f^{\sim} ; f=\operatorname{id} Y\) & \(f \in X \rightarrow Y\) \\
\hline \(f \in X \nrightarrow Y \quad \backslash \mathrm{pbij}\) & partial bijection & \(f_{\circ} f^{\sim} \subseteq \mathrm{id} X \wedge f^{\sim} \mathrm{g} f=\mathrm{id} Y\) & \\
\hline
\end{tabular}

\section*{Counting...}

Let \(X\) and \(Y\) be finite sets with \(\# X=x\) and \(\# Y=y\) :
- \(\#(X \times Y)=\) ?
— relations
- \(\#(X \leftrightarrow Y)=\#(\mathbb{P}(X \times Y))=\) ?
- \(\#(X \rightarrow Y)=\) ?
— total functions
- \(\#(X+Y)=\) ?
- partial functions
- \(\#(X>X)=\) ? homogeneous total bijections
- \(\#(X \gg)=\) ?
- \(\#(X \mapsto Y)=\) ?
- total bijections
— total injections
- \(\#(X \nrightarrow Y)=\) ?
- partial bijections
- \(\#(X \ngtr Y)=\) ?
- partial injections
- \(\#(X \rightarrow Y)=\) ?
- total surjections
- \# \(\{S \mid S \subseteq Y \wedge \# S=x\}=\) ?
— \(x\)-combinations of \(Y\)

More Z Symbols: Domain- and Range-Restriction and -Antirestriction
Given types \(t_{1}, t_{2}:\) Type, sets \(A:\) set \(t_{1}\) and \(B:\) set \(t_{2}\), and relation \(R: t_{1} \leftrightarrow t_{2}\) :
- Domain restriction:
\(A \triangleleft R=R \cap(A \times U)\)
- Domain antirestriction: \(A \notin R=R-(A \times U)=R \cap(\sim A \times U)\)
- Range restriction: \(\quad R \triangleright B=R \cap(U \times B)\)
- Range antirestriction: \(\quad R \triangleright B=R-(U \times B)=R \cap(U \times \sim B)\)
\[
B ;(\{J u n\} \times U) \quad \cap \quad\left(C ; C^{\sim}\right) \subseteq \mathbb{I}
\]
\(\equiv\langle\) Domain- and range restriction properties 〉
\[
\operatorname{Dom}(B \triangleright\{J u n\}) \triangleleft\left(C ; C^{\wedge}\right) \subseteq \mathbb{I}
\]

Still no quantifiers, and no \(x, y\) of element type
- but not only relations, also sets!
(The abstract version of this is called Peirce algebra, after Chales Sanders Peirce.)

Also in Z: Relational Image and Relation Overriding
Given types \(t_{1}, t_{2}:\) Type, sets \(A:\) set \(t_{1}\) and \(B:\) set \(t_{2}\), and relations \(R, S: t_{1} \leftrightarrow t_{2}\) :
- Relational image: \(\quad R(|A|)=\operatorname{Ran}(A \triangleleft R)\)
"Relational image of set \(A\) under relation \(R\)
Notation as "generalised function application"...
\[
B \stackrel{\circ}{9}(\{J u n\} \times U) \quad \cap\left(C ; C^{\sim}\right) \subseteq \mathbb{I}
\]
\(\equiv\) 〈Domain- and range restriction properties \(\rangle\)
\(\operatorname{Dom}(B \triangleright\{J u n\}) \triangleleft\left(C ; C^{\smile}\right) \subseteq \mathbb{I}\)
\(\equiv\langle\) Relational image 〉
\[
\left(B^{\smile}(|\{J u n\}|)\right) \triangleleft\left(C_{\circ}^{\circ} C^{\smile}\right) \subseteq \mathbb{I}
\]
- Relation overriding: \(R \oplus S=(\operatorname{Dom} S \notin R) \cup S\)
"Updating \(R\) exactly where \(S\) relates with anything"
In the relation \(C \oplus\{\langle A o s, J u n\rangle\} \quad\), Aos called only Jun.

\section*{Predicate Logic Laws You Really Need To Know Now}
(8.13) Empty Range:
(8.14) One-point Rule: Provided ...,
(8.15) (Quantification) Distributivity:
(8.16-18) Range split:
(9.17) Generalised De Morgan:
(9.2) Trading for \(\forall\) :
...
(9.19) Trading for \(\exists\) :
...
(9.13) Instantiation: \(\qquad\)
(9.28) \(\exists\)-Introduction:
...
...and correctly handle substitution, Leibniz, bound variable rearrangements, monotonicity/antitonicity, For any ...

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-27

\section*{Part 1: Quantifier Reasoning Examples: Ex6.3}

\section*{Ex6.3-Domain of Union - Step 1}

Theorem "Domain of union": \(\operatorname{Dom}(R \cup S)=\operatorname{Dom} R \cup \operatorname{Dom} S\)
Proof:
Using "Set extensionality":
For any ` \(x\) :
\(x \in \operatorname{Dom}(R \cup S)\)
\(\equiv\langle ?\rangle\)
\(x \in \operatorname{Dom} R \cup \operatorname{Dom} S\)

\section*{Ex6.3-Domain of Union - Step 2}

Theorem "Domain of union": Dom \((R \cup S)=\operatorname{Dom} R \cup \operatorname{Dom} S\) Proof:

Using "Set extensionality ": For any \({ }^{\prime} x\) :
\(x \in \operatorname{Dom}(R \cup S)\)
\(\equiv\langle\) "Membership in `Dom" " \(\rangle\)
\(\exists y \bullet x(R \cup S) y\)
\(\equiv\langle\) "Relation union" \(\rangle\)
\(\exists y \bullet x(R) y \vee x(S) y\)
\(\equiv\langle ?\rangle\)
\((\exists y \bullet x(R) y) \vee(\exists y \bullet x(S) y)\)
\(\equiv\left\langle\right.\) "Membership in `Dom" \(\left.{ }^{\prime}\right\rangle\)
\(x \in \operatorname{Dom} R \vee x \in \operatorname{Dom} S\)
\(\equiv\left\langle{ }^{\prime}\right.\) Union" \(\rangle\)
\(x \in \operatorname{Dom} R \cup \operatorname{Dom} S\)

\section*{Ex6.3-Domain of Union - Step 3}

Theorem "Domain of union": Dom \((R \cup S)=\operatorname{Dom} R \cup \operatorname{Dom} S\)

\section*{Proof:}

Using "Set extensionality":
For any ` \(x\) :
\(x \in \operatorname{Dom}(R \cup S)\)
\(\equiv\langle\) "Membership in `Dom'" \(\rangle\)
\(\exists y \bullet x(R \cup S) y\)
\(\equiv\langle\) "Relation union" \(\rangle\)
\(\exists y \bullet x(R) y \vee x(S) y\)
\(\equiv\langle\) "Distributivity of \(\exists\) over \(\vee\) " \(\rangle\)
\((\exists y \bullet x(R) y) \vee(\exists y \bullet x(S) y)\)
\(\equiv\langle\) "Membership in `Dom" " \(\rangle\)
\(x \in \operatorname{Dom} R \vee x \in \operatorname{Dom} S\)
\(\equiv\langle "\) Union" \(\rangle\)
\(x \in \operatorname{Dom} R \cup \operatorname{Dom} S\)

\section*{Ex6.3-Domain of \(\cap\) - Step 1}

Theorem "Domain of intersection": Dom \((R \cap S) \subseteq \operatorname{Dom} R \cap \operatorname{Dom} S\)
Proof:
Using "Set inclusion":
For any \({ }^{\prime} x\) :
\(x \in \operatorname{Dom}(R \cap S)\)
\(\equiv\left\langle{ }^{\prime}\right.\) Membership in `Dom"" \(\rangle\)
\(\exists y \bullet x(R \cap S) y\)
\(\equiv\langle\) "Relation intersection" \(\rangle\)
\(\exists y \bullet x(R) y \wedge x(S) y\)
\(\Rightarrow\langle ?\rangle\)
\((\exists y \bullet x(R) y) \wedge(\exists y \bullet x(S) y)\)
\(\equiv\langle\) "Membership in 'Dom"" \(\rangle\)
\(x \in \operatorname{Dom} R \wedge x \in \operatorname{Dom} S\)
\(\equiv\langle\) "Intersection" \(\rangle\)
\(x \in \operatorname{Dom} R \cap \operatorname{Dom} S\)

\section*{Ex6.3-Domain of \(\cap\) - Step 2}
```

Theorem "Domain of intersection": Dom $(R \cap S) \subseteq \operatorname{Dom} R \cap \operatorname{Dom} S$
Proof:
Using "Set inclusion":
For any ‘ $x$ :
$x \in \operatorname{Dom}(R \cap S)$
$\equiv\left\langle{ }^{\prime}\right.$ Membership in `Dom"" \(\rangle\)             \(\exists y \bullet x(R \cap S) y\)             \(\equiv\langle\) "Relation intersection" \(\rangle\)             \(\exists y \bullet x(R) y \wedge x(S) y\)             \(\equiv\langle\) "Idempotency of \(\wedge\) " \(\rangle\)                     \((\exists y \bullet x(R) y \wedge x(S) y) \wedge(\exists y \bullet x(R) y \wedge x(S) y)\)             \(\Rightarrow\langle\) ? with "Weakening" \(\rangle\)                         \((\exists y \bullet x(R) y) \quad \wedge(\exists y \bullet \quad x(S) y)\)             \(\equiv\langle\) "Membership in `Dom'" $\rangle$
$x \in \operatorname{Dom} R \wedge x \in \operatorname{Dom} S$
$\equiv\langle$ "Intersection" $\rangle$
$x \in \operatorname{Dom} R \cap \operatorname{Dom} S$

```

\section*{Ex6．3－Domain of \(\cap\)－Step 3}

Theorem＂Domain of intersection＂：Dom \((R \cap S) \subseteq \operatorname{Dom} R \cap \operatorname{Dom} S\)
Proof：
Using＂Set inclusion＂： For any \({ }^{\prime} x\) ：
\(x \in \operatorname{Dom}(R \cap S)\)
\(\equiv\langle\)＂Membership in＇Dom＂＂\(\rangle\)
\(\exists y \bullet x(R \cap S) y\)
\(\equiv\langle\)＂Relation intersection＂\(\rangle\)
\(\exists y \bullet x(R) y \wedge x(S) y\) \(\equiv\langle\)＂Idempotency of \(\wedge\)＂\(\rangle\)
\((\exists y \bullet x(R) y \wedge x(S) y) \wedge\)
\((\exists y \bullet x(R) y \wedge x(S) y)\) \(\Rightarrow\) 〈＂Monotonicity of \(\wedge\)＂with
＂Body monotonicity of \(\exists\)＂with＂Weakening＂\(\rangle\)
\((\exists y \bullet x(R) y) \wedge(\exists y \bullet x(S) y)\) \(\equiv\left\langle{ }^{\prime}\right.\) Membership in｀Dom＂＂\(\rangle\)
\(x \in \operatorname{Dom} R \wedge x \in \operatorname{Dom} S\) \(\equiv\langle\)＂Intersection＂\(\rangle\)
\(x \in \operatorname{Dom} R \cap \operatorname{Dom} S\)

\section*{Ex6．3－Domain of \(\cap\)（B）－Step 1}

Theorem＂Domain of intersection＂：Dom \((R \cap S) \subseteq \operatorname{Dom} R \cap \operatorname{Dom} S\) Proof：

Using＂Set inclusion＂：
For any \({ }^{\prime} x\) ：
\(x \in \operatorname{Dom}(R \cap S)\)
\(\equiv\langle\)＂Membership in｀Dom＂＂\(\rangle\)
\(\exists y \bullet x(R \cap S) y\)
Theorem（9．21）＂Distributivity of \(\wedge\) over \(\exists\)＂：
\(\equiv\langle\)＂Relation intersection＂\(\rangle\)
\(\exists y \bullet x(R) y \wedge x(S) y\)
\(P \wedge(\exists x \mid R \bullet Q) \equiv(\exists x \mid R \bullet P \wedge Q)\) provided \(\neg\) occurs（＇\(x^{\prime}\) ，＇\(P^{\prime}\) ）
\[
\Rightarrow\langle ?\rangle
\]
\((\exists y \bullet x(R) y) \wedge(\exists y \bullet x(S) y)\)
\(\equiv\) 〈＂Membership in｀Dom＂\({ }^{\prime}\) ）
\(x \in \operatorname{Dom} R \wedge x \in \operatorname{Dom} S\)
\(\equiv\) 〈＂Intersection＂\(\rangle\)
\(x \in \operatorname{Dom} R \cap \operatorname{Dom} S\)

\section*{Ex6．3－Domain of \(\cap\)（B）－Step 2}

Theorem＂Domain of intersection＂：Dom \((R \cap S) \subseteq \operatorname{Dom} R \cap \operatorname{Dom} S\)
Proof：
Using＂Set inclusion＂：
For any \({ }^{\prime} x\) ：
\(x \in \operatorname{Dom}(R \cap S)\)
\(\equiv\left\langle{ }^{\prime}\right.\) Membership in｀Dom＂＂\(\rangle\)
\(\exists y \bullet x(R \cap S) y\)
\(\equiv\langle\)＂Relation intersection＂\(\rangle\)
\(\exists y \bullet x(R) y \wedge x(S) y\)
\(\Rightarrow\langle ?\rangle\)
Theorem（9．21）＂Distributivity of \(\wedge\) over \(\exists\)＂：
\(P \wedge(\exists x \mid R \bullet Q) \equiv(\exists x \mid R \bullet P \wedge Q)\) provided \(\neg\) occurs（ \({ }^{\prime} x^{\prime},{ }^{\prime} P^{\prime}\) ）
\(\exists y \bullet x(R) y \wedge(\exists y \bullet x(S) y)\)
\(\equiv\langle\)＂Distributivity of \(\wedge\) over \(\exists\)＂\(\rangle\)
\((\exists y \bullet x(R) y) \wedge(\exists y \bullet x(S) y)\)
\(\equiv\left\langle{ }^{\prime}\right.\) Membership in｀Dom＂＂\(\rangle\)
\(x \in \operatorname{Dom} R \wedge x \in \operatorname{Dom} S\)
\(\equiv\langle\)＂Intersection＂\(\rangle\)
\(x \in \operatorname{Dom} R \cap \operatorname{Dom} S\)
```

Ex6.3-Domain of $\cap(B)$ - Step 3

```

Theorem "Domain of intersection": Dom \((R \cap S) \subseteq \operatorname{Dom} R \cap \operatorname{Dom} S\)
Proof:
Using "Set inclusion": For any \({ }^{\prime} x\) :
\(x \in \operatorname{Dom}(R \cap S)\)
\(\equiv\left\langle{ }^{\prime}\right.\) Membership in `Dom"" \(\rangle\)
\(\exists y \bullet x(R \cap S) y\)
\(\equiv\langle\) "Relation intersection" \(\rangle\)
\(\exists y \bullet x(R) y \wedge x(S) y\)
\(\equiv\langle\) Substitution \(\rangle\)
\(\exists y \bullet x(R) y \wedge(x(S) y)[y:=y]\)
\(\Rightarrow\langle ? \quad\) with \(" \exists\)-Introduction" \(\rangle\)
\(\exists y \bullet x(R) y \wedge(\exists y \bullet x(S) y)\)
\(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
\((\exists y \bullet x(R) y) \wedge(\exists y \bullet x(S) y)\)
\(\equiv\left\langle{ }^{\prime}\right.\) Membership in `Dom"" \(\rangle\)
\(x \in \operatorname{Dom} R \wedge x \in \operatorname{Dom} S\)
\(\equiv\langle\) "Intersection" \(\rangle\)
\(x \in \operatorname{Dom} R \cap \operatorname{Dom} S\)

\section*{Ex6.3-Domain of \(\cap\) (B) - Step 4}

Theorem "Domain of intersection": Dom \((R \cap S) \subseteq \operatorname{Dom} R \cap \operatorname{Dom} S\)
Proof:
Using "Set inclusion":
For any ` \(x\) :
\(x \in \operatorname{Dom}(R \cap S)\)
\(\equiv\langle\) "Membership in `Dom"" \(\rangle\)
\(\exists y \bullet x(R \cap S) y\)
\(\equiv\langle\) "Relation intersection" \(\rangle\)
\(\exists y \bullet x(R) y \wedge x(S) y\)
\(\equiv\langle\) Substitution \(\rangle\)
\(\exists y \bullet x(R) y \wedge(x(S) y)[y:=y]\)
\(\Rightarrow\langle\) "Body monotonicity of \(\exists\) " with "Monotonicity of \(\wedge\) " with " \(\exists\)-Introduction" \(\rangle\)
\(\exists y \bullet x(R) y \wedge(\exists y \bullet x(S) y)\)
\(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
\((\exists y \bullet x(R) y) \wedge(\exists y \bullet x(S) y)\)
\(\equiv\langle\) "Membership in `Dom" " \(\rangle\)
\(x \in \operatorname{Dom} R \wedge x \in \operatorname{Dom} S\)
\(\equiv\langle\) "Intersection" \(\rangle\)
\(x \in \operatorname{Dom} R \cap \operatorname{Dom} S\)

\section*{Distributivity over \(\forall\)}
(9.5) Axiom, Distributivity of \(\vee\) over \(\forall\) : If \(\neg\) occurs(' \(x^{\prime},{ }^{\prime} P^{\prime}\)),
\[
P \vee(\forall x \mid R \bullet Q) \equiv(\forall x \mid R \bullet P \vee Q)
\]
(9.6) Provided \(\neg\) occurs (\(\left.{ }^{\prime} x^{\prime}, ~ ‘ P '\right)\),
\[
(\forall x \mid R \bullet P) \equiv P \vee(\forall x \bullet \neg R)
\]
(9.7) Distributivity of \(\wedge\) over \(\forall\) : If \(\rightarrow\) occurs (\(\left.{ }^{\prime} x^{\prime},{ }^{\prime} P^{\prime}\right)\),
\[
\neg(\forall x \bullet \neg R) \Rightarrow(P \wedge(\forall x \mid R \bullet Q) \equiv(\forall x \mid R \bullet P \wedge Q))
\]
(9.22.1) Distributivity of \(\wedge\) over \(\forall\) : If \(\rightarrow\) occurs (\({ }^{\prime} x^{\prime},{ }^{\prime} P^{\prime}\)),
\[
(\exists x \bullet R) \Rightarrow(P \wedge(\forall x \mid R \bullet Q) \equiv(\forall x \mid R \bullet P \wedge Q))
\]
(9.8) \((\forall x \mid R \bullet\) true \() \equiv\) true
\[
\begin{equation*}
(\forall x \mid R \bullet P \equiv Q) \Rightarrow((\forall x \mid R \bullet P) \equiv(\forall x \mid R \bullet Q)) \tag{9.9}
\end{equation*}
\]

\section*{Distributivity over \(\exists\)}
(9.21) Distributivity of \(\wedge\) over \(\exists\) : If \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime},{ }^{\prime} P^{\prime}\right)\),
\[
P \wedge(\exists x \mid R \bullet Q) \equiv(\exists x \mid R \bullet P \wedge Q)
\]
(9.22) Provided \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime},{ }^{\prime} P\right.\) '),
\[
(\exists x \mid R \bullet P) \equiv P \wedge(\exists x \bullet R)
\]
(9.23) Distributivity of \(\vee\) over \(\exists\) : If \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime}\right.\), ‘ \(P\) '),
\((\exists x \bullet R) \Rightarrow((\exists x \mid R \bullet P \vee Q) \equiv P \vee(\exists x \mid R \bullet Q))\)
(9.24) \((\exists x \mid R \bullet\) false \() \equiv\) false

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-27

\section*{Part 2: Explicit Induction Principles}

Natural Numbers Generated from 0 and suc - Explicit Induction Principle
Recall: Induction principle for the natural numbers:
- if \(P(0)\)

If \(P\) holds for 0
- and if \(P(m)\) implies \(P(\) suc \(m)\), and whenever \(P\) holds for \(m\), it also holds for suc \(m\),
- then for all \(m: \mathbb{N}\) we have \(P(m)\). then \(P\) holds for all natural numbers.

As inference rule:
With \(P: \mathbb{B}\) as metavariable for an expression:

As axiom / theorem — LADM p. 219: "weak induction":
Axiom "Induction over \(\mathbb{N}\) ":
\[
\begin{aligned}
& P[n:=0] \\
& \Rightarrow(\forall n: \mathbb{N} \mid P \bullet P[n:=\text { suc } n]) \\
& \Rightarrow(\forall n: \mathbb{N} \bullet P)
\end{aligned}
\]

Proving "Right-identity of + " Using the Induction Principle (v0)
Axiom "Induction over \(\mathbb{N}\) ":
\(P[n:=0]\)
\(\Rightarrow(\forall \mathrm{n}: \mathbb{N} \mid P \bullet P[n:=\) suc \(n])\)
\(\Rightarrow(\forall \mathrm{n}: \mathbb{N} \cdot P)\)
Theorem "Right-identity of + ": \(\forall \mathrm{m}: \mathbb{N} \cdot m+0=m\)
Proof:
Using "Induction over \(\mathbb{N}\) ":
Subproof for ` \((m+0=m)[m:=0]\) :
By substitution and "Definition of +"
Subproof for \({ }^{\prime} \forall m: \mathbb{N} \mid m+0=m \cdot(m+0=m)[m:=\) suc \(m]\) :
For any `m : \(\mathbb{N}\) ’ satisfying `m + \(0=m\) :
\((\mathrm{m}+0=\mathrm{m})[\mathrm{m}:=\) suc m\(]\)
\(=\langle\) Substitution, "Definition of +" 〉
suc \((m+0)=\) suc \(m\)
\(=\langle\) Assumption `m \(+0=m `\), "Reflexivity of \(="\rangle\)
true
(I never use this pattern with substitutions in the subproof goals.)

Proving "Right-identity of + " Using the Induction Principle (v1)
Axiom "Induction over \(\mathbb{N}\) ":
\(P[n:=0]\)
\(\Rightarrow(\forall \mathrm{n}: \mathbb{N} \mid \mathrm{P} \cdot \mathrm{P}[\mathrm{n}:=\) suc n\(])\)
\(\Rightarrow(\forall \mathrm{n}: \mathbb{N} \cdot P)\)
Theorem "Right-identity of +": \(\forall \mathrm{m}: \mathbb{N} \cdot m+0=m\)
Proof:
Using "Induction over \(\mathbb{N}\) ":
Subproof for `0 + 0 = 0`:
By "Definition of +"
Subproof for \({ }^{`} \forall \mathrm{~m}: \mathbb{N} \mid \mathrm{m}+0=\mathrm{m} \cdot\) suc \(\mathrm{m}+0=\) suc m :
For any `m : \(\mathbb{N}^{\prime}\) satisfying \({ }^{`} m+0=m `\) :
suc m + 0
\(=\langle\) "Definition of +") suc (m + 0)
\(=\langle\) Assumption `m \(+0=m `\rangle\) suc m
```

Proving "Right-identity of +" Using the Induction Principle (v2)
Theorem "Right-identity of +": \forall m : N • m + 0 = m
Proof:
Using "Induction over N
Subproof:
0 + 0
=\ "Definition of +" )
0
Axiom "Induction over \mathbb{N":}
P[n := 0]
=>(\forall n : N | P • P[n := suc n])
=>(\forall n : N • P)
Subproof:
For any `m : \mathbb{N}}\mathrm{ satisfying "IndHyp" `m + 0 = m`:
suc m + 0
={ "Definition of +" )
suc (m + 0)
=\ Assumption "IndHyp" )
suc m

```
- (Subproof goals can be omitted where they are clear from the contained proof.)
- You need to understand (v0) and (v1) to be able to do (v2)!

\section*{"By induction on ..." versus Using Induction Principles}
- Using induction principles directly is not much more verbose than "By induction on ...'
- "By induction on ..." only supports very few built-in induction principles
- Induction principles can be derived as theorems, or provided as axioms, and then can be used directly!
\begin{tabular}{ll}
\multicolumn{2}{c|}{ Sequences - Induction Principle } \\
Induction principle for sequences: \\
o if \(P(\epsilon)\) & \\
- and if \(P(x s)\) implies \(P(x \triangleleft x s)\) for all \(x: A\), & If \(P\) holds for \(\epsilon\) \\
&
\end{tabular}
and whenever \(P\) holds for \(x s\), it also holds for any \(x \triangleleft x s\)
- then for all \(x s\) : Seq \(A\) we have \(P(x s)\). then \(P\) holds for all sequences over \(A\).
\[
\begin{aligned}
P[x s:=\epsilon] & \Rightarrow(\forall x s: \operatorname{Seq} A \mid P \bullet(\forall x: A \bullet P[x s:=x \triangleleft x s]) \\
& \Rightarrow(\forall x s: \operatorname{Seq} A \bullet P)
\end{aligned}
\]
```

Axiom "Induction over sequences":
P[xs:= \epsilon]
=>(\forall xs : Seq A | P • (\forall x : A • P[xs := x \triangleleft xs]))
\# (V xs : Seq A P P)
P[m:= 0] => (\forallm:\mathbb{N}|P\bulletP[m:= suc m]) => ( }\textrm{|m:N
Axiom "Induction over N":
P[n:= 0]
(\forall n:N I P - P[n = suc n])
=>(\forall n:N

```

\section*{Recall: Tail is different - LADM Proof}

Theorem (13.7) "Tail is different": \(\forall \mathrm{xs}: \operatorname{Seq} A \bullet \forall x: A \bullet x \triangleleft \mathrm{xs} \neq \mathrm{xs}\) Proof:

By induction on `xs : Seq \(A\) ’:
Base case:
For any \({ }^{`} x: A\) :
\(x \triangleleft \epsilon \neq \epsilon\)
\(\equiv\langle\) "Cons is not empty" \(\rangle\)
true
Induction step:
For any \({ }^{`} z: A^{\prime}, ` x: A `\)
\(x \triangleleft z \triangleleft \mathrm{xS} \neq z \triangleleft \mathrm{xS}\)
\(\equiv\langle\) "Definition of \(\neq\) ", "Cancellation of \(\triangleleft\) " \(\rangle\)
\(\neg(x=z \wedge z \triangleleft \mathrm{xS}=\mathrm{xs})\)
\(\Leftarrow\langle\) "Consequence", "De Morgan", "Weakening", "Definition of \(\neq "\rangle\)
\(z \triangleleft \mathrm{xs} \neq \mathrm{xs}\)
\(\equiv\left\langle\right.\) Induction hypothesis \(\left.{ }^{`} \forall x: A \bullet x \triangleleft \mathrm{xs} \neq \mathrm{xs}^{`}\right\rangle\)
true
(For explanations about using "By induction on ` \(x s\) : Seq \(A\) `:" for proving
" \(\forall x s: \operatorname{Seq} A \bullet P "\), see H13 and Ex5.2.)

Proving "Tail is different" Using the Induction Principle
Theorem "Induction over sequences":
\[
\begin{aligned}
P[x s:=\epsilon] & \Rightarrow(\forall \mathrm{xs}: \text { Seq } A \mid P \bullet(\forall x: A \bullet P[x s:=x \triangleleft x s])) \\
& \Rightarrow(\forall \mathrm{xs}: \text { Seq } A \bullet P)
\end{aligned}
\]

Theorem (13.7) "Tail is different": \(\quad \forall \mathrm{xs}: \operatorname{Seq} A \bullet \forall x: A \bullet x \triangleleft \mathrm{xs} \neq \mathrm{xs}\) Proof:

Using "Induction over sequences":
Subproof for \(\forall x: A \bullet x \triangleleft \epsilon \neq \epsilon^{\prime}\) :
For any \({ }^{\prime} x\) : \(A\) ':
By "Cons is not empty"
Subproof for \({ }^{`} \forall \mathrm{xS}: \operatorname{Seq} A\)
! \((\forall z: A \bullet(\forall x: A \bullet x \triangleleft z \triangleleft \mathrm{xs} \neq z \triangleleft \mathrm{xs}))\)):
For any \({ }^{`} x s: S e q ~ A `\)
satisfying "Ind. Hyp." \((\forall x: A \bullet x \triangleleft \mathrm{xs} \neq \mathrm{xs})\)):
For any \({ }^{`} z: A^{\prime},{ }^{\prime} x: A\) :
\(x \triangleleft z \triangleleft \mathrm{XS} \neq z \triangleleft \mathrm{XS}\)
\(\equiv\langle\) "Definition of \(\neq\) ", "Injectivity of \(\triangleleft\) " \(\rangle\)
\(\neg(x=z \wedge z \triangleleft \mathrm{xs}=\mathrm{xs})\)
\(\Leftarrow\langle\) "De Morgan", "Weakening", "Definition of \(\neq\) " \(\rangle\)
\(z \triangleleft \mathrm{xs} \neq \mathrm{xs}\)
\(\equiv\langle\) Assumption "Ind. Hyp." \(\rangle\) true
```

Proving "Tail is different" Using the Induction Principle - Less Verbose
Theorem "Induction over sequences":
$P[x s:=\epsilon]$
$\Rightarrow(\forall \mathrm{xs}: \operatorname{Seq} A \mid P \bullet(\forall x: A \bullet P[x s:=x \triangleleft x \mathrm{~s}]))$
$\Rightarrow(\forall \mathrm{xs}: \operatorname{Seq} A \bullet P)$

```

Theorem (13.7) "Tail is different": \(\forall \mathrm{xs}: \operatorname{Seq} A \bullet \forall x: A \bullet x \triangleleft \mathrm{xs} \neq \mathrm{xs}\)
Proof:
 Using "Induction over sequences":
 Subproof for \(\forall x: A \bullet x \triangleleft \epsilon \neq \boldsymbol{\epsilon}^{\prime}\) :
 For any ` \(x\) : \(A\) ’:
 By "Cons is not empty"
 Subproof:
 For any `xs : Seq \(A\) ` satisfying "Ind. Hyp." \((\forall x: A \bullet x \triangleleft \mathrm{xs} \neq \mathrm{xs})\)):
 For any \({ }^{`} z: A^{\prime}, ` x: A^{\prime}:\)
 \(x \triangleleft z \triangleleft \mathrm{XS} \neq z \triangleleft \mathrm{XS}\)
 \(\equiv\langle\) "Definition of \(\neq\) ", "Injectivity of \(\triangleleft\) " \(\rangle\)
 \(\neg(x=z \wedge z \triangleleft \mathrm{xs}=\mathrm{xs})\)
 \(\Leftarrow\langle\) "De Morgan", "Weakening", "Definition of \(\neq "\rangle\)
 \(z \triangleleft \mathrm{xs} \neq \mathrm{xs}\)
 \(\equiv\langle\) Assumption "Ind. Hyp." \(\rangle\)
 true

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-27
Part 3: Residuals

\section*{Given: \(\quad x \leq z \quad \equiv \quad x \leq 5\)}

What do you know about \(z\) ? Why? (Prove it!)

Given: \(X \subseteq A \Rightarrow B \equiv X \cap A \subseteq B\)
Calculate the relative pseudocomplement \(A \Rightarrow B!\)
Given, for \(R: A \leftrightarrow B\) and \(S: A \leftrightarrow C: \quad X \subseteq R \backslash S \quad \equiv \quad R \subseteq S\)
\(R \backslash S\) is the largest solution \(X: B \leftrightarrow C\) for \(R \circ X \subseteq S\).
Calculate the right residual ("left division") \(R \backslash S\) !

Same idea as for " \(\Rightarrow\) ":
Using extensionality, calculate \(b(R \backslash S)_{c} \equiv b(?)_{c}\)

Given, for \(R: A \leftrightarrow B\) and \(S: A \leftrightarrow C\) :
\(X \subseteq R \backslash S \quad \equiv \quad R \circ X \subseteq S\)
Calculate the right residual ("left division") \(R \backslash S\) !

\(b(R \backslash S) c\)
\(=\langle\) Similar to the calculation for relative pseudocomplement \(\rangle\)
\((\forall a \mid a(R) b \bullet a(S) c)\)
\(=\langle\) Generalised De Morgan, Relation conversions - Ex. 6.3 (R1) \(\rangle\)
\[
b\left(\sim\left(R^{\sim} ; \sim S\right)\right) c
\]

Therefore: \(\quad R \backslash S=\sim\left(R^{\sim} ; \sim S\right)\)
- monotonic in second argument; antitonic in first argument

Proving \(b(R \backslash S)_{c} \equiv(\forall a \mid a(R) b \bullet a(S) c)\) :
\(b(R \backslash S) c\)
\(=\langle e \in S \equiv\{e\} \subseteq S\) - Exercise! \(\rangle\)
\(\{\langle b, c\rangle\} \subseteq(R \backslash S)\)
\(=\langle\) Def. \(\backslash: X \subseteq R \backslash S \equiv R \circ X \subseteq S\rangle\)
\(R \circ\{\langle b, c\rangle\} \subseteq S\)
\(=\langle(11.13 r)\) Relation inclusion \(\rangle\)
\(\left(\forall a, c^{\prime} \mid a\left(R_{\circ}\{\langle b, c\rangle\}\right) c^{\prime} \cdot a(S) c^{\prime}\right)\)
\(=\langle(14.20)\) Relation composition \(\rangle\)
\(\left(\forall a, c^{\prime} \mid\left(\exists b^{\prime} \bullet a(R) b^{\prime} \wedge b^{\prime}(\{\langle b, c\rangle\}) c^{\prime}\right) \bullet a(S) c^{\prime}\right)\)
\(=\langle y \in\{x\} \equiv y=x\) - Exercise! \(\rangle\)
\(\left(\forall a, c^{\prime} \mid\left(\exists b^{\prime} \bullet a(R) b^{\prime} \wedge b^{\prime}=b \wedge c=c^{\prime}\right) \bullet a(S) c^{\prime}\right)\)
\(=\langle(9.19)\) Trading for \(\exists\rangle\)
\(\left(\forall a, c^{\prime} \mid\left(\exists b^{\prime} \mid b^{\prime}=b \bullet a(R) b^{\prime} \wedge c=c^{\prime}\right) \bullet a(S) c^{\prime}\right)\)
\(=\langle(8.14)\) One-point rule \(\rangle\)
\(\left(\forall a, c^{\prime} \mid a(R) b \wedge c=c^{\prime} \bullet a(S) c^{\prime}\right)\)
\(=\langle(8.20)\) Quantifier nesting \(\rangle\)
\(\left(\forall a \mid a(R) b \bullet\left(\forall c^{\prime} \mid c=c^{\prime} \bullet a(S) c^{\prime}\right)\right)\)
\(=\langle(1.3)\) Symmetry of \(=\), (8.14) One-point rule \(\rangle\)
\((\forall a \mid a(R) b \cdot a(S) c)\)
```

Right Residual:
$X \subseteq R \backslash S \quad \equiv \quad R \nsubseteq X \subseteq S$
Proving $R \backslash S=\sim\left(R^{\sim} ; \sim S\right)$ :
$b(R \backslash S)_{c}$
$=\langle$ previous slide $\rangle$
$(\forall a \mid a(R) b \cdot a(S) c)$
$=\langle(9.18 \mathrm{a})$ Generalised De Morgan $\rangle$
$\neg(\exists a \mid a(R) b \bullet \neg(a(S) c))$
$=\langle(11.17 \mathrm{r})$ Relation complement $\rangle$
$\neg(\exists a \mid a(R) b \bullet a(\sim S) c)$
$=\langle$ (9.19) Trading for $\exists$, (14.18) Converse $\rangle$
$\neg\left(\exists a \bullet b\right.$ ( $\left.\left.R^{\sim}\right) a \wedge a(\sim S) c\right)$
$=\langle(14.20)$ Relation composition $\rangle$
$\neg\left(b\left(R^{-} ; \sim S\right) c\right)$
$=\langle(11.17 \mathrm{r})$ Relation complement $\rangle$
$b\left(\sim\left(R^{\sim} ; \sim S\right) \boldsymbol{C}\right.$

```

Given, for \(R: A \leftrightarrow B\) and \(S: A \leftrightarrow C\) :
\[
X \subseteq R \backslash S \quad \equiv \quad R \neq X \subseteq S
\]

Calculate the right residual ("left division") \(R \backslash S\) ! (" \(R\) under \(S\) ")

\(b(R \backslash S) c\)
\(=\langle\) Similar to the calculation for relative pseudocomplement \(\rangle\)
\((\forall a \mid a(R) b \cdot a(S) c)\)
\(=\langle\) Generalised De Morgan, Relation conversions - Ex. 6.3 (R1) \(\rangle\)
\(b\left(\sim\left(R^{\sim} ; \sim S\right)\right) c\)
Therefore: \(\quad R \backslash S=\sim(R \sim ; \sim S)\)
- monotonic in second argument; antitonic in first argument

\section*{Formalisations Using Residuals}
"Aos called only brothers of Jun."
"Everybody called by Aos is a brother of Jun."
\[
\begin{aligned}
& (\forall p \mid \operatorname{Aos}(C) p \bullet p(B) J u n) \\
\equiv & \langle(14.18) \text { Relation converse }\rangle \\
& \left(\forall p \mid p\left(C^{\sim}\right) \text { Aos } \bullet p(B) J u n\right) \\
\equiv & \langle\text { Right residual }\rangle \\
& \text { Aos }\left\langle C^{\sim} \backslash B\right\rangle J u n
\end{aligned}
\]

Relationship via \:
```

b(R\S)c
\equiv(\foralla|a(R)b \bulleta(S)c)

```
"Aos called every brother of Jun."
"Every brother of Jun has been called by Aos."
\[
\begin{aligned}
& (\forall p \mid p(B) J u n \bullet \operatorname{Aos}\langle C\rangle p) \\
\equiv & \langle(14.18) \text { Relation converse }\rangle \\
& \left(\forall p \mid p(B\rangle J u n \bullet p\left(C^{`}\right) \text { Aos }\right) \\
\equiv & \langle\text { Right residual }\rangle \\
& \operatorname{Jun}\left\langle B \backslash C^{\cup}\right\rangle \text { Aos }
\end{aligned}
\]

Characterisation of right residual: \(\forall R: A \leftrightarrow B ; S: A \leftrightarrow C \bullet X \subseteq R \backslash S \equiv R ; X \subseteq S\)
Two sub-cancellation properties follow easily:
\[
\begin{array}{rll}
R \circ(R \backslash S) & \subseteq & S \\
(Q \backslash R) \stackrel{ }{\circ}(R \backslash S) & \subseteq & (Q \backslash S)
\end{array}
\]

Theorem " \(\mathbb{I} \backslash\) ": \(\mathbb{I} \backslash R=R\) Proof:

Using "Mutual inclusion": Subproof:
\(\mathbb{I} \backslash R\)
\(=\left\langle\right.\) "Identity of \({ }_{9}\) " \(\rangle\)
\(\mathbb{I} ;(\mathbb{I} \backslash R)\)
\(\subseteq\left\langle{ }_{R}\right.\) "Cancellation of \(\left.\backslash "\right\rangle\)
Subproof:
\(R \subseteq \mathbb{I} \backslash R\)
\(\equiv\langle\) "Characterisation of \(\backslash\) " \(\rangle\)
\(\mathbb{I} \cap R \subseteq R\)
\(\equiv\langle\) "Identity of \(\stackrel{\prime}{ }\) ", "Reflexivity of \(\subseteq\) " \(\rangle\)
true

Translating between Relation Algebra and Predicate Logic
\[
\begin{array}{rlc}
R=S & \equiv & (\forall x, y \bullet x(R) y \equiv x(S) y) \\
R \subseteq S & \equiv & (\forall x, y \bullet x(R) y \Rightarrow x(S) y) \\
u(\}) v & \equiv & \text { false } \\
u(A \times B) v & \equiv & u \in A \wedge v \in B \\
u(\sim S) v & \equiv & \neg(u \backslash S) v) \\
u(S \cup T) v & \equiv & u(S) v \vee u(T) v \\
u(S \cap T) v & \equiv & u(S) v \wedge u(T) v \\
u(S-T) v & \equiv & u(S) v \wedge \neg(u \backslash T) v) \\
u(S \Rightarrow T) v & \equiv & u(S) v \Rightarrow u(T) v \\
u(i d A) v & \equiv & u=v \in A \\
u(\mathbb{I}) v & \equiv & u=v \\
u(R) v & \equiv & v(R) u \\
u(R ; S) v & \equiv & (\exists x \bullet u(R) x(S) v) \\
u(R \backslash S) v & \equiv & (\forall x \mid x(R) u \bullet x(S) v) \\
u(S) R) v & \equiv & (\forall x \mid v(R) x \bullet u(S) x)
\end{array}
\]

Translating between Relation Algebra and Predicate Logic
\[
\begin{array}{rlc}
R=S & \equiv & (\forall x, y \bullet x(R) y \equiv x(S) y) \\
R \subseteq S & \equiv & (\forall x, y \bullet x(R) y \Rightarrow x(S) y) \\
u(\}) v & \equiv & f a l s e \\
u(A \times B) v & \equiv & u \in A \wedge v \in B \\
u(\sim S) v & \equiv & \neg(u(S) v) \\
u(S \cup T) v & \equiv & u(S) v \vee u(T) v \\
u(S \cap T) v & \equiv & u(S) v \wedge u(T) v \\
u(S-T) v & \equiv & u(S) v \wedge \neg(u(T) v) \\
u(S \Rightarrow T) v & \equiv & u(S) v \Rightarrow u(T) v \\
u(i d A) v & \equiv & u=v \in A \\
u(\mathbb{I}) v & \equiv & u=v \\
u(R \subset) v & \equiv & v(R) u \\
u(R ; S) v & \equiv & (\exists x \mid u(R) x \bullet x(S) v) \\
u(R \backslash S) v & \equiv & (\forall x \mid x(R) u \bullet x(S) v) \\
u(S / R) v & \equiv & (\forall x \mid v(R) x \bullet u(S) x)
\end{array}
\]

> Translating between Relation Algebra and Predicate Logic
\[
\begin{array}{rlc}
R=S & \equiv & (\forall x, y \bullet x(R) y \equiv x(S) y) \\
R \subseteq S & \equiv & (\forall x, y \bullet x(R) y \Rightarrow x(S) y) \\
u(\}) v & \equiv & \text { false } \\
u(A \times B) v & \equiv & u \in A \wedge v \in B \\
u(\sim S) v & \equiv & \neg(u(S) v) \\
u(S \cup T) v & \equiv & u(S) v \vee u(T) v \\
u(S \cap T) v & \equiv & u(S) v \wedge u(T) v \\
u(S-T) v & \equiv & u(S) v \wedge \neg(u(T) v) \\
u(S \Rightarrow T) v & \equiv & u(S) v \Rightarrow u(T) v \\
u(i d A) v & \equiv & u=v \in A \\
u(\mathbb{I}) v & \equiv & u=v \\
u(R \leftharpoonup) v & \equiv & v(R) u \\
u(R ; S) v & \equiv & (\exists x \bullet u(R) x \wedge x(S) v) \\
u(R \backslash S) v & \equiv & (\forall x \bullet x(R) u \Rightarrow x(S) v) \\
u(S / R) v & \equiv & (\forall x \bullet v(R) x \Rightarrow u(S) x)
\end{array}
\]

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-30
Bags, While, Quantification Calculations

Logical Reasoning for Computer Science COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-30

\section*{Part 1: Bags/Multisets}
"Multisets" or "Bags" - LADM Section 11.7
A bag (or multiset) is "like a set, but each element can occur any (finite) number of times". Bag comprehension and enumeration: Written as for sets, but with delimiters \(l\) and \(S\).
Sets versus bags example:
\[
\left.\begin{array}{rl}
\{x: \mathbb{Z} \mid-2 \leq x \leq 2 \cdot x \cdot x\} & =\{4,1,0\} \\
\{x: \mathbb{Z} \mid-2 \leq x \leq 2 \cdot x \cdot x\} & =\{4,1,0,1,4\}
\end{array}=\{0,1,4\}=\{0,0,0,1,1,4\} \neq 20,1,4\right\}
\]

The operator _\#_ : \(t \rightarrow \operatorname{Bag} t \rightarrow \mathbb{N}\) counts the number of occurrences of an element in a bag:
\[
1 \# 20,0,0,1,1,4\}=2
\]

Bag extensionality and bag inclusion are defined via all occurrence counts:
\[
B=C \equiv(\forall x \bullet x \# B=x \# C) \quad B \subseteq C \equiv(\forall x \bullet x \# B \leq x \# C)
\]

Bag operations: \(\quad x \#(B \cup C)=(x \# B)+(x \# C)\)
\[
x \#(B \cap C)=(x \# B) \downarrow(x \# C)
\]
\[
x \#(B-C)=(x \# B)-(x \# C)
\]

\section*{Bag Product and Bag Reconstitution}

Recall: A bag is "like a set, but each element can occur any (finite) number of times".
\(2 x: \mathbb{Z} \mid-2 \leq x \leq 2 \cdot x \cdot x S=24,1,0,1,4 \zeta=20,1,1,4,4 \bigcirc \neq 20,1,4 \bigcirc\)
\# : \(t \rightarrow \operatorname{Bag} t \rightarrow \mathbb{N}\) counts the number of occurrences: \(1 \# 20,0,0,1,1,4 \mathrm{~S}=2\)
\({ }_{-} \mathrm{E}_{-}: t \rightarrow \operatorname{Bag} t \rightarrow \mathbb{B}\) is membership, with \(x \in B \equiv x \# B \neq 0: \quad 1 \equiv 20,0,0,1,1,4 S \equiv\) true
Calculate: \(\quad\langle x| x \equiv 20,0,0,1,1,4 S S=\) ?
Define bagProd: Bag \(\mathbb{N} \rightarrow \mathbb{N}\) such that: \(\quad \operatorname{bagProd}\left\{e_{1}, e_{2}, \ldots, e_{n} S=e_{1} \cdot e_{2} \cdot \ldots \cdot e_{n}\right.\) e.g., bagProd 2 2, 2, 3, 3,5 S \(=180\)
- Easy with exponentiation _**_: bagProd \(B=\Pi\) ?
- Without exponentiation: ?

Related question: For sets, we have (11.5): \(S=\{x \mid x \in S \bullet x\}\)
What is the corresponding theorem for bags?
Bag reconstitution: \(B=l\) ? ! • ? \(S \quad \longrightarrow\) Homework 16

Pigeonhole Principle - LADM section 16.4
The pigeonhole principle is usually stated as follows.
(16.43) If more than \(n\) pigeons are placed in \(n\) holes, at least one hole will contain more than one pigeon.

Assume:
- \(S: B a g \mathbb{R}\) is a bag of real numbers
- av \(S\) is the average of the elements of \(S\)
- max \(S\) is the maximum of the elements of \(S\)

Reformulating the pigeonhole principle: (16.44) av \(S>1 \Rightarrow \max S>1\)

\section*{Generalising:}
(16.45) Pigeonhole principle:

If \(S: B a g \mathbb{R}\) is non-empty, then: \(\quad a v S \leq \max S\)
Stronger on integers:
(16.46) Pigeonhole principle:

If \(S\) : Bag \(\mathbb{Z}\) is non-empty, then: \(\lceil a v S\rceil \leq \max S\)
(16.46) Pigeonhole principle: If \(S: B a g \mathbb{Z}\) is non-empty, then \(\lceil a v S\rceil \leq \max S\)
(16.47) Example: In a room of eight people, at least two of them have birthdays on the same day of the week.
Proof: Let bag \(S\) contain, for each day of the week, the number of people in the room whose birthday is on that day. The number of people is 8 and the number of days is 7 .
\(S=\imath d:\) Weekday • \(\#\left\{p \mid p\right.\) inRoom \(r_{0} \wedge p\) HasBirthdayOnA d \(\} S\)
Then:
\(\max S\)
\(\geq\langle\) Pigeonhole principle (16.46) \(-S\) contains integers \(\rangle\)
\(\lceil a v S\rceil\)
\(=\langle\mathrm{S}\) has 7 values that sum to 8\(\rangle\)
[8/7]
\(=\langle\) Definition of ceiling \(\rangle\)
2

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-30

\section*{Part 2: The While Rule}

\section*{The "While" Rule}

The constituents of a while loop "while \(B\) do \(C\) od" are:
- The loop condition \(B: \mathbb{B}\)
- The (loop) body C: Cmd

The conventional while rule allows to infer only correctness statements for while loops that are in the shape of the conclusion of this inference rule, involving an invariant condition \(Q: \mathbb{B}\) :

This rule reads:
- If you can prove that execution of the loop body \(C\) starting in states satisfying the loop condition \(B\) preserves the invariant \(Q\),
- then you have proof that the whole loop also preserves the invariant \(Q\), and in addition establishes the negation of the loop condition.
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline
\end{tabular}

The invariant will need to hold
－immediately before the loop starts，
－after each execution of the loop body，
－and therefore also after the loop ends．
The invariant will typically mention all variables that are changed by the loop，and explain how they are related．

In general，you have to identify an appropriate invariant yourself！
Well－written programs contain documentation of invariants for all loops．

\section*{Using the＂While＂Rule}
Theorem＂While－example＂：
Pre
\(\Rightarrow\) E INIT i
while \(B\)
do
\(C\)
od i
FINAL
J
Post

Proof：
Pre－．．．－－Precondition
\(\Rightarrow[\) INIT \(]\langle ?\rangle\)
Q ．．．．．．Invariant
\(\Rightarrow\) E while \(B\) do
C
od ］［＂While＂with subproof：
\(B \wedge Q \quad\)－．．．．Loop condition and invariant
\(\Rightarrow[C]\langle ?\rangle\)
Q－＂．－－Invariant
＞
\(\neg B \wedge Q \quad \cdots \cdots\) Negated loop condition，and invariant
\(\Rightarrow[\) FINAL \(]\langle ?\rangle\)
Post ．．．．．．Postcondition
```

Goal of Assignment 1.3: Correctness of a Program Containing a while-Loop
Theorem "Correctness of `elem" ": Proof:
true
$\Rightarrow \mathrm{Exs}:=x s_{0}$ i
$b:=$ false $;$
while $x s \neq \epsilon$ do
if head xs $=x$
then $b$ : = true
else skip
fi ;
xs : = tail Xs
od
J
$\left(b \equiv x \in x s_{0}\right) \quad \cdots+\quad$ Parentheses!

```
```

    true
    ```
 true
 \(\Rightarrow \mathrm{Exs}:=x \mathrm{~s}_{0}\) i
 \(\Rightarrow \mathrm{Exs}:=x \mathrm{~s}_{0}\) i
 \(b:=\) false
 \(b:=\) false
 〕 〈"Initialisation for `elem" "〉
 〕 〈"Initialisation for `elem" "〉
 (\(\left.\exists \mathrm{us} \cdot\left(\mathrm{us}-\mathrm{xs}=x \mathrm{~s}_{0}\right) \wedge(b \equiv x \in \mathrm{us})\right)\)
 (\(\left.\exists \mathrm{us} \cdot\left(\mathrm{us}-\mathrm{xs}=x \mathrm{~s}_{0}\right) \wedge(b \equiv x \in \mathrm{us})\right)\)
 \(\Rightarrow\) E while \(x s \neq \epsilon\) do
 \(\Rightarrow\) E while \(x s \neq \epsilon\) do
 if head \(\mathrm{xs}=x\)
 if head \(\mathrm{xs}=x\)
 then \(b:=\) true
 then \(b:=\) true
 else skip
 else skip
 fi \({ }^{\text {; }}\)
 fi \({ }^{\text {; }}\)
 xs : = tail xs
 xs : = tail xs
 od
 od
] 〈"While" with "Invariant for `elem" "
] 〈"While" with "Invariant for `elem" "
 \(\neg(\mathrm{xs} \neq \boldsymbol{\epsilon}) \wedge\left(\exists \mathrm{us} \cdot\left(\mathrm{us} \sim \mathrm{xs}=x \mathrm{~s}_{0}\right) \wedge(b \equiv x \in \mathrm{us})\right)\)
 \(\neg(\mathrm{xs} \neq \boldsymbol{\epsilon}) \wedge\left(\exists \mathrm{us} \cdot\left(\mathrm{us} \sim \mathrm{xs}=x \mathrm{~s}_{0}\right) \wedge(b \equiv x \in \mathrm{us})\right)\)
 \(\Rightarrow \quad\) 〈"Postcondition for `elem" "
 \(\Rightarrow \quad\) 〈"Postcondition for `elem" "
 \(\left(b \equiv x \in x s_{0}\right)\)
```

    \(\left(b \equiv x \in x s_{0}\right)\)
    ```
"Quantification is Somewhat Like Loops"
```

Theorem "Summing up":
true
\# S := 0 ;
i := 0 ;
while i \# n
do
s := s + f i ;
i := i + l
od
]
s=\sum j: N | j < n | f j

```

Invariant: \(\quad s=\sum j: \mathbb{N} \mid j<i \bullet f j\)
- Generalised postcondition using the negated loop condition
(This is a frequent pattern.)

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-10-30

\section*{Part 3: More Quantification Calculations}
(9.29) Interchange of quantifications:: Provided \(\neg\) occurs (\({ }^{\prime}\) ', ‘ \(R\) ') \(\wedge\) ᄀoccurs (\(x^{\prime}\) ', ' \(Q\) '), \((\exists x \mid R \bullet(\forall y \mid Q \bullet P)) \Rightarrow(\forall y \mid Q \bullet(\exists x \mid R \bullet P))\) One direction only!

\section*{Understanding Interchange}

Formalise: Every real number has an additive inverse.
true
\(=\langle\) Every real number does have an additive inverse \(\rangle\)
\((\forall y: \mathbb{R} \bullet(\exists x: \mathbb{R} \bullet y+x=0))\)
\(\Leftarrow\langle(9.29)\) Interchange of quantifications \(\rangle\)
\((\exists x: \mathbb{R} \bullet(\forall y: \mathbb{R} \bullet y+x=0))\)

> \begin{tabular}{|l|} \hline This says: "There is a real number \(x\) \\ \\ which is an additive inverse for all real numbers". \end{tabular}
\(=\langle\) Different numbers have different additive inverses ... \(\rangle\)
false
Interchange - Proof

\[
(\exists x \mid R \bullet(\forall y \mid Q \bullet P)) \Rightarrow(\forall y \mid Q \bullet(\exists x \mid R \bullet P))
\]

Proof of simpler case (\(R \equiv\) true):
```

    \((\exists x \bullet(\forall y \bullet P)) \quad \Rightarrow \quad(\forall y \bullet(\exists x \bullet P))\)
    ```
\(=\langle\) (3.57) Definition of \(\Rightarrow\rangle\)
\((\exists x \bullet(\forall y \bullet P)) \vee(\forall y \bullet(\exists x \bullet P)) \equiv(\forall y \bullet(\exists x \bullet P))\)
\(=\langle\) (9.5) Distributivity of \(\vee\) over \(\forall\rangle\)
\((\forall y \bullet(\exists x \bullet(\forall y \bullet P)) \vee(\exists x \bullet P)) \equiv(\forall y \bullet(\exists x \bullet P))\)
\(=\langle\) (8.15) Distributivity of \(\exists\) over \(\vee\rangle\)
\((\forall y \bullet(\exists x \bullet(\forall y \bullet P) \vee P)) \equiv(\forall y \bullet(\exists x \bullet P))\)
\(=\langle(9.13 .1)\) Instantiation \((\forall y \bullet P) \Rightarrow P\), with (3.57): \((\forall y \bullet P) \vee P \equiv P\rangle\) \((\forall y \bullet(\exists x \bullet P)) \equiv(\forall y \bullet(\exists x \bullet P))\)
— This is (3.5) Reflexivity of \(\equiv\)

\section*{Changing the Quantified Domain}
\(\left(\sum i \mid 2 \leq i<10 \bullet i^{2}\right)\)
\(=\left\langle\right.\) (8.22) with \({ }^{`}\left({ }^{+}+2\right)\) hasAnInverse \(\left.{ }^{`}\right\rangle\)
\(\left(\sum k \mid 0 \leq k<8 \bullet(k+2)^{2}\right)\)
(8.22) Change of dummy: Provided \(f\) has an inverse and \(\neg \operatorname{occurs}\left({ }^{\prime} y^{\prime}, \quad ' R, P^{\prime}\right.\))
(that is, " \(y\) is fresh"), then:
\[
(\star x \mid R \bullet P)=(\star y \mid R[x:=f y] \bullet P[x:=f y])
\]

Above: \(f y=2+y\) and \(f^{-1} x=x-2\)

A function \(f\) has an inverse \(f^{-1} \quad\) iff \(\quad x=f y \equiv y=f^{-1} x\)

Assume \(f\) has an inverse and \(\neg \operatorname{occurs}\left({ }^{\prime} y^{\prime}, \quad\right.\) ' \(x, R, P\) ')
(* \(y\) | \(R[x:=f y]\) • \(P[x:=f y])\)
\(=\left\langle\right.\) (8.14) One-point rule: \(\neg\) occurs(' \(x^{\prime}\), ' \(\left.\left.f y^{\prime}\right)\right\rangle\)
(*y | \(R[x:=f y]\) • (* \(x \mid x=f y \bullet P)\))
\(=\left\langle(8.20)\right.\) Nesting: \(\rightarrow\) occurs (\(\left.\left.{ }^{\prime} x^{\prime},{ }^{\prime} R[x:=f y]^{\prime}\right)\right\rangle\)
\((* x, y \mid R[x:=f y] \wedge x=f y \bullet P)\)
\(=\langle(3.84 \mathrm{a})\) Replacement \((e=f) \wedge E[z:=e] \equiv(e=f) \wedge E[z:=f]\rangle\)
\((\star x, y \mid R[x:=x] \wedge x=f y \bullet P)\)
\(=\left\langle R[x:=x]=R ;(8.20)\right.\) Nesting: -occurs (\({ }^{\prime} y^{\prime},{ }^{\prime} R\) ') \(\rangle\)
(\(* x \mid R \bullet(\star y \mid x=f y \bullet P))\)
\(=\left\langle\right.\) Inverse: \(\left.x=f y \equiv y=f^{-1} x\right\rangle\)
\(\left(\star x \mid R \bullet\left(* y \mid y=f^{-1} x \bullet P\right)\right)\)
\(=\left\langle\right.\) (8.14) One-point rule: \(\left.\neg \operatorname{occurs}\left({ }^{\prime} y^{\prime}, f^{-1} x^{\prime}\right)\right\rangle\)
(* \(x \mid R \bullet P\left[y:=f^{-1} x\right]\))
\(=\left\langle\right.\) Textual substitution, \(\rightarrow\) occurs(\(\left.\left.{ }^{\prime} y^{\prime},{ }^{\prime} P^{\prime}\right)\right\rangle\)
\((* x \mid R \bullet P)\)
\[
\text { Changing the Quantified Domain —occurs }\left({ }^{\prime} y^{\prime},{ }^{\prime} x^{\prime}\right)
\]

In the textbook:
(8.22) Change of dummy: Provided \(f\) has an inverse and \(\rightarrow\) occurs (' \(y\) ', \(‘ R, P^{\prime}\)),
\[
(\star x \mid R \bullet P)=(* y \mid R[x:=f y] \bullet P[x:=f y])
\]

We might have that \(\operatorname{occurs}\left({ }^{\prime} y^{\prime},{ }^{\prime} x^{\prime}\right)\).
(Note that \(x\) and \(y\) are metavariables for variables!)
Then \(x\) is the same variable as \(y\), and \(\neg o c c u r s\left(' x x^{\prime}, ~ ' R, P P^{\prime}\right.\)).
Therefore \(R[x:=f y]=R\) and \(P[x:=f y]=P\).
So the theorem's consequence becomes trivial:
\[
(\star x \mid R \bullet P)=(\star x \mid R \bullet P)
\]

So (8.22) as stated in the textbook is valid, but the proof covers only the case \(\rightarrow\) occurs (\(y^{\prime}\) ', \(x\) ').

\section*{Changing the Quantified Domain — Variants — see Ref. 5.1}

Theorem (8.22) "Change of dummy in \(\star\) ":
```

    \(\forall f \bullet \forall g\) •
        \((\forall x \bullet \forall y \bullet x=f y \equiv y=g x)\)
        \(\Rightarrow((\star x \mid R \quad \bullet P)\)
            \(=(\star y \mid R[x:=f y] \bullet P[x:=f y]))\)
    ```

Theorem (8.22.1) "Change of dummy in \(\star\) — variant":
```

$(\forall x \bullet \forall y \bullet x=f y \Rightarrow y=g x)$
$\Rightarrow((\star x \mid R \wedge x=f(g x) \bullet P)$
$=(\star y \mid R[x:=f y] \bullet P[x:=f y]))$

```

Theorem (8.22.3) "Change of restricted dummy in \(\star\) ":
\(\forall f \bullet \forall g \bullet\)
\((\forall x \mid R \bullet(\forall y \bullet x=f y \equiv y=g x))\)
\(\Rightarrow((\star x \mid R \quad \bullet P)\)
\(=(\star y \mid R[x:=f y] \cdot P[x:=f y]))\)

Modal Rules- Converse as Over-Approximation of Inverse
Modal rules: For \(Q: \mathcal{A} \leftrightarrow \mathcal{B}, R: \mathcal{B} \leftrightarrow \mathcal{C}\), and \(S: \mathcal{A} \leftrightarrow \mathcal{C}\) :
\[
\begin{aligned}
& Q ; R \cap S \subseteq Q_{\xi}\left(R \cap Q^{-} ; S\right) \\
& Q ; R \cap S \subseteq\left(Q \cap S ; R^{\sim}\right) ; R
\end{aligned}
\]

Useful to "make information available locally" (\(Q\) is replaced with \(Q \cap S ; R^{\sim}\)) for use in further proof steps.

In constraint diagrams (boxed variables are free; others existentially quantified; alternative paths are conjunction):

\((\exists b \cdot a(Q) b(R) c \wedge a(S) c) \quad \Rightarrow\)
\(\left(\exists b, c^{\prime} \cdot a(Q) b(R) c \wedge b(R) c^{\prime} \wedge a(S) c^{\prime}\right)\)

\section*{Proving a Modal Rule - Straight-forward Calculation}

Theorem "Modal rule": \((Q ; R) \cap S \subseteq\left(Q \cap S ; R{ }^{`}\right) \circ R\)
Proof:
Using "Relation inclusion":
Subproof for \({ }^{`} \forall a \bullet \forall c \bullet a((Q ; R) \cap S) c \Rightarrow a\left(\left(Q \cap S \circ R^{`}\right) \circ R\right) c c^{\prime}:\)
For any ` \(a^{\prime}, ~ ‘ c\) ':
\(a\left(\left(Q \cap S ; R^{`}\right) ; R\right) c\)
\(\equiv\langle\) "Relation composition" \(\rangle\)
\(\exists b \bullet a\left(Q \cap S ; R^{`}\right) b \wedge b(R) c\)
\(\equiv\langle\) "Relation intersection", "Relation composition", "Relation converse" \(\rangle\)
\(\exists b \bullet a(Q) b \wedge\left(\exists c_{2} \bullet a(S) c_{2} \wedge b(R) c_{2}\right) \wedge b(R) c\)
\(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
\(\exists b \bullet \exists c_{2} \bullet a(Q) b \wedge a(S) c_{2} \wedge b(R) c_{2} \wedge b(R) c\)
\(\Leftarrow\langle ?\rangle\). This is the implication from the previous slide
\(\exists b_{2} \cdot a(Q) b_{2} \wedge b_{2}(R) c \wedge a(S) c\)
\(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
\(\left(\exists b_{2} \bullet a(Q) b_{2} \wedge b_{2}(R) c\right) \wedge a(S) c\)
\(\equiv\langle\) "Relation intersection", "Relation composition" \(\rangle\)
\(a((Q ; R) \cap S) c\)

\section*{Proving a Modal Rule - Straight-forward Calculation (filled)}

Theorem "Modal rule": \((Q ; R) \cap S \subseteq\left(Q \cap S ; R{ }^{`}\right) ; R\)
Proof:
Using "Relation inclusion":
Subproof for \({ }^{`} \forall a \bullet \forall c \bullet a((Q ; R) \cap S) c \Rightarrow a\left(\left(Q \cap S ; R^{`}\right) ; R\right) c^{\prime}:\)
For any ` \(a^{\prime}{ }^{\prime}{ }^{`} c\) ’:
\(a\left(\left(Q \cap S ; R^{\smile}\right) \stackrel{R}{ }\right) c\)
\(\equiv\langle\) "Relation composition" \(\rangle\)
\(\exists b \bullet a\left(Q \cap S ; R^{-}\right) b \wedge b(R) c\)
\(\equiv\langle\) "Relation intersection", "Relation composition", "Relation converse" \(\rangle\)
\(\exists b \bullet a(Q) b \wedge\left(\exists c_{2} \bullet a(S) c_{2} \wedge b(R) c_{2}\right) \wedge b(R) c\)
\(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
\(\exists b \bullet \exists c_{2} \bullet a(Q) b \wedge a(S) c_{2} \wedge b(R) c_{2} \wedge b(R) c\)
\(\Leftarrow\langle\) "Body monotonicity of \(\exists\) " with " \(\exists\)-Introduction" \(\rangle\)
\(\exists b \bullet\left(a(Q) b \wedge a(S) c_{2} \wedge b(R) c_{2} \wedge b(R) c\right)\left[c_{2}:=c\right]\)
\(\equiv\langle\) Substitution, "Idempotency of \(\wedge\) " \(\rangle\)
\(\exists b_{2} \cdot a(Q) b_{2} \wedge b_{2}(R) c \wedge a(S) c\)
\(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
\(\left(\exists b_{2} \bullet a(Q) b_{2} \wedge b_{2}(R) c\right) \wedge a(S) c\)
\(\equiv\langle\) "Relation intersection", "Relation composition" \(\rangle\)
\(a((Q ; R) \cap S) c\)
```

Theorem "Modal rule": $(Q ; R) \cap S \subseteq(Q \cap S ; R$ ) $) \stackrel{R}{ }$
Using "Relation inclusion":
Subproof for $\forall \forall \bullet \forall c \cdot a((Q ; R) \cap S) c \Rightarrow a\left(\left(Q \cap S ; R^{`}\right) ; R\right) c$ :
For any ' $a{ }^{\prime},{ }^{\prime} c$ ': Artificial 'Assuming witness Variant
Assuming proof for $\left.\left.(2)^{(Q} \because R\right) \cap S\right\} G^{\circ} b_{2} \wedge b_{2}(R) c \wedge a(S) c$ Artificial
a $((Q \stackrel{\circ}{g} R) \cap S)_{c}-a$ Thís is assumption (1)
$\equiv\langle$ "Relation intersection", "Relation composition" $\rangle$
$\left(\exists b_{2} \bullet a(Q) b_{2} \wedge b_{2}(R) c\right) \wedge a(S) c$
$\equiv$ ("Distributivity of $\wedge$ over $\exists$ " $\}$
$\exists b_{2} \bullet a(Q) b_{2} \wedge b_{2}(R) c \wedge a(S) c$
Continuing:

```

```

                    \(\equiv\langle " R e l a t i o n ~ c o m p o s i t i o n "\rangle\)
                        \(=\binom{\) Relation composition }{\(\exists \cdot a(Q \cap S \circ R} b \wedge(R) c\)
                    \(\Leftarrow\left(\right.\) " \({ }^{(\exists) \text {-Introduction" }\rangle}\)
                        \((a(Q \cap S ; R \vee) b \wedge b(R) c)\left[b:=b_{2}\right]\)
                    \(\equiv\langle\) Substitution, assumption (3), "Identity of \(\wedge\) " \(\rangle\)
                        \(a\left(Q \cap S \underset{9}{ } R^{-}\right) b_{2}\)
                \(\equiv\langle\) "Relation intersection", "Relation composition", "Relation converse" \(\rangle\)
                        \(a(Q) b_{2} \wedge \exists c_{2} \bullet a(S) c_{2} \wedge b_{2}(R) c_{2}\)
                \(\equiv\langle\) Assumption (3), "Identity of \(\wedge\) " \(\rangle\)
                        \(\exists c_{2} \cdot a(S) c_{2} \wedge b_{2}(R) c_{2}\)
                \(\Leftarrow\langle\) " \(\exists\)-Introduction"
                        \(\left(a(S) c_{2} \wedge b_{2}(R) c_{2}\right)\left[c_{2}:=c\right]\)
                    \(\equiv\langle\) Substitution, assumption (3), "Identity of \(\wedge\) " \(\rangle\)
                    true
    ```

\section*{1001}

Using "Relation inclusion":
```

        Subproof for \(\forall a \bullet \forall c \bullet a((Q ; R) \cap S) c \Rightarrow a\left(\left(Q \cap S ; R^{`}\right) \rho R\right) c\) :
    ```
 For any ' \(a{ }^{\prime},{ }^{\prime} c{ }^{\prime}\) ':
 Assuming (1) \(a((Q ; R) \cap S) c^{\prime}\) :
 Assuming witness \({ }^{\circ} b_{2}\) ` satisfying (3) \(a(Q) b_{2} \wedge b_{2}(R) c \wedge a(S) c `\)
 by "Distributivity of \(\wedge\) over \(\exists\) " and "Relation intersection"
 and "Relation composition" and assumption (1):
 \(a\left(\left(Q \cap S ; R^{`}\right) ; R\right) c\)
 \(\equiv\langle\) "Relation composition" \(\rangle\)
 \(\exists b \cdot a(Q \cap S ; R `) b \wedge b(R) c\)
 \(\Leftarrow\langle\) " \(\exists\)-Introduction" \(\rangle\)
 \(\left(a\left(Q \cap S ; R^{-}\right) b \wedge b(R) c\right)\left[b:=b_{2}\right]\)
 \(\equiv\langle\) Substitution, assumption (3), "Identity of \(\wedge\) " \(\rangle\)
 \(a\left(Q \cap S ; R^{`}\right) b_{2}\)
 \(\equiv\) 〈"Relation intersection", "Relation composition", "Relation converse"〉
 \(a(Q) b_{2} \wedge \exists c_{2} \cdot a(S) c_{2} \wedge b_{2}(R) c_{2}\)
 \(\equiv\langle\) Assumption (3), "Identity of \(\wedge\) " \(\rangle\)
 \(\exists c_{2} \cdot a(S) c_{2} \wedge b_{2}(R) c_{2}\)
 \(\Leftarrow\langle\) " \(\exists\)-Introduction" \(\rangle\)
 \(\left(a(S) c_{2} \wedge b_{2}(R) c_{2}\right)\left[c_{2}:=c\right]\)
 \(\equiv\langle\) Substitution, assumption (3), "Identity of \(\wedge "\rangle\)
 true

\section*{Descending Chains in Numbers}

Consider numbers with the usual strict-order <
and consider descending chains, like \(17>12>9>8>3>\ldots\)
Are there infinite descending chains in
- \(\mathbb{Z}\) ?
- \(\mathbb{N}\) ?
- \(\mathbb{R}\) ?
- \(\mathbb{R}_{+}\)?
- \(\mathbb{Q}_{+}\)?
- \(\mathbb{C}\) ?

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-01
General Induction, Trees

\section*{Plan for Today}
- General Induction (LADM section 12.4)
- Tree Datastructures; Structural Induction

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-01

\section*{Part 1: General Induction - LADM Section 12.4}

\section*{Descending Chains in Numbers}

Consider numbers with the usual strict-order <
and consider descending chains, like \(17>12>9>8>3>\ldots\)
Are there infinite descending chains in
\[
\begin{array}{lll}
\bullet \mathbb{Z} & \text { ? } & - \\
0>-1>-2>-3>\ldots \\
\bullet \mathbb{N} & \text { ? } & - \\
\text { No } \\
\bullet \mathbb{R} & \text { ? } & - \\
0>-1>-2>-3>\ldots \\
\bullet \mathbb{R}_{+} & \text {? } & - \\
0 \pi^{0}>\pi^{-1}>\pi^{-2}>\pi^{-3}>\ldots \\
\bullet \mathbb{Q}_{+} & \text {? } & -1>1 / 2>1 / 3>1 / 4>\ldots \\
\text { - } \mathbb{C} & \text { ? } & - \\
\text { no "default" order! }
\end{array}
\]

Relations \(\wp\) with no infinite (descending) \(\ell\)-chains are well-founded.
Loops terminate iff they are "going down" some well-founded relation.

Idea Behind Induction - How Does It Work? - Informally
Proving \((\forall x: t \bullet P)\) by induction, for an appropriate type \(t\) :
- You are familiar with proving a base case and an induction step
- The base cases establish \(P[x:=S]\), for each \(S\) that are "simplest \(t\) "
- The induction steps work for \(x: t\) for which we already know \(P[x:=x]\) and from that establish \(P[x:=C x]\) for elements \(C x: t\) that "are slightly more complicated than \(x\).
- Since the construction principle(s) ("C") used in the induction step is/are sufficiently powerful to construct all \(x: t\), this justifies \((\forall x: t \bullet P)\).

\section*{Idea Behind Induction - How Does It Work? - Informally}

Proving \((\forall x: t \bullet P)\) by induction, for an appropriate type \(t\) :
- You are familiar with proving a base case and an induction step
- The base cases establish \(P[x:=S]\), for each \(S\) that are "simplest \(t\) "
- The induction steps work for \(x: t\) for which we already know \(P[x:=x]\) and from that establish \(P[x:=C x]\) for elements \(C x: t\) that "are slightly more complicated than \(x^{\prime \prime}\).
- Since the construction principle(s) ("C") used in the induction step is/are sufficiently powerful to construct all \(x: t\), this justifies \((\forall x: t \bullet P)\).

Looking at this from the other side:
- Each element \(x\) : \(t\) is either a "simplest element" (" \(S\) "), or constructed via a construction principle (" \(C\) ") from "slightly simpler elements" \(y\), that is, \(x=C y\).
- In the first case, the base case gives you the proof for \(P[x:=S]\).
- In the second case, you obtain \(P[x:=C y]\) via the induction step from a proof for \(P[x:=y]\), if you can find that.
- You can find that proof if repeated decomposition into \(S\) or \(C\) always terminates.

Idea Behind Induction - Reduction via Well-founded Relations
- Goal: prove (\(\forall x: T \bullet P x\)) for some property \(P: T \rightarrow \mathbb{B} \quad\) (with \(\neg\) occurs(\(\left.{ }^{\prime} x^{\prime},{ }^{\prime} P^{\prime}\right)\))
- Situation: Elements of \(T\) are related via _ \(\varepsilon_{-}: T \rightarrow T \rightarrow \mathbb{B}\) with "simpler" elements (constituents, predecessors, parts, ...)
" \(y\) Ъ \(x\) " may read " \(y\) precedes \(x\) " or " \(y\) is an (immediate) constituent of \(x\) " or " \(y\) is simpler than \(x\) " or " \(y\) is below \(x\) "...
- If for every \(x: T\) there is a proof that
\[
\text { if } P y \text { for all predecessors } y \text { of } x \text {, then } P x \text {, }
\]
then for every \(z: T\) with \(\neg(P z)\) :
- there is a predecessor \(u\) of \(z\) with \(\neg(P u)\)
- and so there is an infinite \(\delta\)-chain (of elements \(c\) with \(\neg(P c)\)) starting at \(z\).

Theorem Mathematical induction over \(\langle T, ३\rangle\) :
If there are no infinite \(\delta\)-chains in \(T\), that is, if \(\zeta\) is noetherian, then:
\[
(\forall x \bullet P x) \quad \equiv \quad(\forall x \bullet(\forall y \mid y \longleftrightarrow x \bullet P y) \Rightarrow P x)
\]

Definition (12.19): \(\langle T, \zeta\rangle\) admits induction iff the following principle of mathematical induction over \(\langle T, \zeta\rangle\) holds for all properties \(P: T \rightarrow \mathbb{B}\) :
\[
(\forall x \bullet P x) \quad \equiv \quad(\forall x \bullet(\forall y \mid y \zeta x \bullet P y) \Rightarrow P x)
\]

Definition (12.21): \(\langle T, \zeta\rangle\) is well-founded iff every non-empty subset of \(T\) has a minimal element wrt. 3 , that is:
\[
\forall S: \operatorname{set} T \quad \bullet \quad S \neq\{ \} \quad \equiv \exists x: T \bullet x \in S \wedge \forall y: T \mid y \prec x \bullet y \notin S
\]

Theorem (12.22): \(\langle T, \zeta\rangle\) is well-founded iff it admits induction.
Definition (12.25): \(\langle T, \zeta\rangle\) is noetherian iff there are no infinite \(\varepsilon\)-chains in \(T\).
Theorem (12.26): \(\langle T, \zeta\rangle\) is well-founded iff it is noetherian.
Theorem Mathematical induction over \(\langle T, \zeta\rangle\) :
If there are no infinite \(\varepsilon\)-chains in \(T\), that is, if \(\zeta\) is noetherian, then:
\[
(\forall x \bullet P x) \quad \equiv \quad(\forall x \bullet(\forall y \mid y \prec x \bullet P y) \Rightarrow P x)
\]

\section*{Mathematical Induction in \(\mathbb{N}\)}

Consider_३_: \(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{B}\) with \(\quad(x\) 弓 \(y)=(y \& x)=(y=\operatorname{suc} x) . \quad \boldsymbol{\zeta}_{-}={ }^{「}\) suc_' \(^{\prime}\)
Mathematical induction over \((\mathbb{N}, ३)\) :
\((\forall x: \mathbb{N} \bullet P x)\)
\(=\langle(12.19)\) Math. induction; Def. \(\}\rangle\)
\((\forall x: \mathbb{N} \bullet(\forall y: \mathbb{N} \mid\) suc \(y=x \bullet P y) \Rightarrow P x)\)
\(=\langle\) Disjoint range split, with true \(\equiv x=0 \vee x>0\rangle\)
\((\forall x: \mathbb{N} \mid x=0 \bullet(\forall y: \mathbb{N} \mid \operatorname{suc} y=x \bullet P y) \Rightarrow P x) \wedge\)
\((\forall x: \mathbb{N} \mid x>0 \bullet(\forall y: \mathbb{N} \mid\) suc \(y=x \bullet P y) \Rightarrow P x)\)
\(=\langle\) One-point rule; (8.22) Change of dummy \(\rangle\)
\(((\forall y: \mathbb{N} \mid\) suc \(y=0 \bullet P y) \Rightarrow P 0) \wedge\)
\((\forall z: \mathbb{N} \bullet(\forall y: \mathbb{N} \mid\) suc \(y=\operatorname{suc} z \bullet P y) \Rightarrow P(s u c z))\)
\(=\left\langle\begin{array}{l}\text { (8.13) Empty range, with suc } y=0 \equiv \text { false; } \\ \text { Cancellation of suc, (8.14) One-point rule for } \forall\end{array}\right\rangle\)
\(P 0 \wedge(\forall z: \mathbb{N} \bullet P z \Rightarrow P(s u c z))\)

\section*{Mathematical Induction in \(\mathbb{N}\) (ctd.)}

Mathematical induction over \(\left(\mathbb{N},{ }^{\ulcorner } s u c^{\top}\right)\) :
\[
\begin{aligned}
& (\forall x: \mathbb{N} \bullet P x) \equiv P 0 \wedge(\forall z: \mathbb{N} \bullet P z \Rightarrow P(\text { suc } z)) \\
& (\forall x: \mathbb{N} \bullet P x) \equiv P 0 \wedge(\forall z: \mathbb{N} \bullet P z \Rightarrow P(z+1))
\end{aligned}
\]

Absence of infinite descending \({ }^{\ulcorner } s u c\) ' chains is due to the inductive definition of \(\mathbb{N}\) with constructors 0 and suc: "... and nothing else is a natural number."

Mathematical induction over \((\mathbb{N},<)\) "Complete induction over \(\mathbb{N}\) ":
\[
(\forall x: \mathbb{N} \bullet P x) \equiv(\forall x: \mathbb{N} \bullet(\forall y: \mathbb{N} \mid y<x \bullet P y) \Rightarrow P x)
\]

Complete induction gives you a stronger induction hypothesis for non-zero \(x\) - some proofs become easier.

\section*{Example for Complete Induction in \(\mathbb{N}\)}

Mathematical induction over \((\mathbb{N},<)\) "Complete induction over \(\mathbb{N}\) ":
\[
(\forall x: \mathbb{N} \bullet P x) \equiv(\forall x: \mathbb{N} \bullet(\forall y: \mathbb{N} \mid y<x \bullet P y) \Rightarrow P x)
\]

Theorem: Every natural number greater than 1 is a product of (one or more) prime numbers.
Formalisation: \(\forall n: \mathbb{N} \bullet 1<n \Rightarrow(\exists B: \operatorname{Bag} \mathbb{N} \mid(\forall p \mid p \in B \bullet i s P r i m e p) \bullet b a g P r o d B=n)\)
Proof:
Using "Complete induction": For any \({ }^{n}\) ":

Assuming \(\forall m \mid m<n \bullet 1<m \Rightarrow(\exists B: \operatorname{Bag} \mathbb{N} \mid(\forall p \mid p \in B \bullet i s P r i m e p) \bullet \operatorname{bagProd} B=m)\) : \(:\) Assuming \({ }^{`} 1<n^{\prime}\) :

By cases: `isPrime \(n\) `, \(\neg(\) isPrime \(n) `\)
Completeness: By "Excluded middle"
Case `isPrime \(n\) :
..."ヨ-Introduction": \(B:=\ln \mathrm{S} \ldots\)
Case` \(\neg(\text { isPrime } n)^{\prime}\) :
\(\ldots\) then \(n=n_{1} \cdot n_{2}\) with \(n_{1}<n>n_{2}\)
\(\ldots\) with witness: bagProd \(B_{1}=n_{1}\) and bagProd \(B_{2}=n_{2}\)
\(\ldots\) then bagProd \(\left(B_{1} \cup B_{2}\right)=n\)

\section*{Mathematical Induction on Sequences}

Cons induction: Mathematical induction over (Seq \(A, \zeta)\) where
\[
\jmath:=\{x: A ; x s, y s: \operatorname{Seq} A \mid x \triangleleft x s=y s \bullet\langle x s, y s\rangle\}
\]
\((\forall x s: \operatorname{Seq} A \bullet P x s) \equiv P \in \wedge(\forall x s: \operatorname{Seq} A \mid P x s \bullet(\forall x: A \bullet P(x \triangleleft x s)))\)
Snoc induction: Mathematical induction over (Seq \(A, \zeta)\) where
\[
\zeta:=\{x: A ; x s, y s: \operatorname{Seq} A \mid x s \triangleright x=y s \bullet\langle x s, y s\rangle\}
\]
\((\forall x s: \operatorname{Seq} A \bullet P x s) \equiv P \in \wedge(\forall x s: \operatorname{Seq} A \mid P x s \bullet(\forall x: A \bullet P(x s \triangleright x)))\)
Strict prefix induction: Mathematical induction over (Seq \(A, \zeta)\) where
\[
\zeta:=\{u s, x s, y s: \operatorname{Seq} A \mid u s \neq \epsilon \wedge x s \sim u s=y s \bullet\langle x s, y s\rangle\}
\]
\((\forall x s: \operatorname{Seq} A \bullet P x s) \quad \equiv\)
\[
(\forall x s: \operatorname{Seq} A \bullet(\forall y s: \operatorname{Seq} A \mid y s \preccurlyeq x s \bullet P y s) \Rightarrow P x s)
\]

Different induction hypotheses make certain proofs easier.

\section*{Structural Induction}

Structural induction is mathematical induction over, e.g.,
- finite sequences with the strict suffix relation
- expressions with the direct constituent relation
- propositional formulae with the strict subformula relation
- trees with the appropriate strict subtree relation
- proofs with appropriate strict sub-proof relation
- programs with appropriate strict sub-program relation
- ...

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-01
Part 2: Inductive Datastructures: Trees
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Inductively-defined Tree Data Structures} \\
\hline \begin{tabular}{l}
Binary (search) trees data BTree = Empty B | Branch BTree Int BTree \\
bt1left \(=\) Branch \\
(Branch EmptyB 2 EmptyB) 3 \\
(Branch EmptyB 5 EmptyB) \\
bt1right \(=\) Branch \\
EmptyB \\
10 \\
(Branch EmptyB 11 EmptyB)
\end{tabular} & \begin{tabular}{l}
Huffman trees \\
data HTree = Leaf Char | HBranch HTree HTree \\
hTree1 \(=\) HBranch (Leaf ' \(e\) ') (HBranch \\
(HBranch (Leaf 't') (Leaf 'r')) (Leaf 'h')) \\
decode hTree1 "100110" = "the"
\end{tabular} & \begin{tabular}{l}
Arbitrarily branching data Tree = Branch Int [Tree] \\
t1left \(=\) Branch 7 \\
[Branch 3 [Branch 2 []] ,Branch 5 [Branch 11 []] ,Branch 10 []]
\end{tabular} \\
\hline
\end{tabular}

\section*{Binary Trees (Exercise 8.3)}
Binary (search) trees
data BTree = Empty B
 | Branch BTree Int BTree

bt1left = Branch
 (Branch EmptyB 2 EmptyB)
 3
 (Branch EmptyB 5 EmptyB)
bt1right = Branch
 EmptyB
 10
 (Branch EmptyB 11 EmptyB)
```

                    Binary Trees (Exercise 10.4)
    Declaration: \& : Tree A
Declaration: _ _ _ _ : Tree A -> A -> Tree A }->\mathrm{ Tree A
Declaration: t1 : Tree N
Axiom "Definition of `t1`":
t1 = ((\Delta\Delta 2\Delta\Delta) \Delta 3\Delta (\Delta\Delta 5 \Delta \Delta))
\Delta 7
(\triangle\Delta 10\Delta (\triangle \Delta 11\Delta \Delta))
Fact "Alternative definition of `t1`":

```

```

Fact＂Alternative definition of＇t1＂：
t1 = (「 2 」 \ 3 \ 「 5 」)
\Delta 7 \triangle
(\triangle \triangle 10 \triangle「 11 」)
Axiom "Tree induction":
P[t := A]
^ ( \forall l, r : Tree A; x : A
- P[t := l] ^ P[t := r] => P[t := l \Delta X \Delta r]
)
=> (\forall t : Tree A • P)

```
```

            Using the Induction Principle for Binary Trees
    Theorem "Self-inverse of tree mirror": \forall t : Tree A • (t `) ` = t
Proof:
Using "Tree induction":
Subproof for `\Delta" = \Delta` : By "Mirror"
Subproof for `\forall l, r : Tree A; x : A             - (l `) ` = l ^( (r`) " = r
=>(l\Deltax\Deltar)" = (l \Deltax\Deltar)`:         For any `l, r, x`:             Assuming "IHL" `(l `) = l`,
"IHR" `(r `) " = r`:
(l }\Deltax\Deltar
=( "Mirror" )
(l- )}\Deltax\Delta(r``
=( Assumptions "IHL" and "IHR" )
l }\Deltax\Delta
Axiom "Tree induction":
P[t := \Delta]
^ ( \forall l, r : Tree A; x : A
- P[t:= l] ^ P[t:= r] => P[t:= l\Deltax\Deltar]
)
\# (\forall t : Tree A • P)

```

Recall：Induction－Reduction via Well－founded Relations
－Goal：prove（ \(\forall x: T \bullet P x)\) for some property \(P: T \rightarrow \mathbb{B} \quad\)（with \(\neg\) occurs（ \(\left.{ }^{\prime} x^{\prime},{ }^{\prime} P^{\prime}\right)\) ）
－Situation：Elements of \(T\) are related via＿\(\varepsilon_{-}: T \rightarrow T \rightarrow \mathbb{B}\) with＂simpler＂elements （constituents，predecessors，parts，．．．） ＂\(y\) 々 \(x\)＂may read＂\(y\) precedes \(x\)＂or＂\(y\) is an（immediate）constituent of \(x\)＂or＂\(y\) is simpler than \(x\)＂or＂\(y\) is below \(x\)＂．．．
－If for every \(x: T\) there is a proof that
\[
\text { if } P y \text { for all predecessors } y \text { of } x \text {, then } P x \text {, }
\]
then for every \(z: T\) with \(\neg(P z)\) ：
－there is a predecessor \(u\) of \(z\) with \(\neg(P u)\)
－and so there is an infinite \(\mathcal{\&}\)－chain（of elements \(c\) with \(\neg(P c)\) ） starting at \(z\) ．

Theorem（12．19）Mathematical induction over（ \(T, \zeta\) ）：
If there are no infinite \(\delta\)－chains in \(T\) ，that is，if \(\zeta\) is well－founded，then：
\[
(\forall x \bullet P x) \quad \equiv \quad(\forall x \bullet(\forall y \mid y \longleftrightarrow x \bullet P y) \Rightarrow P x)
\]
```

                        Induction Principle for Binary Trees
    Declaration: \& : Tree A
Declaration: _ _ _ _ : Tree A -> A -> Tree A -> Tree A
Fact "Alternative definition of `t1`":
t1 = (「 2 」\Delta 3 \「 5 」)
\triangle }
(\Delta \Delta 10 \Delta 「 11 」)

```

```

Declaration: 〕 : Tree A }->\mathrm{ Tree A }->\mathbb{B
Axiom "HTree \zeta":
t 〕 \& false)
\wedge (t ふ (l \Delta X \Delta r) \equiv t = l v t = r)
Theorem（12．19）Mathematical induction over $(T, \zeta)$ ，if $\zeta$ is well－founded
$(\forall x \bullet P x) \quad \equiv \quad(\forall x \bullet(\forall y \mid y \preceq x \bullet P y) \Rightarrow P x)$
Equivalently：
Axiom＂Tree induction＂：
P[t := \Delta]
^ ( \forall l, r : Tree A; x : A
- P[t:= l] ^ P[t:= r] => P[t:= l \Deltax\Deltar]
)
=> (\forall t : Tree A • P)

```

\section*{Trees are Everywhere！}
－Search trees，dictionary datastructures－BinTree，balanced trees
－Huffman trees－used for compression encoding e．g．in JPEG
－Abstract Syntax Trees（ASTs）－central datastructures in compilers
－Recall：For expressions，we write strings，but we think trees．．．
－．．．
－Every＂data＂in Haskell defines a（possibly degenerated）tree datastructure

\section*{In programming：}
－Trees are easy to deal with．
－Graphs，even DAGs（directed acyclic graphs），can be tricky
－－even with good APIs．
－Choosing＂the right＂API is already hard！
－The same holds for relations！
－Because relations are graphs．．．

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University，Fall 2023

Wolfram Kahl

A1．3－Direct Approach to＂Invariant for＇elem＂
Theorem＂Invariant for｀elem＂＂：
\((\mathrm{xs} \neq \epsilon) \wedge\left(\exists \mathrm{us} \cdot \mathrm{us} \sim \mathrm{xs}=x \mathrm{~s}_{0} \wedge(b \equiv x \in \mathrm{us})\right)\)
\(\Rightarrow\left[\right.\) if head \(\mathrm{xs}=x\) then \(b:=\) true else skip \(\mathrm{fi}_{i} \mathrm{xs}:=\) tail \(\left.\mathrm{xs} \quad\right]\)
（ \(\exists\) us • us \(\left.\sim \mathrm{xs}=x s_{0} \wedge(b \equiv x \in \mathrm{us})\right)\)
Proof：
（ \(\exists\) us • us \(\left.-\mathrm{xs}=x s_{0} \wedge(b \equiv x \in \mathrm{us})\right)\)
［ xs ：＝tail xs ］\(\Leftarrow\) 〈＂Assignment＂with substitution 〉
（ \(\exists\) us • us - tail \(\left.\mathrm{xs}=x s_{0} \wedge(b \equiv x \in \mathrm{us})\right)\)
［ if head \(\mathrm{xs}=x\) then \(b:=\) true else skip fi
\(] \Leftarrow\langle\) Subproof：
Using＂Conditional＂：
Subproof：
？－－．．．．Long subproof
Subproof：
？\(-\ldots\) ．．．Long subproof with a lot of duplicated material
）
\((\mathrm{xs} \neq \epsilon) \wedge\left(\exists \mathrm{us} \bullet \mathrm{us} \sim \mathrm{xs}=x \mathrm{~s}_{0} \wedge(b \equiv x \in \mathrm{us})\right)\)

\section*{A1．3－Direct Approach to＂Invariant for＇elem＂＂－Looking More Closely}

Theorem＂Invariant for｀elem＂＂：
\((\mathrm{xs} \neq \epsilon) \wedge\left(\exists \mathrm{us} \bullet \mathrm{us} \sim \mathrm{xs}=x \mathrm{~s}_{0} \wedge(b \equiv x \in \mathrm{us})\right)\)
\(\Rightarrow\)［ if head \(\mathrm{xs}=x\) then \(b:=\) true else skip fi；xs ：＝tail xs ］
（ \(\exists\) us • us \(\sim \mathrm{xs}=x \mathrm{~s}_{0} \wedge(b \equiv x \in \mathrm{us})\) ）

\section*{Proof：}
（ \(\exists \mathrm{us} \cdot \mathrm{us} \sim \mathrm{xs}=x \mathrm{~s}_{0} \wedge(b \equiv x \in \mathrm{us})\) ）
［xs：＝tail xs \(] \Leftarrow\) 〈＂Assignment＂with substitution〉
（ \(\exists\) us • us - tail \(\left.\mathrm{xs}=x s_{0} \wedge(b \equiv x \in \mathrm{us})\right)\)
［ if head \(\mathrm{xs}=x\) then \(b:=\) true else skip fi \(\quad] \Leftarrow\langle\) Subproof：
Using＂Conditional＂：

\section*{Subproof：}
？－．．．．．Long subproof containing：
\(\ldots . . .=\langle\)＂\(\exists\)－Introduction＂\(\rangle\)
\(\cdots \quad\left(u s \sim\right.\) tail \(\left.x s=x s_{0} \wedge \ldots\right)[u s:=u s \triangleright\) head \(x s]\)

\section*{Subproof：}
？\(-\ldots\) ．．．Long subproof with a lot of duplicated material，in particular：
．．．．．＂\(\Leftarrow\langle\)＂\(\exists\)－Introduction＂\(\rangle\)
\(\cdots \quad\left(\right.\) us - tail \(\left.x s=x s_{0} \wedge \ldots\right)[u s:=u s \triangleright\) head \(x s]\)
\(\rangle\)
\((\mathrm{xs} \neq \epsilon) \wedge\left(\exists \mathrm{us} \bullet \mathrm{us} \sim \mathrm{xs}=x \mathrm{~s}_{0} \wedge(b \equiv x \in \mathrm{us})\right)\)

\section*{Recall：Changing the Quantified Domain}
\(\left(\sum i \mid 2 \leq i<10 \cdot i^{2}\right)\)
\(=\langle(8.22)\)＂Change of dummy＂with｀（＿＋＿2）hasAnInverse｀\(\rangle\)
\(\left(\sum k \mid 0 \leq k<8 \bullet(k+2)^{2}\right)\)
（8．22）Change of dummy：Provided \(f\) has an inverse and \(\neg\) occurs（ \({ }^{\prime} y^{\prime},{ }^{\prime} R, P^{\prime}\) ）
（that is，＂\(y\) is fresh＂），then：
\[
(\star x \mid R \bullet P)=(\star y \mid R[x:=f y] \bullet P[x:=f y])
\]

Above：\(f y=2+y\) and \(f^{-1} x=x-2\)

A function \(f\) has an inverse \(f^{-1} \quad\) iff \(\quad x=f y \equiv y=f^{-1} x\)

Recall: Changing the Quantified Domain — Variants — see Ref. 5.1
Theorem (8.22) "Change of dummy in \(\star\) ":
```

$\forall f \bullet \forall g \bullet$
$(\forall x \bullet \forall y \cdot x=f y \equiv y=g x)$
$\Rightarrow\left(\begin{array}{l}(\star x \mid R \quad \bullet P)\end{array}\right.$
$=(\star y \mid R[x:=f y] \bullet P[x:=f y]))$

```

Theorem (8.22.1) "Change of dummy in \(\star\) - variant":
\[
\begin{aligned}
& (\forall x \bullet \forall y \bullet x=f y \Rightarrow y=g x) \\
& \Rightarrow((\star x \mid R \wedge x=f(g x) \bullet P) \\
& \quad=(\star y \mid R[x:=f y] \bullet P[x:=f y]))
\end{aligned}
\]

Theorem (8.22.3) "Change of restricted dummy in \(\star\) ":
```

\forallf\bullet\forallg\bullet
(\forallx|R\bullet(}\forally\bulletx=fy\equivy=gx)
=>((*x|R \bulletP)
= (* y|R[x:= fy] \bullet P[x:= f y]))

```
 Change of Dummy in A1.3 - (8.22)?
```

        ( \(\exists\) us • us \(\sim\) tail \(\left.\mathrm{xs}=x s_{0} \wedge(b \equiv x \in \mathrm{us})\right)\)
        \(\Leftarrow\langle ?\rangle\)
        ( \(\exists\) us • us \(\triangleright\) head \(\mathrm{xs}-\) tail \(\mathrm{xs}=x s_{0} \wedge(b \equiv x \in\) us \(\triangleright\) head xs\(\left.)\right)\)
    ```

Trying to use the following to prove this:
Theorem (8.22) "Change of dummy in \(\exists\) ":
\[
\begin{aligned}
& (\forall x \bullet \forall y \bullet x=f y \equiv y=g x) \\
& \Rightarrow((\exists x \mid R \quad \bullet \bullet P) \\
& \quad=(\exists y \mid R[x:=f y] \bullet P[x:=f y]))
\end{aligned}
\]

\section*{What are the functions involved?}

Declaration: \(f_{1}: A \rightarrow \operatorname{Seq} A \rightarrow \operatorname{Seq} A\)
Axiom " \(\mathrm{f}_{1}\) ": \(f_{1} x\) ys \(=\mathrm{ys} \triangleright x\)
Declaration: init: Seq \(A \rightarrow\) Seq \(A\)
Axiom "init": init (xs \(\triangleright y\)) = xs \(\boldsymbol{\sim} \cdot \boldsymbol{-}\) like tail, only specified for non-empty sequences
For being able to use (8.22) "Change of dummy in \(\exists\) " with \(f, g:=f_{1}\) (head \(x s\)), init, we would need: \(\left(\forall x s \bullet \forall y s \bullet x s=f_{1} x y s \equiv y s=\right.\) init \(\left.x s\right)\)
However, the \(\Leftarrow\)-part of the equivalence here is clearly not valid.

\section*{Change of Dummy in A1.3 - (8.22.1)?}
\[
\begin{aligned}
& \left(\exists \text { us } \bullet \text { us }- \text { tail xs }=x s_{0} \wedge(b \equiv x \in \text { us })\right) \\
\Leftarrow & \langle ?\rangle \\
& \left(\exists \text { us } \bullet \text { us } \triangleright \text { head } \mathrm{xs}-\text { tail } \mathrm{xs}=x s_{0} \wedge(b \equiv x \in \text { us } \triangleright \text { head } \mathrm{xs})\right)
\end{aligned}
\]

We do have the \(\Rightarrow\)-part of \(\left(\forall x s \bullet \forall y s \bullet x s=f_{1} x y s \equiv y s=\right.\) initxs \()\) :
Lemma " \(\mathrm{f}_{1}\) to init": \(\forall \mathrm{xs} \bullet \forall \mathrm{ys} \bullet \mathrm{xs}=f_{1} x\) ys \(\Rightarrow \mathrm{ys}=\) init xs
For applying
Theorem (8.22.1) "Change of dummy in \(\exists —\) variant":
\[
\begin{aligned}
& (\forall x \bullet \forall y \bullet x=f y \Rightarrow y=g x) \\
& \Rightarrow((\exists x \mid R \wedge x=f(g x) \bullet P) \\
& \quad=(\exists y \mid R[x:=f y] \bullet P[x:=f y]))
\end{aligned}
\]
, the range predicate of the LHS of the consequent needs to be in shape \(R \wedge x=f(g x)\). Since we only need a consequence calculation, not an equivalence, we can achieve this easily using "Range weakening for \(\exists\) ".

\section*{Change of Dummy in A1.3 - (8.22.1)!}

Theorem (8.22.1) "Change of dummy in \(\exists —\) variant":
\((\forall x \bullet \forall y \bullet x=f y \Rightarrow y=g x)\)
\(\Rightarrow((\exists x \mid R \wedge x=f(g x) \bullet P)\)
\[
=(\exists y \mid R[x:=f y] \bullet P[x:=f y]))
\]

Declaration: \(f_{1}: A \rightarrow \operatorname{Seq} A \rightarrow \operatorname{Seq} A\)
Axiom " \(\mathrm{f}_{1}\) ": \(f_{1} x\) ys \(=\mathrm{ys} \triangleright x\)
Declaration: init : Seq \(A \rightarrow \operatorname{Seq} A\)
Axiom "init": init (xs \(\triangleright y\)) = xs \(\boldsymbol{- \cdots} \cdot \boldsymbol{r}\) like tail, only specified for non-empty sequences
Lemma " \(\mathrm{f}_{1}\) to init": \(\forall \mathrm{xs} \bullet \forall\) ys • xs \(=f_{1} x\) ys \(\Rightarrow\) ys \(=\) init xs
The fragment of the proof of "Invariant for "elem" " then becomes:
```

    \(\exists\) us • us - tail \(\mathrm{xs}=x s_{0} \wedge(b \equiv x \in \mathrm{us})\)
    $\Leftarrow\langle$ "Range weakening for $\exists$ " $\rangle$
$\exists$ us $\mid$ true $\wedge$ us $=f_{1}$ (head xs) (init us) $\bullet$ us - tail $\mathrm{xs}=x s_{0} \wedge(b \equiv x \in \mathrm{us})$
$\equiv\left\langle\right.$ "Change of dummy in $\exists$ - variant" with " $\mathrm{f}_{1}$ to init" $\rangle$
$\exists$ vs $\mid$ true $\left[u s:=f_{1}(\right.$ head xs$\left.) v s\right] \bullet\left(\right.$ us $\sim$ tail $\left.\mathrm{xs}=x s_{0} \wedge(b \equiv x \in \mathrm{us})\right)\left[u s:=f_{1}\right.$ (head xs$)$ vs]
$\equiv\left\langle\right.$ Substitution, " $\mathrm{f}_{1}$ " $\rangle$
$\exists$ us • us $\triangleright$ head $\mathrm{xs}-$ tail $\mathrm{xs}=x s_{0} \wedge(b \equiv x \in$ us $\triangleright$ head xs$)$

```

\section*{Look Again at the Functions}

Declaration: \(f_{1}: A \rightarrow \operatorname{Seq} A \rightarrow \operatorname{Seq} A\)
Axiom " \(\mathrm{f}_{1}\) ": \(f_{1} x\) ys \(=\) ys \(\triangleright x\)
Declaration: init: Seq \(A \rightarrow \operatorname{Seq} A\)
Axiom "init": init (xs \(\triangleright y\)) = xs \(\quad \cdots+\cdots\) like tail, only specified for non-empty sequences
We used the name "init" because we know it from Haskell.
Don't we know a name for \(f_{1}\) as well? - flip snoc - flip _ \({ }_{-}\)
Same problem as for "init": We know "flip", but it is not imported in the current scope... In doubt, reproduce known definitions and theorems:

Declaration: flip : \((A \rightarrow B \rightarrow C) \rightarrow(B \rightarrow A \rightarrow C)\)
Axiom "flip": flip \(f y x=f x y\)
For the property we need here, the same proof:
```

Lemma "flip-snoc to init": }\forall\textrm{xs}\bullet\forall\textrm{ys}\bullet\textrm{xs}= flip _ \triangleright_ x ys => ys = init x
Proof:
For any `xs`, `ys`:
Assuming (1)`xs = flip _ \triangleright_ x ys`:
init xs
= \ Assumption (1) \rangle

```

\section*{How to Prove that flip is Self-inverse?}

Declaration: flip : \((A \rightarrow B \rightarrow C) \rightarrow(B \rightarrow A \rightarrow C)\)
Axiom "flip": flip \(f y x=f x y\)

Theorem "Self-inverse `flip" ": flip (flip \(f\)) \(=f\)
Proof:

The missing piece:
Theorem "Function extensionality": \(f=g \equiv \forall x \bullet f x=g x\)

Declaration: flip : \((A \rightarrow B \rightarrow C) \rightarrow(B \rightarrow A \rightarrow C)\)
Axiom "flip": flip \(f x=f x y\)
Theorem "Function extensionality": \(f=g \equiv \forall x \bullet f x=g x\)
Theorem "Self-inverse `flip"": flip (flip \(f\)) \(=f\)
Proof:
Using "Function extensionality":
Subproof for \({ }^{`} \forall x\) • flip \((\) flip \(f) x=f x\) : For any ` \(x\) ’:

Using "Function extensionality":
For any `y':
flip (flip \(f\)) \(x y\)
\(=\langle\) "flip" \(\rangle\) flip \(f y x\)
\(=\langle\) "flip" \(\rangle\)
\(f x y\)

More Conveniently Proving that flip is Self-inverse
Declaration: flip : \((A \rightarrow B \rightarrow C) \rightarrow(B \rightarrow A \rightarrow C)\)
Axiom "flip": flip \(f y x=f x y\)
Theorem "Function extensionality": \(f=g \equiv \forall x \bullet f x=g x\)
Theorem "Function extensionality 2 ": \(f=g \equiv \forall x, y \bullet f x y=g x y\) Proof:

By "Function extensionality", "Nesting for \(\forall\) "
Theorem "Self-inverse `flip`": flip (flip \(f\)) \(=f\)
Proof:
Using "Function extensionality 2 ":
For any \({ }^{`} x, y\) :
flip (flip \(f\)) \(x y\)
\(=\langle\) "flip" \(\rangle\)
flip \(f y x\)
\(=\langle\) "flip" \(\rangle\)
\(f x y\)

\section*{Some "Prelude" Functions and Some of Their Properties}

Declaration: id: \(A \rightarrow A\)
Axiom "Identity function": id \(x=x\)
Declaration: _ \({ }^{\circ}\) _ \(:(B \rightarrow C) \rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)\)
Axiom "Function composition": \((g \circ f) x=g(f x)\)
Theorem "Associativity of \(\circ\) ": \(h \circ(g \circ f)=(h \circ g) \circ f\)
Declaration: curry : \((\langle A, B\rangle \rightarrow C) \rightarrow(A \rightarrow B \rightarrow C)\)
Declaration: uncurry: \((A \rightarrow B \rightarrow C) \rightarrow(\langle A, B\rangle \rightarrow C)\)
Axiom "curry": curry \(g x y=g\langle x, y\rangle\)
Axiom "uncurry": uncurry \(f\langle x, y\rangle=f x y\)
Theorem "curryouncurry": curry (uncurry \(f\)) \(=f\)
Declaration: swap: \(\langle A, B\rangle \rightarrow\langle B, A\rangle\)
Axiom "swap": \(\operatorname{swap}\langle x, y\rangle=\langle y, x\rangle\)
Theorem "flipocurry": flip (curry \(f\)) \(=\) curry \((f \circ\) swap \()\)

Declaration: flip : \((A \rightarrow B \rightarrow C) \rightarrow(B \rightarrow A \rightarrow C)\)
Axiom "flip": flip \(f y x=f x y\)
We can use nameless functions instead of flip snoc:
- In Haskell: \(\backslash x\) ys \(\rightarrow\) ys \(++[x]\)
- In CalcCheck: \(\lambda x\) • \(\lambda\) ys • ys \(\triangleright x\)
- \(\lambda\)-abstractions follow the quantification notation pattern "as far as possible"
- Module FunctionAbstraction provides in particular \(\beta\)-reduction
- Module Quantification.GenQuant.Lambda provides those quantification properties that do carry over.

\section*{\(\lambda\)-Calculus}
\(\lambda\)-abstraction creates nameless functions: If \(E: B\), then \((\lambda x: A \bullet E): A \rightarrow B\).
The following are usually introduced as left-to-right reduction rules:
Theorem " \(\beta\)-reduction": \(\quad(\lambda x \bullet E) a=E[x:=a]\)
Theorem " \(\eta\)-reduction": \(\quad(\lambda x \bullet F x)=F \quad-\) provided \(\neg \operatorname{occurs}\left({ }^{\prime} x^{\prime},{ }^{\prime} F^{\prime}\right)\)
In addition, " \(\alpha\)-conversion" is capture-avoiding renaming of bound variables. Function extensionality follows from \(\eta\)-reduction (and is actually equivalent):
Theorem "Function extensionality": \(f=g \equiv \forall x \bullet f x=g x\) Proof:

Using "Mutual implication":
Subproof for \({ }^{`} f=g \Rightarrow \forall x\) • \(f x=g x\) :
Assuming \(f=g\) ':
For any \({ }^{\prime} x\) : By assumption \(` f=g\) `
Subproof:
Assuming (1) \(\forall x \bullet f x=g x\) :
\(=\left\langle{ }^{f} \eta\right.\)-reduction" \(\rangle\)
\(\lambda x \bullet f x\)
\(=\langle\) Assumption (1) —implicitly using quantification Leibniz \(\rangle\)
\(\lambda x \cdot g x\) \(=\langle\) " \(\eta\)-reduction" \(\rangle\)
g

\section*{\(\lambda\)-Abstraction produces Functions, not Univalent Relations}
\(\lambda\)-abstraction creates nameless functions: If, \(E: B\) (and \(R: \mathbb{B}\)) with \(x: A\), then:
- \((\lambda x: A \bullet E) \quad\) is a function of function type \(\quad A \rightarrow B\)
- \(\{x \bullet\langle x, E\rangle\}=\{x, y \mid y=E\}\) is a mapping and an element of the set \(A, \rightarrow_{\llcorner } B\),
- \((\lambda x: A \mid R \bullet E) \quad\) is a function of function type \(\quad A \rightarrow B\)

For arguments \(a: A\) for which \(R[x:=a]\) evaluates to \(f a l s e\), the result is not specified.
- \(\{x|R| R|x, E\rangle\}=\{x, y \mid R \wedge y=E\} \quad\) is a univalent relation (partial function) and an element of the set \(\left.{ }_{\llcorner } A\right\lrcorner{ }_{\iota} B\),

We have: \(\forall a: A \mid \neg R[x:=a] \bullet a \notin \operatorname{Dom}\{x \mid R \bullet\langle x, E\rangle\}\)
Example: For the partial function Pred \(=\{x, y \mid x=s u c y\}\), we have \(0 \notin\) Dom Pred

\section*{Big-O}

Does \(O(n \cdot \log n)\) talk about \(n\) ? - Abuse of notation!
\(O(n \cdot \log n)\) talks about the function " \(\lambda n \bullet n \cdot \log n\) "!
Declaration: \(O:(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow\) set \((\mathbb{R} \rightarrow \mathbb{R})\)
Axiom "Definition of big \(O\) ":
\(f \in O g \equiv \exists b \bullet \exists c|c>0 \bullet \forall x| x>b \bullet a b s(f x)<c \cdot g x\)
Theorem: \((\lambda x \bullet 4 \cdot x+7) \in O(\lambda x \bullet x)\)
Proof:
\((\lambda x \bullet 4 \cdot x+7) \in O(\lambda x \bullet x)\)
\(\equiv\langle\) "Definition of \(\operatorname{big} O\) " \(\rangle\)
\(\exists b \bullet \exists c|c>0 \bullet \forall x| x>b \bullet\)
- abs \(((\lambda x \bullet 4 \cdot x+7) x)<c \cdot(\lambda x \bullet x) x\)
\(\equiv\langle " \beta\)-reduction", substitution
\(\exists b \bullet \exists c|c>0 \bullet \forall x| x>b \bullet\) abs \((4 \cdot x+7)<c \cdot x\)

(\(\exists c|c>0 \bullet \forall x| x>b \bullet\) abs \((4 \cdot x+7)<c \cdot x)[b:=2]\)
\(=\langle\) Substitution, Trading for \(\exists\) " \(\rangle\)
\((\exists c \bullet c>0 \wedge \forall x \mid x>2 \bullet\) abs \((4 \cdot x+7)<c \cdot x)\)
\(\leftarrow(\exists-\)-rioduction \()\)
(Substitut \(x \mid x>2\) - abs \((4 \cdot x+7)<c \cdot x)[c:=8]\)
\((\forall x \mid x>2 \bullet\) abs \((4 \cdot x+7)<8 \cdot x)\)
Proof for this:
For any ` \(x\) ` satisfying \({ }^{\prime} 2<x\)
Side proof for (1) \(4 \cdot x+7>0\) :

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-06

\section*{Relation-Algebraic Calculational Proofs}

\section*{Plan for Today}
- Relation-algebraic calculational proofs - "abstract relation algebra"

Relation-algebraic proof ...
- ... will be the main topic of Exercises 9.*
- ... will be on Midterm 2
- ... is easier than quantifier reasoning

Recall: Translating between Relation Algebra and Predicate Logic
\[
\begin{array}{rlc}
R=S & \equiv & (\forall x, y \bullet x(R) y \equiv x(S) y) \\
R \subseteq S & \equiv & (\forall x, y \bullet x(R) y \Rightarrow x(S) y) \\
u(\}) v & \equiv & \text { false } \\
u(A \times B) v & \equiv & u \in A \wedge v \in B \\
u(\sim S) v & \equiv & \neg(u(S) v) \\
u(S \cup T) v & \equiv & u(S) v \vee u(T) v \\
u(S \cap T) v & \equiv & u(S) v \wedge u(T) v \\
u(S-T) v & \equiv & u(S) v \wedge \neg(u(T) v) \\
u(S \Rightarrow T) v & \equiv & u(S) v \Rightarrow u(T) v \\
u(i d A) v & \equiv & u=v \in A \\
u(\mathbb{I}) v & \equiv & u=v \\
u(R \subset) v & \equiv & v(R) u \\
u(R ; S) v & \equiv & (\exists x \bullet u(R) x \wedge x(S) v) \\
u(R \backslash S) v & \equiv & (\forall x \bullet x(R) u \Rightarrow x(S) v) \\
u(S / R) v & \equiv & (\forall x \bullet v(R) x \Rightarrow u(S) x)
\end{array}
\]

\section*{Using Extensionality/Inclusion and the Translation Table, you Proved:}

Theorem "Self-inverse of "": \(R{ }^{"}=R\)
Theorem "Converse of \(\cap\) ": \((R \cap S){ }^{`}=R^{`} \cap S^{\text {" }}\)
Theorem "Converse of \({ }_{9}\) ": \((R ; S){ }^{\prime}=S^{\circ} ; R\) "
Theorem "Converse of \(\mathbb{I}\) ": \(\quad \mathbb{I}^{\prime}=\mathbb{I}\)
Theorem "Isotonicity of "": \(R \subseteq S \equiv R^{-} \subseteq S^{\text {- }}\)
Theorem "Converse of \(\cup\) ": \((R \cup S)^{\text {" }}=R^{\smile} \cup S^{\leftrightharpoons}\)
All subexpressions have \(\mathbb{B}\) or \(\leftrightarrow_{-}\) types!
Equations of relational expressions:

Theorem "Distributivity of \(;\) over \(\cup\) " \(: Q ;(R \cup S)=Q ; R \cup Q ; S\)
Theorem "Sub-distributivity of ; over \(\cap\) ": \(Q ;(R \cap S) \subseteq Q ; R \cap Q ; S\)
Theorem "Left-identity of 9 " "Identity of 9 ": \(\mathbb{I} ; R=R\)
Theorem "Right-identity of \({ }_{q}\) " "Identity of 9 ": \(R ; \mathbb{I}=R\)
Theorem "Composition of reflexive relations": reflexive \(R \Rightarrow\) reflexive \(S \Rightarrow\) reflexive \((R ; S)\)
Theorem "Converse of reflexive relations": reflexive \(R \Rightarrow\) reflexive (\(R^{\text {c }}\))
Theorem "Converse reflects reflectivity": reflexive (\(R{ }^{`}\)) \(\Rightarrow\) reflexive \(R\)
Theorem "Converse of transitive relations": transitive \(R \Rightarrow\) transitive (\(R^{`}\))
Theorem "Associativity of \(; ":(Q ; R) ; S=Q ;(R ; S)\)
Theorem "Distributivity of ; over \(\cup\) " \(:(Q \cup R) ; S=Q ; S \cup R ; S\)
Theorem "Sub-distributivity of ; over \(\cap\) ": \((Q \cap R) ; S \subseteq Q ; S \cap R ; S\)
Theorem "Monotonicity of \(\circ\) ": \(Q \subseteq R \Rightarrow Q ; S \subseteq R ; S\)
Theorem "Converse of \(\}\) ": \(\}\) " \(=\{ \}\)
Theorem "Co-difunctionality" "Hesitation": \(R \subseteq R \subseteq R\) " \(; R\)
Theorem "Modal rule": \((Q ; R) \cap S \subseteq Q ;(R \cap Q-\rho)\)
Theorem "Dedekind rule": \((Q ; R) \cap S \subseteq\left(Q \cap S ; R{ }^{-}\right) \circ(R \cap Q\); \(S)\)
Theorem "Schröder": \(Q ; R \subseteq S \equiv \sim S ; R \smile \sim Q\)

\section*{Relation Algebra}
- For any two types \(B\) and \(C\), on the type \(B \leftrightarrow C\) of relations between \(B\) and \(C\) we have the ordering \(\subseteq\) with:
- binary minima _ \(\cap\) _ and maxima _ \(\mathrm{U}_{\text {_ }}\) (which are monotonic)
- least relation \(\left\}\right.\) and largest ("universal") relation \(U\left(=, B, x_{L} C_{」}\right)\)
- complement operation \(\sim\) _ such that \(R \cap \sim R=\{ \}\) and \(R \cup \sim R=U\)
- relative pseudo-complement \(R \Rightarrow S=\sim R \cup S\)
- The composition operation _̊_
- is defined on any two relations \(R: B \leftrightarrow C_{1}\) and \(S: C_{2} \leftrightarrow D\) iff \(C_{1}=C_{2}\)
- is associative, monotonic, and has identities \(\mathbb{I}\)
- distributes over union: \(Q \circ(R \cup S)=Q \% R \cup Q ; S\)
- The converse operation _-
- maps relation \(R: B \leftrightarrow C\) to \(R^{\sim}: C \leftrightarrow B\)
- is self-inverse \(\left(R^{\sim}=R\right)\) and monotonic

- The Dedekind rule holds: \(Q{ }_{q} R \cap S \subseteq\left(Q \cap S ; R^{\hookrightarrow}\right) \stackrel{\left(R \cap Q^{-} ; S\right)}{ }\)
- The Schröder equivalences hold:
\(Q ; R \subseteq S \equiv Q^{\sim} ; \sim S \subseteq \sim R \quad\) and \(\quad Q ; R \subseteq S \equiv \sim S ; R \subseteq \sim Q\)
- ; has left-residuals \(S / R=\sim\left(\sim S ; R^{\sim}\right)\) and right-residuals \(Q \backslash S=\sim\left(Q^{-} ; \sim S\right)\)

\section*{Recall: Monotonicity of Relation Composition}

Relation composition is monotonic in both arguments:
\[
\begin{array}{llll}
Q \subseteq R & \Rightarrow & Q ; S \subseteq & R ; S \\
Q \subseteq R & \Rightarrow & P ; Q & \subseteq P ; R
\end{array}
\]

We could prove this via "Relation inclusion" and "For any", but we don't need to:
Assume \(Q \subseteq R\), which by (11.45) is equivalent to \(Q \cup R=R\) :
Proving \(Q ; S \subseteq R ; S\) :
\(R ; S\)
\(=\langle\) Assumption \(Q \cup R=R\rangle\)
\[
(Q \cup R) ; S
\]
\(=\langle(14.23)\) Distributivity of ; over \(\cup\rangle\)
\(Q ; S \cup R ; S\)
\(\supseteq\langle(11.31)\) Strengthening \(S \subseteq S \cup T\rangle\)
\(Q ; S\)

Recall: Relation-Algebraic Proof of Sub-Distributivity
Use set-algebraic properties and Monotonicity of 9 : \(\quad Q \subseteq R \quad \Rightarrow \quad P \% Q \subseteq P \% R\)
to prove: Subdistributivity of ; over \(\cap: \quad Q \%(R \cap S) \subseteq(Q \% R) \cap(Q ; S)\)
\(Q \%(R \cap S)\)
\(=\langle\) Idempotence of \(\cap(11.35)\rangle\)
\((Q \%(R \cap S)) \cap(Q \%(R \cap S))\)
\(\subseteq\langle\) Mon. of \(\cap\) with Mon. of \(;\) with Weakening \(X \cap Y \subseteq X\rangle\)
\((Q ;(R \cap S)) \cap(Q ; S)\)
\(\subseteq\left\langle\begin{array}{c}\text { Mon. of } \cap \text { with Mon. of } \% \text { with Weakening } X \cap Y \subseteq X \\ \text { - without two-sided monotonicity, } \\ \text { separate } \subseteq \text {-steps are needed in CALCCHECK! }\end{array}\right\rangle\)
\((Q ; R) \cap(Q ; S)\)

\section*{Recall: Properties of Homogeneous Relations}
\begin{tabular}{|l|r|l|}
\hline reflexive & \(\mathbb{I} \subseteq R\) & \((\forall b: B \bullet b(R) b)\) \\
\hline irreflexive & \(\mathbb{I} \cap R=\{ \}\) & \((\forall b: B \bullet \neg(b(R) b))\) \\
\hline symmetric & \(R^{\curvearrowleft}=R\) & \((\forall b, c: B \bullet b(R) c \equiv c(R) b)\) \\
\hline antisymmetric & \(R \cap R^{\curvearrowleft} \subseteq \mathbb{I}\) & \((\forall b, c \bullet b(R) c \wedge c(R) b \Rightarrow b=c)\) \\
\hline asymmetric & \(R \cap R^{\curvearrowleft}=\{ \}\) & \((\forall b, c: B \bullet b(R) c \Rightarrow \neg(c(R) b))\) \\
\hline transitive & \(R, R \subseteq R\) & \((\forall b, c, d \bullet b(R) c \wedge c(R) d \Rightarrow b(R) d)\) \\
\hline
\end{tabular}
\(R\) is an equivalence (relation) on \(B\) iff it is reflexive, transitive, and symmetric. (E.g., \(=, \equiv\))
\(R\) is a (partial) order on \(B\)
iff it is reflexive, transitive, and antisymmetric.
(E.g., \(\leq, \geq, \subseteq, \supseteq, \mid\))
\(R\) is a strict-order on \(B\)
iff it is irreflexive, transitive, and asymmetric.
(E.g., <, >, c, כ)

Homogeneous Relation Properties are Preserved by Converse
\begin{tabular}{|l|r|l|l|}
\hline reflexive & \(\mathbb{I} \subseteq R\) & \((\forall b: B \bullet b(R) b)\) \\
\hline irreflexive & \(\mathbb{I} \cap R\) & \(=\{ \}\) & \((\forall b: B \bullet \neg(b(R) b))\) \\
\hline symmetric & \(R^{\wedge}=R\) & \((\forall b, c: B \bullet b(R) c \equiv c(R) b)\) \\
\hline antisymmetric & \(R \cap R^{\curvearrowleft} \subseteq \mathbb{I}\) & \((\forall b, c \bullet b(R) c \wedge c(R) b \Rightarrow b=c)\) \\
\hline asymmetric & \(R \cap R^{\wedge}=\{ \}\) & \((\forall b, c: B \bullet b(R) c \Rightarrow \neg(c(R) b))\) \\
\hline transitive & \(R \circ R\) & \(\subseteq R\) & \((\forall b, c, d \bullet b(R) c(R) d \Rightarrow b(R) d)\) \\
\hline idempotent & \(R \circ R\) & \(=R\) & \\
\hline
\end{tabular}

Theorem: If \(R: B \leftrightarrow B\) is reflexive/irreflexive/symmetric/antisymmetric/asymmetric/ transitive/idempotent, then \(R^{`}\) has that property, too.

\section*{Proof: Reflexivity:}
\(R^{\sim}\)
\(\supseteq\left\langle\right.\) Mon. \({ }^{-}\)with Reflexivity of \(\left.R\right\rangle\) \(\mathbb{I}^{\sim}\)
\(=\langle\) Symmetry of \(\mathbb{I}\rangle\)
II
\[
\begin{aligned}
& \text { Transitivity: } \\
& R^{\sim}{ }^{\sim} R^{-} \\
& =\langle\text {Converse of } \ddagger\rangle \\
& (R ; R)^{-} \\
& \subseteq\left\langle\text { Mon. }{ }^{`} \text { with Trans. of } R\right\rangle \\
& R^{\sim}
\end{aligned}
\]

\section*{Reflexive and Transitive Implies Idempotent}
\begin{tabular}{|l|r|l|}
\hline reflexive & \(\mathbb{I} \subseteq R\) & \((\forall b: B \bullet b(R) b)\) \\
\hline transitive & \(R \circ R \subseteq R\) & \((\forall b, c, d \bullet b(R) c(R) d \Rightarrow b(R) d)\) \\
\hline idempotent & \(R \circ R=R\) & \\
\hline
\end{tabular}

Theorem: If \(R: B \leftrightarrow B\) is reflexive and transitive, then it is also idempotent.
```

        Reflexive and Transitive Implies Idempotent - Direct Approach
    Theorem "Idempotency from reflexive and transitive":
    reflexive R=> transitive R क idempotent R
    Proof:
Assuming `reflexive R`, `transitive R`:
idempotent R
\equiv \"Definition of idempotency"\
R;R=R
\equiv\"Mutual inclusion" \
R;R\subseteqR^R\subseteqR;R
\equiv\"Definition of transitivity", assumption `transitive R`, "Identity of ^" \
R\subseteqR;R
\equiv\"Identity of;">
R;\mathbb{I}\subseteqR;R
\Leftarrow\langle"Monotonicity of g" \rangle
II\subseteqR
\equiv\Assumption `reflexive R` with "Definition of reflexivity" \
true

```


\section*{Reflexive and Transitive Implies Idempotent - Semi-formal}
\begin{tabular}{|l|r|l|}
\hline reflexive & \(\mathbb{I} \subseteq R\) & \((\forall b: B \bullet b(R) b)\) \\
\hline transitive & \(R \circ R \subseteq R\) & \((\forall b, c, d \bullet b(R) c(R) d \Rightarrow b(R) d)\) \\
\hline idempotent & \(R \circ R=R\) & \\
\hline
\end{tabular}

Theorem: If \(R: B \leftrightarrow B\) is reflexive and transitive, then it is also idempotent.
Proof: By mutual inclusion and transitivity of \(R\), we only need to show \(R \subseteq R \circ R\) :
R
\(=\langle\) Identity of \(;\rangle\)
\(R\); \(\mathbb{I}\)
\(\subseteq\left\langle\right.\) Mon. \({ }_{9}\) with Reflexivity of \(\left.R\right\rangle\)
\(R\); \(R\)

\section*{Reflexive and Transitive Implies Idempotent - Cyclic \(\subseteq\)-chain Proving ` = `}

Theorem "Idempotency from reflexive and transitive":
reflexive \(R \Rightarrow\) transitive \(R \Rightarrow\) idempotent \(R\)
Proof:
Assuming `reflexive \(R\) ` and using with "Definition of reflexivity",
\begin{tabular}{|l|r|r|}
\hline reflexive & \(\mathbb{I} \subseteq R\) \\
\hline transitive & \(R \circ R \subseteq R\) \\
\hline idempotent & \(R \circ R=R\) \\
\hline
\end{tabular}
'transitive \(R\) ' and using with "Definition of transitivity":
Using "Definition of idempotency":
Subproof for \(`\) ' \(; R=R\) :
\(R ; R\)
\(\subseteq\left\langle\right.\) Assumption `transitive \(\left.R^{`}\right\rangle\)
R
\(=\left\langle\right.\) "Identity of \({ }^{\circ}\) " \(\rangle\)
\(R\); II
\(\subseteq\left\langle\right.\) "Monotonicity of \({ }_{9}\) " with assumption `reflexive \(R\) ’ \(\rangle\)
\(R ; R\)

Using cyclic \(\sqsubseteq\)-chains to prove equalities requires activation of antisymmetry of \(\sqsubseteq\).

Most Homogeneous Relation Properties are Preserved by Intersection
\begin{tabular}{|l|r|}
\hline reflexive & \(\mathbb{I} \subseteq R\) \\
\hline irreflexive & \(\mathbb{I} \cap R=\{ \}\) \\
\hline transitive & \(R \circ R \subseteq R\) \\
\hline idempotent & \(R \circ R=R\) \\
\hline
\end{tabular}
\begin{tabular}{|l|rll|}
\hline symmetric & \(R^{\wedge}\) & \(=R\) \\
\hline antisymmetric & \(R \cap R^{\smile}\) & \(\subseteq\) & \(\mathbb{I}\) \\
\hline asymmetric & \(R \cap R^{\smile}\) & \(=\) & \(\}\) \\
\hline
\end{tabular}

Theorem: If \(R, S: B \leftrightarrow B\) are reflexive/irreflexive/symmetric/antisymmetric/asymmetric/transitive, then \(R \cap S\) has that property, too.
Proof: Reflexivity:
\(R \cap S\)
\(\supseteq\langle\) Mon. of \(\cap\) with Refl. \(S\rangle\) \(R \cap \mathbb{I}\)
\(\geq\langle\) Mon. of \(\cap\) with Refl. \(R\rangle\) \(\mathbb{I} \cap \mathbb{I}\)
\(=\langle\) Idempotence of \(\cap\rangle\)
II

Transitivity:
\((R \cap S) \stackrel{(R \cap S)}{ }\)
\(\subseteq\langle\) Sub-distributivity of ; over \(\cap\rangle\)
\((R ; R) \cap(R ; S) \cap(S ; R) \cap(S ; S)\)
\(\subseteq\langle\) Weakening \(X \cap Y \subseteq X\rangle\)
\((R ; R) \cap(S ; S)\)
\(\subseteq\langle\) Mon. \(\cap\) with transitivity of \(R\) and \(S\rangle\)
\(=\langle\) Mon. \(\cap\) with transitivity of \(R\) and \(S\rangle\)

Most Homogeneous Relaton Properties are Preserved by Intersection
\begin{tabular}{|l|r|}
\hline reflexive & \(\mathbb{I} \subseteq R\) \\
\hline irreflexive & \(\mathbb{I} \cap R=\{ \}\) \\
\hline transitive & \(R \circ R \subseteq R\) \\
\hline idempotent & \(R \circ R=R\) \\
\hline
\end{tabular}
\begin{tabular}{|l|r}
\hline symmetric & \(R^{\smile}=R\) \\
\hline antisymmetric & \(R \cap R^{\smile} \subseteq \mathbb{I}\) \\
\hline asymmetric & \(R \cap R^{\smile}=\{ \}\) \\
\hline
\end{tabular}

Theorem: If \(R, S: B \leftrightarrow B\) are reflexive/irreflexive/symmetric/antisymmetric/asymmetric/transitive, then \(R \cap S\) has that property, too.

\section*{Counter-example for preservation of idempotence:}

Some Homogeneous Relation Properties are Preserved by Union
\begin{tabular}{|l|r|}
\hline reflexive & \(\mathbb{I} \subseteq R\) \\
\hline irreflexive & \(\mathbb{I} \cap R=\{ \}\) \\
\hline transitive & \(R \circ R \subseteq R\) \\
\hline idempotent & \(R \circ R=R\) \\
\hline
\end{tabular}
\begin{tabular}{|l|rr|}
\hline symmetric & \(R^{\smile}\) & \(=R\) \\
\hline antisymmetric & \(R \cap R^{\smile} \subseteq\) & \(\mathbb{I}\) \\
\hline asymmetric & \(R \cap R^{\smile}=\{ \}\) \\
\hline
\end{tabular}

Theorem: If \(R, S: B \leftrightarrow B\) are reflexive/irreflexive/symmetric, then \(R \cup S\) has that
property, too.
Proof:
Reflexivity:
II
\(\subseteq\langle\) Reflexivity of \(R\rangle\)
R
\(\subseteq\langle\) Weakening \(X \subseteq X \cup Y\rangle\)
\(R \cup S\)

Irreflexivity:
\(\mathbb{I} \cap(R \cup S)\)
\(=\langle\) Distributivity of \(\cap\) over \(\cup\rangle\)
\((\mathbb{I} \cap R) \cup(\mathbb{I} \cap S)\)
\(=\langle\) Irreflexivity of \(R\) and \(S\rangle\)
\(\} \cup\}\)
\(=\langle\) Idempotence of \(\cup\rangle\)
\{\}

\section*{Some Homogeneous Relation Properties are Preserved by Union}
\begin{tabular}{|l|rl|}
\hline reflexive & \(\mathbb{I} \subseteq\) & \(\subseteq\) \\
\hline irreflexive & \(\mathbb{I} \cap R=\{ \}\) \\
\hline transitive & \(R \circ R \subseteq R\) \\
\hline idempotent & \(R \circ R=R\) \\
\hline
\end{tabular}
\begin{tabular}{|l|rr|}
\hline symmetric & \(R^{\smile}=R\) \\
\hline antisymmetric & \(R \cap R^{\smile} \subseteq \mathbb{I}\) \\
\hline asymmetric & \(R \cap R^{\smile}=\{ \}\) \\
\hline
\end{tabular}

Theorem: If \(R, S: B \leftrightarrow B\) are reflexive/irreflexive/symmetric, then \(R \cup S\) has that property, too.

Counter-example for preservation of transitivity:

Weaker Formulation of Symmetry
\begin{tabular}{|l|r}
\hline reflexive & \(\mathbb{I} \subseteq R\) \\
\hline irreflexive & \(\mathbb{I} \cap R=\{ \}\) \\
\hline transitive & \(R \circ R \subseteq R\) \\
\hline idempotent & \(R \circ R=R\) \\
\hline
\end{tabular}
\begin{tabular}{|l|rr|}
\hline symmetric & \(R^{\smile}=R\) \\
\hline antisymmetric & \(R \cap R^{\smile} \subseteq\) & \(\mathbb{I}\) \\
\hline asymmetric & \(R \cap R^{\hookrightarrow}=\{ \}\) \\
\hline
\end{tabular}

For proving symmetry of \(R, S: B \leftrightarrow B\), it is sufficient to prove \(R^{\smile} \subseteq R\).
In other words:
Theorem: If \(R^{\complement} \subseteq R\), then \(R^{\complement}=R\).
Proof: By mutual inclusion, we only need to show \(R \subseteq R^{\sim}\) :
R
\(=\langle\) Self-inverse of converse \(\rangle\)
\(\left(R^{\vee}\right)^{-}\)
\(\subseteq\left\langle\right.\) Mon. of \({ }^{〔}\) with Assumption \(\left.R \frown \subseteq R\right\rangle\)
\(R^{\sim}\)

\section*{Symmetric and Transitive Implies Idempotent}
\begin{tabular}{|l|rr|l|}
\hline symmetric & \(R^{\wedge}\) & \(=R\) & \((\forall b, c: B \bullet b(R) c \equiv c(R) b)\) \\
\hline transitive & \(R \circ R \subseteq R\) & \((\forall b, c, d \bullet b(R) c(R) d \Rightarrow b(R) d)\) \\
\hline idempotent & \(R \circ R=R\) & \\
\hline
\end{tabular}

Theorem: A symmetric and transitive \(R: B \leftrightarrow B\) is also idempotent.
Proof: By mutual inclusion and transitivity of \(R\), we only need to show \(R \subseteq R \circ R\) :
\(R\)
\(=\langle\) Idempotence of \(n\), Identity of \(\circ\rangle\)
\(R ゅ \mathbb{I} \cap R\)
\(\subseteq\left\langle\right.\) Modal rule \(\left.\quad Q \circ R \cap S \subseteq Q^{\circ}\left(R \cap Q^{-} \circ S\right)\right\rangle\)
\(R \circ\left(\mathbb{I} \cap R^{\sim} ; R\right)\)
\(\subseteq\left\langle\right.\) Mon. \({ }_{9}\) with Weakening \(\left.X \cap Y \subseteq X\right\rangle\)
\(R\) я \(R^{\sim}\) ๆ \(R\)
\(=\langle\) Symmetry of \(R\rangle\)
\(R ; R \% R\)
\(\subseteq\left\langle\right.\) Mon. \({ }_{9}\) with Transitivity of \(\left.R\right\rangle\)
\(R\); \(R\)

\section*{Symmetric and Transitive Implies Idempotent}
\begin{tabular}{|l|r|r|l|}
\hline symmetric & \(R^{\wedge}\) & \(=R\) & \((\forall b, c: B \bullet b(R) c \equiv c(R) b)\) \\
\hline transitive & \(R ; R \subseteq R\) & \((\forall b, c, d \bullet b(R) c(R) d \Rightarrow b(R) d)\) \\
\hline idempotent & \(R ; R=R\) & \\
\hline
\end{tabular}

Theorem: A symmetric and transitive \(R: B \leftrightarrow B\) is also idempotent.
Proof: By mutual inclusion and transitivity of \(R\), we only need to show \(R \subseteq R g R\) :
\(R\)
\(=\langle\) Idempotence of \(n\), Identity of \(;\rangle\)
\(\mathbb{I}\) я \(R \cap R\)
\(\subseteq\left\langle\right.\) Modal rule \(\left.\left.Q \varsubsetneqq R \cap S \subseteq\left(Q \cap S ; R^{\smile}\right) \varsubsetneqq R\right)\right\rangle\)
\(\left(\mathbb{I} \cap R \stackrel{R}{ } R^{\smile}\right) \stackrel{R}{ }\)
\(\subseteq\left\langle\right.\) Mon. \({ }_{9}\) with Weakening \(\left.X \cap Y \subseteq X\right\rangle\)
\(R\); \(R^{\sim}\); \(R\)
\(=\langle\) Symmetry of \(R\rangle\)
\(R ; R \% R\)
\(\subseteq\left\langle\right.\) Mon. \({ }_{9}\) with Transitivity of \(\left.R\right\rangle\)
\(R\) § \(R\)

\section*{Modal Rule for "Symmetric and Transitive Implies Idempotent"}

\(\mathbb{I} q R \cap R\)
\(\subseteq\left\langle\right.\) Modal rule \(\left.\left.Q \varsubsetneqq R \cap S \subseteq\left(Q \cap S \risingdotseq R^{\smile}\right) \varsubsetneqq R\right)\right\rangle\)
\(\left(\mathbb{I} \cap R ; R^{\smile}\right)\)) \(R\)

Modal Rules- Converse as Over-Approximation of Inverse
Modal rules: For \(Q: \mathcal{A} \leftrightarrow \mathcal{B}, R: \mathcal{B} \leftrightarrow \mathcal{C}\), and \(S: \mathcal{A} \leftrightarrow \mathcal{C}\) :
\[
\begin{aligned}
& Q ; R \cap S \subseteq Q_{\xi}\left(R \cap Q^{\sim} ; S\right) \\
& Q ; R \cap S \subseteq\left(Q \cap S ; R^{\sim}\right) ; R
\end{aligned}
\]

Useful to "make information available locally" (\(Q\) is replaced with \(\quad Q \cap S ; R^{\sim}\)) for use in further proof steps.

In constraint diagrams (boxed variables are free; others existentially quantified; alternative paths are conjunction):

\((\exists b \cdot a(Q) b(R) c \wedge a(S) c) \quad \Rightarrow\)
\(\left(\exists b, c^{\prime} \bullet a(Q) b(R) c \wedge b(R) c^{\prime} \wedge a(S) c^{\prime}\right)\)

Modal Rules modulo Inclusion via Intersection
Modal rules: For \(Q: \mathcal{A} \leftrightarrow \mathcal{B}, R: \mathcal{B} \leftrightarrow \mathcal{C}\), and \(S: \mathcal{A} \leftrightarrow \mathcal{C}\) :
\[
\begin{aligned}
& Q ; R \cap S \subseteq Q ;\left(R \cap Q^{\circ} ; S\right) \\
& Q ; R \cap S \subseteq\left(Q \cap S ; R^{\sim}\right) ; R
\end{aligned}
\]

Equivalently, using \(\quad M \subseteq N \equiv M=M \cap N \quad\) etc.:
\[
\begin{aligned}
& Q ; R \cap S=Q ;\left(R \cap Q^{\sim} ; S\right) \cap S \\
& Q ; R \cap S=\left(Q \cap S ; R^{\wedge}\right) ; R \cap S
\end{aligned}
\]

In constraint diagrams:

\((\exists b \cdot a(Q) b(R) c \wedge a(S) c) \equiv\)
\(\equiv \quad\left(\exists b, c^{\prime} \bullet a(Q) b(R) c^{\prime} \wedge a(S) c^{\prime} \wedge b(R) c \wedge a(S) c\right)\)

\section*{Modal Rules and Dedekind Rule}

Modal rules: For \(Q: \mathcal{A} \leftrightarrow \mathcal{B}, R: \mathcal{B} \leftrightarrow \mathcal{C}\), and \(S: \mathcal{A} \leftrightarrow \mathcal{C}\) :
\[
\begin{aligned}
& Q ; R \cap S \subseteq Q ;\left(R \cap Q^{\sim} ; S\right) \\
& Q ; R \cap S \subseteq\left(Q \cap S ; R^{\sim}\right) ; R
\end{aligned}
\]

Equivalent: Dedekind Rule:
\(Q ; R \cap S \subseteq\left(Q \cap S ; R^{\smile}\right) ;\left(R \cap Q^{\sim} ; S\right)\)

\section*{Dedekind Rule modulo Inclusion via Intersection}

Modal rules: For \(Q: \mathcal{A} \leftrightarrow \mathcal{B}, R: \mathcal{B} \leftrightarrow \mathcal{C}\), and \(S: \mathcal{A} \leftrightarrow \mathcal{C}\) :
\[
\begin{aligned}
& Q ; R \cap S \subseteq Q_{;}\left(R \cap Q^{-} ; S\right) \\
& Q ; R \cap S \subseteq\left(Q \cap S ; R^{\smile}\right) ; R
\end{aligned}
\]

Equivalent: Dedekind Rule:
\[
Q ; R \cap S \subseteq\left(Q \cap S ; R^{\hookrightarrow}\right) ;\left(R \cap Q^{\sim} ; S\right)
\]

Equivalently, via \(M \subseteq N \equiv M=M \cap N\) :
\[
Q ; R \cap S=(Q \cap S ; R \smile) \%\left(R \cap Q^{\sim} ; S\right) \cap(S \cap Q ; R)
\]

Modal Rules and Dedekind Rule: Summary with Sharp Versions
For all \(Q: \mathcal{A} \leftrightarrow \mathcal{B}, R: \mathcal{B} \leftrightarrow \mathcal{C}\), and \(S: \mathcal{A} \leftrightarrow \mathcal{C}:\)

Modal rules:
\[
\begin{array}{r}
Q ; R \cap S \subseteq Q ;\left(R \cap Q^{\circ} ; S\right) \\
Q ; R \cap S \subseteq\left(Q \cap S ; R^{\hookrightarrow}\right) ; R \\
Q ; R \cap S=Q ;\left(R \cap Q^{\circ} ; S\right) \cap S \\
Q ; R \cap S=\left(Q \cap S ; R^{\smile}\right) ; R \cap S \\
Q ; R \cap S \subseteq\left(Q \cap S ; R^{\hookrightarrow}\right) ;\left(R \cap Q^{\hookrightarrow} ; S\right) \\
Q ; R \cap S=\left(Q \cap S ; R^{\hookrightarrow}\right) \%\left(R \cap Q^{\hookrightarrow} ; S\right) \cap S
\end{array}
\]

Modal rules (sharp versions):

Dedekind:
Dedekind (sharp version):

Proofs: Exercise!
Remember: How to construct these rules from the triangle diagram set-up!

\(\Rightarrow\)

Symmetric and Transitive Implies Idempotent
\begin{tabular}{|l|r|l|}
\hline symmetric & \(R^{\curvearrowleft}=R\) & \((\forall b, c: B \bullet b(R) c \equiv c(R) b)\) \\
\hline transitive & \(R ; R \subseteq R\) & \((\forall b, c, d \bullet b(R) c(R) d \Rightarrow b(R) d)\) \\
\hline idempotent & \(R ; R=R\) & \\
\hline
\end{tabular}

Theorem: A symmetric and transitive \(R: B \leftrightarrow B\) is also idempotent.
Proof: By mutual inclusion and transitivity of \(R\), we only need to show \(R \subseteq R \circ R\) :
\(R\)
\(=\langle\) Idempotence of \(n\), Identity of \(;\rangle\)
\(R ; \mathbb{I} \cap R\)
\(\subseteq\left\langle\right.\) Modal rule \(\left.\quad Q ; R \cap S \subseteq Q^{\circ} ;\left(R \cap Q^{\sim} ; S\right)\right\rangle\)
\(R ;\left(\mathbb{I} \cap R^{\sim} ; R\right)\)
\(\subseteq\left\langle\right.\) Mon. \({ }^{\circ}\) with Weakening \(\left.X \cap Y \subseteq X\right\rangle\)
\(R ̊ R^{\sim}{ }_{9} R\)
\(=\langle\) Symmetry of \(R\rangle\)
\(R ; R\); \(R\)
\(\subseteq\left\langle\right.\) Mon. \({ }^{\circ}\) with Transitivity of \(\left.R\right\rangle\)
\(R ; R\)

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

\section*{Recall: Relation Algebra}
- For any two types \(B\) and \(C\), on the type \(B \leftrightarrow C\) of relations between \(B\) and \(C\) we have the ordering \(\subseteq\) with:
- binary minima _ \(\mathrm{n}_{\mathrm{a}}\) and maxima _ \(\mathrm{u}_{\text {_ }}\) (which are monotonic)
- least relation \(\}\) and largest ("universal") relation \(U(=, B, \times, C)\),
- complement operation \(\sim\) _ such that \(R \cap \sim R=\{ \}\) and \(R \cup \sim R=U\)
- relative pseudo-complement \(R \Rightarrow S=\sim R \cup S\)
- The composition operation _̊_
- is defined on any two relations \(R: B \leftrightarrow C_{1}\) and \(S: C_{2} \leftrightarrow D\) iff \(C_{1}=C_{2}\)
- is associative, monotonic, and has identities \(\mathbb{I}\)
- distributes over union: \(Q ;(R \cup S)=Q \approx R \cup Q ; S\)
- The converse operation _-
- maps relation \(R: B \leftrightarrow C\) to \(R^{\wedge}: C \leftrightarrow B\)

- is contravariant wrt. composition: \((R ; S)^{\curvearrowleft}=S^{\sim} \stackrel{R^{\llcorner }}{ }\)
- The Dedekind rule holds: \(Q \circ R \cap S \subseteq\left(Q \cap S ; R^{\hookrightarrow}\right) \stackrel{\left(R \cap Q^{-} ; S\right)}{ }\)
- The Schröder equivalences hold:
\(Q ; R \subseteq S \equiv Q^{\sim} ; \sim S \subseteq \sim R \quad\) and \(\quad Q ; R \subseteq S \equiv \sim S ; R \subseteq \sim Q\)
- \(\%\) has left-residuals \(S / R=\sim\left(\sim S ; R^{\sim}\right)\) and right-residuals \(Q \backslash S=\sim\left(Q^{-} ; \sim S\right)\)

\section*{Recall: Properties of Homogeneous Relations}
\begin{tabular}{|l|r|l|}
\hline reflexive & \(\mathbb{I} \subseteq R\) & \((\forall b: B \bullet b(R) b)\) \\
\hline irreflexive & \(\mathbb{I} \cap R=\{ \}\) & \((\forall b: B \bullet \neg(b(R) b))\) \\
\hline symmetric & \(R^{\curvearrowleft}=R\) & \((\forall b, c: B \bullet b(R) c \equiv c(R) b)\) \\
\hline antisymmetric & \(R \cap R^{\checkmark} \subseteq \mathbb{I}\) & \((\forall b, c \bullet b(R) c \wedge c(R) b \Rightarrow b=c)\) \\
\hline asymmetric & \(R \cap R^{\checkmark}=\{ \}\) & \((\forall b, c: B \bullet b(R) c \Rightarrow \neg(c(R) b))\) \\
\hline transitive & \(R, R \subseteq R\) & \((\forall b, c, d \bullet b(R) c \wedge c(R) d \Rightarrow b(R) d)\) \\
\hline
\end{tabular}
\(R\) is an equivalence (relation) on \(B\) iff it is reflexive, transitive, and symmetric. (E.g., \(=, \equiv\))
\(R\) is a (partial) order on \(B\)
iff it is reflexive, transitive, and antisymmetric.
(E.g., \(\leq, \geq, \subseteq, \supseteq, \mid\))
\(R\) is a strict-order on \(B\)
iff it is irreflexive, transitive, and asymmetric.
(E.g., <, >, c, כ)

\section*{Recall: Properties of Heterogeneous Relations}

A relation \(R: B \leftrightarrow C\) is called:
\begin{tabular}{|c|c|c|}
\hline univalent determinate & \(R^{\sim} ; R \subseteq \mathbb{I}\) & \(\forall b, c_{1}, c_{2} \bullet b(R) c_{1} \wedge b(R) c_{2} \Rightarrow c_{1}=c_{2}\) \\
\hline total & \(\begin{aligned} \operatorname{Dom} R & =B \\ \mathbb{I} & \subseteq R_{9} R^{\wedge}\end{aligned}\) & \(\forall b: B \bullet(\exists c: C \bullet b(R) c)\) \\
\hline injective & \(R_{9} R^{\sim} \subseteq \mathbb{I}\) & \(\forall b_{1}, b_{2}, c \cdot b_{1}(R) c \wedge b_{2}(R) c \Rightarrow b_{1}=b_{2}\) \\
\hline surjective & \[
\begin{aligned}
\operatorname{Ran} R & =C \\
\mathbb{I} & \subseteq R^{\wedge} ; R
\end{aligned}
\] & \(\forall c: C \bullet(\exists b: B \bullet b(R) c)\) \\
\hline a mapping & \multicolumn{2}{|l|}{iff it is univalent and total} \\
\hline bijective & \multicolumn{2}{|l|}{iff it is injective and surjective} \\
\hline
\end{tabular}

Univalent relations are also called (partial) functions.
Mappings are also called total functions.

\section*{For Univalent Relations, Sub-distributivity turns into Distributivity}

If \(F: A \leftrightarrow B\) is univalent, then \(F ;(R \cap S)=(F ; R) \cap(F ; S)\)
Proof: From sub-distributivity we have \(\subsetneq\); because of antisymmetry of \(\subseteq\) (11.57) we only need to show \(\supseteq\) :
Assume that \(F\) is univalent, that is, \(F^{\sim} \circ F \subseteq \mathbb{I}\)
\[
(F, R) \cap(F ; S)
\]
\(\subseteq\left\langle " M o d a l\right.\) rule" \(\left.\quad Q ; R \cap S \subseteq Q \circ\left(R \cap Q^{\prime} ; S\right)\right\rangle\)
\[
F \%\left(R \cap\left(F^{\sim} ; F ; S\right)\right)
\]
 \(F_{g}(R \cap(\mathbb{I} ; S))\)
\(=\left\langle\right.\) "Identity of \({ }_{9}\) " \(\rangle\)
\[
F \circ(R \cap S)
\]

\section*{Composition with Univalent Distributes over Intersection: In Diagrams} \((F ; R) \cap(F ; S)\)
\(\subseteq\left\langle " M o d a l\right.\) rule" \(\left.\quad Q \_R \cap S \subseteq Q_{9}\left(R \cap Q^{-} ; S\right)\right\rangle\)
\(F \circ\left(R \cap\left(F^{\sim} ; F^{\circ} S\right)\right)\)
 \(F_{\varrho}(R \cap(\mathbb{I} ; S))\)
\(=\left\langle\right.\) "Identity of \(\left.{ }_{9}{ }^{\prime \prime}\right\rangle\) \(F \circ(R \cap S)\)

\section*{New Keywords: Monotonicity and Antitonicity}

If \(F: A \leftrightarrow B\) is univalent, then \(F ;(R \cap S)=(F ; R) \cap(F ; S)\)
Proof: From sub-distributivity we have \(\subsetneq\); because of antisymmetry of \(\subseteq\) (11.57) we only need to show \(\supseteq\) :

Assume that \(F\) is univalent, that is, \(F_{9}^{\sim} F \subseteq \mathbb{I}\)
\[
(F ; R) \cap(F ; S)
\]
\(\subseteq\langle " M o d a l\) rule" \(\quad Q ; R \cap S \subseteq Q ;(R \cap Q " ; S)\rangle\)
\(F \%\left(R \cap\left(F^{\sim}{ }_{q} F_{;}^{\circ} S\right)\right)\)
\(\subseteq\left\langle\right.\) Monotonicity with assumption \(\left.{ }^{\prime} F^{\wedge} \varrho F \subseteq \mathbb{I} \mathbb{I}^{`}\right\rangle\)
\(F_{q}(R \cap(\mathbb{I} ; S))\)
\(=\left\langle "\right.\) Identity of \(\left.{ }_{9}{ }^{\prime \prime}\right\rangle\)
\(F \%(R \cap S)\)

\section*{Inverses are Defined from Composition and Identities}

Definition: Let \(B\) and \(C\) be types, and \(f: B \leftrightarrow C\) be a relation.
An inverse of \(f\) is a relation \(g: C \leftrightarrow B\) such that \(f \circ g=\mathbb{I}\) and \(g \circ f=\mathbb{I}\).

\section*{Theorems:}
- \(f\) has an inverse iff \(f\) is a bijective mapping.
- The inverse of a bijective mapping \(f\) is its converse \(f\).

\section*{Note:}
"Inverse" should always be defined this way, based on an associative composition with identities. In such a context, if \(f\) has an inverse, it is also called an isomorphism.
(Ad-hoc "definitions of inverse" produce a moral proof obligation of the inverse properties. Without these, one runs the risk of inducing strange theories...)

In particular: Converse of relations does in general not produce inverses.

\section*{Inverses of Total Functions - Between Sets}

We write " \(f \in S_{1} \rightarrow S_{2}\) " for " \(f\) is a mapping fron \(S_{1}\) to \(S_{2}\) " \(-\operatorname{Dom} f=S_{1} \wedge f\) " \(q \subseteq\) id \(S_{2}\)
(14.43) Definition: Let \(f\) with \(f \in S_{1} \rightarrow S_{2}\) be a mapping from \(S_{1}\) to \(S_{2}\).

An inverse of \(f\) is a mapping \(g\) from \(S_{2}\) to \(S_{1}\) such that \(f \circ g=\) id \(S_{1}\) and \(g \circ f=\) id \(S_{2}\).
Still:
- \(f\) has an inverse iff \(f\) is a bijective mapping.
- The inverse of a bijective mapping \(f\) is its converse \(f^{\sim}\).
- A homogeneous bijective mapping is also called a permutation.

\section*{Inverses of Total Functions - Between Types}
(14.43t) Definition: Let \(B\) and \(C\) be types, and \(f: B \leftrightarrow C\) be a mapping.

An inverse of \(f\) is a mapping \(g: C \leftrightarrow B\) such that \(f \circ g=\mathbb{I}=\mathrm{id}_{\llcorner } B\), and \(g \circ f=\mathbb{I}=\mathrm{id} L_{L} C\),
Theorem: If \(g\) is an inverse of a mapping \(f: B \rightarrow C\), then \(g=f^{\wedge}\).
Proof: (Using antisymmetry of \(\subseteq\))
```

    \(f^{-}\)
    \(=\langle\) Identity of 9\(\rangle\)
    \(f^{\sim}\) g II
    \(=\langle g\) is an inverse of \(f\rangle\)
    \(f^{\sim} \stackrel{q}{ } \circ g\)
    \(\subseteq\left\langle\right.\) Mon. of \(q\) with \(f\) is univalent, that is, \(\left.f^{\sim} \circ f \subseteq \mathbb{I}\right\rangle\)
        I! 9
    \(=\langle\) Identity of \(;\rangle\)
    g
    \(\subseteq\left\langle\right.\) Identity of \({ }_{q}, \quad\) Mon. of \(;\) with \(f\) is total, that is, \(\left.\mathbb{I} \subseteq f ; f^{\sim}\right\rangle\)
    \(g \stackrel{f}{\circ}{ }_{\circ} f^{\sim}\)
    \(=\langle g\) is an inverse of \(f\); Identity of \(;\rangle\)
    \(f^{\sim}\)
    ```
 C. \(-\frac{f}{}\)
 \(\mathrm{C} \xrightarrow{f} B \xrightarrow{\mathbb{I}} B\)
 \(\mathrm{C}, \stackrel{f}{ } \mathrm{~B} \xrightarrow{f} C \xrightarrow{g} \mathrm{~B}\)
 \(\mathrm{C} \xrightarrow{\mathbb{I}} \mathrm{C} \xrightarrow{g} \mathrm{~B}\)
 \(\mathrm{C} \xrightarrow{g} \mathrm{~B}\)
 \(\mathrm{C} \xrightarrow{g} B \xrightarrow{f} C \stackrel{f}{\mathrm{f}} \mathrm{B}\)
 C. \(f\) B

\section*{Recall: Equivalence Relations}

Recall: A (homogeneous) relation \(R: B \leftrightarrow B\) is called:
\begin{tabular}{|l|r|l|}
\hline reflexive & \(\mathbb{I} \subseteq R\) & \((\forall b: B \bullet b(R) b)\) \\
\hline symmetric & \(R^{\smile}=R\) & \((\forall b, c: B \bullet b(R) c \equiv c(R) b)\) \\
\hline transitive & \(R \circ R \subseteq R\) & \((\forall b, c, d \bullet b(R) c(R) d \Rightarrow b(R) d)\) \\
\hline idempotent & \(R \circ R=R\) & \\
\hline equivalence & \(\mathbb{I} \subseteq R=R \circ R=R^{\wedge}\) & reflexive, transitive, symmetric \\
\hline
\end{tabular}

\section*{Equivalence Classes, Partitions}

Definition (14.34): Let \(\Xi\) be an equivalence relation on \(B\). Then \([b]_{\Xi}\). the equivalence class of \(b\), is the subset of elements of \(B\) that are equivalent (under \(\Xi\)) to \(b\) :
\[
x \in[b]_{\Xi} \equiv x(\Xi) b \quad \text { Equivalently: } \quad[b]_{\Xi}=\Xi(\{\{b\})
\]

Theorem: For an equivalence relation \(\Xi\) on \(B\), the set \(\left.B\right|_{\Xi}=\{b: B \bullet \Xi(\{b\} \mid)\}\) of equivalence classes of \(\Xi\) is a partition of \({ }_{\llcorner }\)」 \(^{\text {. }}\)
\[
\{\{1\},\{2,3\},\{4,5,6,7\}\}
\]

Definition (11.76): If \(T\) : set \(t\) and \(S\) : set (set \(t\)), then:
\(S\) is a partition of \(T\)
\[
\begin{aligned}
& \equiv(\forall u, v \mid u \in S \wedge v \in S \wedge u \neq v \bullet u \cap v=\{ \}) \\
& \wedge(\cup u \mid u \in S \bullet u)=T
\end{aligned}
\]

Theorem: There is a bijective mapping between equivalence relations on \(B\) and partitions of \(B\).
The partition view can be useful for implementing equivalence relations.

\section*{Equivalence Quotients}
 \(\Xi\) is also called quotient of \(B\) via \(\Xi\).

The mapping \(\chi=\left\{b \bullet\left\langle b,[b]_{\Xi}\right\rangle\right\}\) is the quotient projection.
\(\chi\) satisfies:
- \(\chi\); \(\chi=\mathbb{I}\) - univalent and surjective
- \(\chi\) ๆ \(\chi^{\text { }}=\Xi\) - therefore total, since \(\Xi\) is reflexive

The quotient together with the quotient projection is determined uniquely up to isomorphism by these two properties:
Let \(C\) be an "alternate quotient set candidate",
\[
\text { with } \gamma: B \leftrightarrow C \text { satisfying } \gamma^{\circ} ; \gamma=\mathbb{I} \text { and } \gamma_{9}^{\circ} \gamma^{\breve{ }}=\Xi .
\]

Then \(\varphi=\chi^{\breve{ }} \dot{\rho} \gamma\) is an isomorphism between \(B \mid \equiv\) and \(C\) :

- M1.1a) Only one induction needed for:

Theorem "Minimum with addition": \(k \downarrow(\mathrm{k}+\mathrm{n})=\mathrm{k}\)
Theorem "Maximum with addition": \(\mathrm{k} \uparrow(\mathrm{k}+\mathrm{n})=\mathrm{k}+\mathrm{n}\)
- M1.1b) Two inductions needed for:

Theorem "At most via maximum": \(\mathrm{k} \leq \mathrm{n} \Rightarrow \mathrm{k} \uparrow \mathrm{n}=\mathrm{n}\)
Theorem "At most via minimum": \(\mathrm{k} \leq \mathrm{n} \Rightarrow \mathrm{k} \downarrow \mathrm{n}=\mathrm{k}\)
- M1.1c) Three inductions needed, plus using M1.1b) in the right way-tricky! Congratulations to those who found checkable proofs for that, without proof checking!
- M1.2a) Familiarity with " \(\exists\)-Introduction" is expected.

Quantification has lowest precedence: \((\exists x \bullet E=F)=(\exists x \bullet(E=F))\)
- M1.2b-d) Routine with correctness proofs is expected we started these in Week 2 Homework 4.

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-10

\section*{Reachability Concepts in (Simple) Graphs, Closures}

\section*{Recall: Simple Graphs}

A simple graph \((N, E)\) is a pair consisting of
- a set \(N\), the elements of which are called "nodes", and
- a relation \(E\) with \(E \in N \leftrightarrow N\), the element pairs of which are called "edges".

Example: \(\quad G_{1}=(\{2,0,1,9\},\{\langle 2,0\rangle,\langle 9,0\rangle,\langle 2,2\rangle\})\)
Graphs are normally visualised via graph drawings:

Simple graphs are exactly relations!
Reasoning with relations is reasoning about graphs!
\[
\text { Simple Reachability Statements in Graph } G=(V, E)
\]
－No edge ends at node \(s\)
\(s \notin \operatorname{Ran} E \quad\) or
\(s \in \sim(\operatorname{Ran} E)\)
\(-s\) is called a source of \(G\)
－No edge starts at node \(s\)
\(s \notin \operatorname{Dom} E \quad\) or
\(s \in \sim(\operatorname{Dom} E) \quad-s\) is called a sink of \(G\)
－Node \(n_{2}\) is reachable from node \(n_{1}\) via a three－edge path \(n_{1}(E ; E \circ E) n_{2}\)

\section*{Simple Reachability Statements in Graph \(G_{\mathbb{N}}=\left(\left\llcorner\mathbb{N},,^{\text {s }}\right.\right.\) suc \(\left.{ }^{\top}\right)\)}
－No edge ends at node 0
\(0 \notin\) Ran \(^{「 \text { suc }}\)＇or
or \(\quad 0 \in \sim\left(\operatorname{Ran}^{「}{ }^{\text {suc }}\right.\)＇
－ 0 is a source of \(G_{\mathbb{N}}\)
0 is the only source of \(G_{\mathbb{N}}: \quad \sim\left(\right.\) Ran \(\left.^{「}{ }^{\text {suc }}{ }^{\prime}\right)=\{0\}\)
－\(s\) is a sink iff no edge starts at node \(s\)

\(G_{\mathbb{N}}\) has no sinks：\(\quad \operatorname{Dom}^{「}\) suc \(^{\top}={ }_{\llcorner } \mathbb{N}, \quad\) or \(\quad \sim\left(\operatorname{Dom}^{「}\right.\) suc \(\left.^{\top}\right)=\{ \}\)
－Node 5 is reachable from node 2 via a three－edge path：
\[
\begin{aligned}
& 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7 \longrightarrow \ldots
\end{aligned}
\]

－Edges in simple undirected graphs can be considered as＂unordered pairs＂ （two－element sets，or one－to－two－element sets）
－The associated relation of an undirected graph relates two nodes iff there is an edge between them
－The associated relation of an undirected graph is always symmetric
－In a simple graph，no two edges have the same source and the same target． （No＂parallel edges＂．）
－Relations directly represent simple directed graphs．

\section*{Symmetric Closure}

Relation \(Q: B \leftrightarrow B\) is the symmetric closure of \(R: B \leftrightarrow B\)
iff \(Q\) is the smallest symmetric relation containing \(R\),
or, equivalently, iff \(\bullet R \subseteq Q\)
- \(Q=Q^{-}\)
- \(\left(\forall P: B \leftrightarrow B \mid R \subseteq P=P^{\smile} \bullet Q \subseteq P\right)\)

Theorem: The symmetric closure of \(R: B \leftrightarrow B\) is \(R \cup R \smile\).

Fact: If \(R\) represents a simple directed graph, then the symmetric closure of \(R\) is the associated relation of the corresponding simple undirected graph.

\section*{Reflexive Closure}

Relation \(Q: B \leftrightarrow B\) is the reflexive closure of \(R: B \leftrightarrow B\) iff \(Q\) is the smallest reflexive relation containing \(R\),
or, equivalently, iff
- \(R \subseteq Q\)
- \(\mathbb{I} \subseteq Q\)
- \((\forall P: B \leftrightarrow B \mid R \subseteq P \wedge \mathbb{I} \subseteq P \bullet Q \subseteq P)\)

Theorem: The reflexive closure of \(R: B \leftrightarrow B\) is \(R \cup \mathbb{I}\).
Fact: If \(R\) represents a graph, then the reflexive closure of \(R\) "ensures that each node has a loop edge".

\section*{Transitive Closure}

Relation \(Q: B \leftrightarrow B\) is the transitive closure of \(R: B \leftrightarrow B\) iff \(Q\) is the smallest transitive relation containing \(R\), or, equivalently, iff
- \(R \subseteq Q\)
- \(Q ; Q \subseteq Q\)
- \((\forall P: B \leftrightarrow B \mid R \subseteq P \wedge P \circ P \subseteq P \bullet Q \subseteq P)\)

Definition: The transitive closure of \(R: B \leftrightarrow B\) is written \(R^{+}\).
Theorem: \(R^{+}=(\cap P \mid R \subseteq P \wedge P \circ P \subseteq P \bullet P)\).

\section*{Transitive Closure via Powers}

Powers of a homogeneous relation \(R: B \leftrightarrow B\) :
- \(R^{0}=\mathbb{I}\)
- \(R^{2}=R \circ R\)
- \(R^{1}=R\)
- \(R^{3}=R \circ R \circ R\)
- \(R^{n+1}=R^{n}{ }_{\rho} R\)
- \(R^{4}=R \varsubsetneqq R \varsubsetneqq R \varsubsetneqq R\)
- \(R^{i}\) is reachability via exactly \(i\) many \(R\)-steps

Theorem: \(R^{+}=\left(\cup i: \mathbb{N} \mid i>0 \bullet R^{i}\right)\)
This means:
- \(R^{+}=R \cup R^{2} \cup R^{3} \cup R^{4} \cup \ldots\)
- Transitive closure \(R^{+}\)is reachability via at least one \(R\)-step

\section*{Reflexive Transitive Closure}
\(Q: B \leftrightarrow B\) is the reflexive transitive closure of \(R: B \leftrightarrow B\)
iff \(Q\) is the smallest reflexive transitive relation containing \(R\),
or, equivalently, iff
- \(R \subseteq Q\)
- \(\mathbb{I} \subseteq Q \wedge Q ; Q \subseteq Q\)
- \((\forall P: B \leftrightarrow B \mid R \subseteq P \wedge \mathbb{I} \subseteq P \wedge P g P \subseteq P \bullet Q \subseteq P)\)

Definition: The reflexive transitive closure of \(R\) is written \(R^{*}\).
Theorem: \(R^{*}=(\cap P \mid R \subseteq P \wedge \mathbb{I} \subseteq P \wedge P \rho P \subseteq P \bullet P)\).
Theorem: \(R^{*}=\left(\cup i: \mathbb{N} \bullet R^{i}\right)\)

\section*{Transitive and Reflexive Transitive Closure via Powers}
- \(R^{i}\) is reachability via exactly \(i\) many \(R\)-steps

- \(R^{+}=\left(\cup i: \mathbb{N} \mid i>0 \bullet R^{i}\right)\)
- \(R^{+}=R \cup R^{2} \cup R^{3} \cup R^{4} \cup \ldots\)
- Transitive closure \(R^{+}\)is reachability via at least one \(R\)-step
- \(R^{*}=\left(\cup i: \mathbb{N} \bullet R^{i}\right)\)
- \(R^{*}=\mathbb{I} \cup R \cup R^{2} \cup R^{3} \cup R^{4} \cup \ldots\)
- Reflexive transitive closure \(R^{*}\) is reachability via any number of \(R\)-steps
- Variants of the Warshall algorithm calculate these closures in cubic time.
\[
\text { Reachability in graph } G=(V, E) \quad-1 \text { (ctd. })
\]
- No edge ends at node \(s\)
\(s \notin \operatorname{Ran} E \quad\) or
\[
s \in \sim(\operatorname{Ran} E)
\]
\(-s\) is called a source of \(G\)
- No edge starts at node \(s\)
\(s \notin \operatorname{Dom} E \quad\) or \(\quad s \in \sim(\operatorname{Dom} E) \quad-s\) is called a sink of \(G\)
- Node \(n_{2}\) is reachable from node \(n_{1}\) via a three-edge path \(n_{1}\left(E^{3}\right) n_{2} \quad\) or \(\quad n_{1}(E ; E ; E) n_{2}\)
- Node \(y\) is reachable from node \(x\)
\(x\left(E^{*}\right) y\) - reachability

RP
\[
\text { Reachability in graph } G=(V, E) \quad-2
\]
- Node \(y\) is reachable from node \(x\) \(x\left(E^{*}\right) y\)
- Every node is reachable from node \(r\)
\(\{r\} \times V \subseteq E^{*} \quad\) or \(\quad E^{*}(|\{r\}|)=V \quad\) - \(r\) is called a root of \(G\)
- Node \(y\) is reachable via a non-empty path from node \(x: \quad x\left(E^{+}\right) y\)
- Nodes \(x\) lies on a cycle: \(x\left(E^{+}\right) x \quad\) or \(\quad x\left(E^{+} \cap \mathbb{I}\right) x \quad\) or \(\quad x \in \operatorname{Dom}\left(E^{+} \cap \mathbb{I}\right)\)

Reachability in graph \(G=(V, E) \quad-3\)
- From every node, each node is reachable \(V \times V \subseteq E^{*}\)
- \(G\) is strongly connected
- From every node, each node is reachable by traversing edges in either direction \(V \times V \subseteq\left(E \cup E^{\hookrightarrow}\right)^{*}\)
\(-G\) is connected
- Nodes \(n_{1}\) and \(n_{2}\) reachable from each other both ways
\(n_{1}\left(E^{*} \cap\left(E^{*}\right)^{-}\right) n_{2}\)
- \(n_{1}\) and \(n_{2}\) are strongly connected
- \(S\) is an equivalence class of strong connectedness between nodes
\(S \times S \subseteq E^{*} \wedge\left(E^{*} \cap\left(E^{*}\right)^{\wedge}\right)(|S|)=S \quad-S\) is a strongly connected component (SCC) of \(G\)

\[
\text { Reachability in graph } G=(V, E) \quad-4
\]
- A node \(n\) is said to "lie on a cycle" if there is a non-empty path from \(n\) to \(n\) cycleNodes \(:=\operatorname{Dom}\left(E^{+} \cap \mathbb{I}\right)\)
- No node lies on a cycle
\(\operatorname{Dom}\left(E^{+} \cap \mathbb{I}\right)=\{ \}\)
\(E^{+} \cap \mathbb{I}=\{ \}\)
\(E^{+}\)is irreflexive
\(-G\) is called acyclic or cycle-free or a DAG

\[
\text { Reachability in graph } G=(V, E) \quad-5-\quad \text { DAGs }
\]
- No node lies on a cycle: \(E^{+} \cap \mathbb{I}=\{ \} \quad-G\) is a directed acyclic graph, or DAG
- Each node has at most one predecessor: \(E \varsubsetneqq E^{\llcorner } \subseteq \mathbb{I}\) or \(E\) is injective
- if \(G\) is also acyclic, then \(G\) is called a (directed) forest
- Every node is reachable from node \(r\) \(\{r\} \times V \subseteq E^{*}\) - if \(G\) is also a forest, then \(G\) is called a (directed) tree, and \(r\) is its root
- For undirected graphs: A tree is a graph where for each pair of nodes there is exactly one path connecting them.
- graph-theoretic tree concept

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

\section*{Wolfram Kahl}

Part 2: Closures Generalised

\section*{Recall: Reflexive Closure}

Relation \(Q: B \leftrightarrow B\) is the reflexive closure of \(R: B \leftrightarrow B\) iff \(Q\) is the smallest reflexive relation containing \(R\), or, equivalently, iff
- \(R \subseteq Q\)
- \(\mathbb{I} \subseteq Q\)
- \((\forall P: B \leftrightarrow B \mid R \subseteq P \wedge \mathbb{I} \subseteq P \bullet Q \subseteq P)\)

Theorem: The reflexive closure of \(R: B \leftrightarrow B\) is \(R \cup \mathbb{I}\).
Fact: If \(R\) represents a graph, then the reflexive closure of \(R\) "ensures that each node has a loop edge".

\section*{Reflexive Closure Operator `refIClos` (in Ref9.4)}

Axiom "Definition of \({ }^{\text {reflClos'": }}\) reflClos \(R=R \cup \mathbb{I}\)
Theorem "Closure properties of 'refIClos': Expanding": \(R \subseteq\) reflClos \(R\)
Proof:
?

Theorem "Closure properties of `refIClos': Reflexivity": reflexive (reflClos \(R\))
Proof:

Relation \(Q: B \leftrightarrow B\) is the reflexive closure of \(R: B \leftrightarrow B\) iff \(Q\) is the smallest reflexive relation containing \(R\), or, equivalently, iff
- \(R \subseteq Q\)
- \(\mathbb{I} \subseteq Q\)
- \((\forall P: B \leftrightarrow B \mid R \subseteq P \wedge \mathbb{I} \subseteq P\) - \(Q \subseteq P)\)

\section*{?}

Theorem "Closure properties of `refIClos': Minimality": \(R \subseteq S \wedge\) reflexive \(S \Rightarrow\) reflClos \(R \subseteq S\)
Proof:

\section*{Closures}

Let pred (for "predicate") be a
property on relations, i.e., for some type \(B\) and \(C\) :
\[
\text { pred }: \quad(B \leftrightarrow C) \rightarrow \mathbb{B}
\]

Relation \(Q: B \leftrightarrow C\) is the pred-closure of \(R: B \leftrightarrow C\) iff
- \(Q\) is the smallest relation
- that contains \(R\)
- and has property pred
or, equivalently, iff
- \(R \subseteq Q\)
- pred Q

Relation \(Q: B \leftrightarrow B\) is the reflexive closure of \(R: B \leftrightarrow B\) iff \(Q\) is the smallest reflexive relation containing \(R\), or, equivalently, iff
- \(R \subseteq Q\)
- \(\mathbb{I} \subseteq Q\)
- \((\forall P: B \leftrightarrow B \mid R \subseteq P \wedge \mathbb{I} \subseteq P\) - \(Q \subseteq P\))
- \((\forall P: B \leftrightarrow C \mid R \subseteq P \wedge \operatorname{pred} P \bullet Q \subseteq P)\)
(For some properties, closures are not defined, or not always defined.)

\section*{Formalising General Relation Closures}

Let pred (for "predicate") be a property on relations, i.e.: pred : \((B \leftrightarrow C) \rightarrow \mathbb{B}\)
Relation \(Q: B \leftrightarrow C\) is the pred-closure of \(R: B \leftrightarrow C\) iff
- \(Q\) is the smallest relation that contains \(R\) and has property pred, or, equivalently, iff
- \(R \subseteq Q \quad\) and \(\quad\) pred \(Q\) and \(\quad(\forall P: B \leftrightarrow C \mid R \subseteq P \wedge \operatorname{pred} P \bullet Q \subseteq P)\)

\section*{General Relation Closures in Ref9.4:}

Precedence 50 for: _is_closure - of_
Conjunctional: _is_closure - of_
Declaration: _is_closure - of_:
\((A \leftrightarrow B) \rightarrow((A \leftrightarrow B) \rightarrow \mathbb{B}) \rightarrow(A \leftrightarrow B) \rightarrow \mathbb{B}\)
Axiom "Relation closure":
\(Q\) is pred closure-of \(R\)
\(\equiv R \subseteq Q \wedge \operatorname{pred} Q \wedge(\forall P \bullet R \subseteq P \wedge \operatorname{pred} P \Rightarrow Q \subseteq P)\)

\section*{Theorem "Well-definedness of `reflClos"":}

Declaration: _is_closure - of _
\((A \leftrightarrow B) \rightarrow((A \leftrightarrow B) \rightarrow \mathbb{B}) \rightarrow(A \leftrightarrow B) \rightarrow \mathbb{B}\)
Axiom "Relation closure":
\(Q\) is pred closure-of \(R\)
\(\equiv R \subseteq Q \wedge\) pred \(Q \wedge(\forall P \bullet R \subseteq P \wedge\) pred \(P \Rightarrow Q \subseteq P)\)

Theorem "Well-definedness of `reflClos"":
reflClos \(R\) is reflexive closure-of \(R\)
Proof:
By "Relation closure"
with "Closure properties of `reflClos': Expanding"
and "Closure properties of ‘reflClos`: Reflexivity"
and "Closure properties of 'reflClos`: Minimality"

\section*{Theorem "Well-definedness of `refIClos"":}

Declaration: _is_closure - of_:
\[
(A \leftrightarrow B) \rightarrow((A \leftrightarrow B) \rightarrow \mathbb{B}) \rightarrow(A \leftrightarrow B) \rightarrow \mathbb{B}
\]

Axiom "Relation closure":
\(Q\) is pred closure-of \(R\)
\(\equiv R \subseteq Q \wedge\) pred \(Q \wedge(\forall P \bullet R \subseteq P \wedge\) pred \(P \Rightarrow Q \subseteq P)\)
Theorem "Well-definedness of `reflClos"":
reflClos \(R\) is reflexive closure-of \(R\)
Proof:
Using "Relation closure":
Subproof for \({ }^{`} R \subseteq\) reflClos \(R\) :
?
Subproof for `reflexive (reflClos \(R\))`:
?
Subproof for \({ }^{`} \forall P \bullet R \subseteq P \wedge\) reflexive \(P \Rightarrow\) reflClos \(R \subseteq P\) :
For any \({ }^{\prime} P\) :
Assuming \(\urcorner \subseteq \subseteq P\), `reflexive \(P\) :

\section*{Reachability}

Let a directed graph \(G=(V, E)\) with vertex/node set \(V\) and edge relation \(E\) (with \(E \in V \leftrightarrow V\)) be given.

Formalise via relation-algebraic expressions, and name the concepts:
- No edge ends at node \(s\)
- No edge starts at node \(s\)
- Node \(t\) is reachable from node \(s\)
- From every node, each node is reachable
- Each node in the vertex set \(S\) (with \(S \in \mathbb{P} V\)) is reachable from every node in \(S\)
- No node lies on a cycle
- Each node has at most one predecessor
- Every node is reachable from node \(r\)

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-13

\section*{Kleene Algebra, Arrays}

\section*{Reminder: Limitations of Conditional Rewriting Implementation of with \({ }_{2}\)}
- If Thm \(A\) gives rise to an implication \(A_{1} \Rightarrow A_{2} \Rightarrow \ldots(L=R)\) :
- Find substitution \(\sigma\) such that \(L \sigma\) matches goal
- Resolve \(A_{1} \sigma, A_{2} \sigma, \ldots\) using ThmB and ThmB \({ }_{2} \ldots\)

ThmA with ThmB and \(\operatorname{ThmB}_{2} \ldots\)
- Rewrite goal applying \(L \sigma \mapsto R \sigma\) rigidly.
- E.g.: "Transitivity of \(\subseteq\) " with Assumptions ` \(Q \cap S \subseteq Q\) ' and \(Q \subseteq R\) when trying to prove ' \(Q \cap S \subseteq R\) '
- "Transitivity of \(\subseteq\) " is: \(Q \subseteq R \Rightarrow R \subseteq S \Rightarrow Q \subseteq S\)
- For application, a fresh renaming is used: \(q \subseteq r \Rightarrow r \subseteq s \Rightarrow q \subseteq s\)
- We try to use: \(q \subseteq s \mapsto\) true, so \(L\) is: \(q \subseteq s\)
- Matching \(L\) against goal produces \(\sigma=[q, s:=Q \cap S, R]\)
- \((q \subseteq r) \sigma \quad\) is \(\quad(Q \cap S \subseteq r)\), and \(\quad(r \subseteq s) \sigma \quad\) is \(\quad r \subseteq R\)
- which cannot be proven by "Assumption ' \(Q \cap S \subseteq Q^{\prime \prime}\)
\[
\text { resp. by "Assumption ' } Q \subseteq R^{\prime \prime}
\]
- Narrowing or unification would be needed for such cases
- not yet implemented
- Adding an explicit substitution should help:
"Transitivity of \(\subseteq\) " with \(` R:=Q\) ' and assumption \({ }^{`} Q \cap S \subseteq Q\) ' and assumption \(` Q \subseteq R\) '

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-13

\section*{Part 1: Kleene Algebra}

\section*{Recall: Reflexive Transitive Closure}
\(Q: B \leftrightarrow B\) is the reflexive transitive closure of \(R: B \leftrightarrow B\)
iff \(Q\) is the smallest reflexive transitive relation containing \(R\),
or, equivalently, iff
- \(R \subseteq Q\)
- \(\mathbb{I} \subseteq Q \wedge Q ; Q \subseteq Q\)
- \((\forall P: B \leftrightarrow B \mid R \subseteq P \wedge \mathbb{I} \subseteq P \wedge P \circ P \subseteq P \bullet Q \subseteq P)\)

Definition: The reflexive transitive closure of \(R\) is written \(R^{*}\).
Theorem: \(R^{*}=(\cap P \mid R \subseteq P \wedge \mathbb{I} \subseteq P \wedge P \circ P \subseteq P \bullet P)\).
Theorem: \(R^{*}=\left(\cup i: \mathbb{N} \bullet R^{i}\right)\)
- \(R^{i}\) is reachability via exactly \(i\) many \(R\)-steps
- Reflexive transitive closure \(R^{*}\) is reachability via any number of \(R\)-steps
- Transitive closure \(R^{+}=\left(\cup i: \mathbb{N} \mid i>0 \bullet R^{i}\right)\) is reachability via at least one \(R\)-step

\section*{Kleene Algebra}

The transitive and reflexive-transitive closure operators satisfy many useful algebraic properties, e.g.:
- \(\left(R^{*}\right)^{乞}=\left(R^{\smile}\right)^{*} \quad\left(R^{+}\right)^{乞}=\left(R^{\smile}\right)^{+}\)
- \(R^{*}=\mathbb{I} \cup R \cup R^{*}, R^{*}\)
- \((R \cup S)^{*}=\left(R^{*} ; S\right)^{*} ; R^{*}\)
- \((R \cup S)^{+}=R^{+} \cup\left(R^{*} ; S\right)^{+} ; R^{*}\)
- \(R^{*} \cup S^{*} \subseteq(R \cup S)^{*}\)

On can prove such properties via reasoning about arbitrary unions \(\cup\) of relation powers...
One can also derive these properties from a simple axiomatisations (Ex10.2, Ref10.1):
Axiom (KA.1) "Definition of *": \(\quad R^{*}=\mathbb{I} \cup R \cup R^{*} ; R^{*}\)
Axiom (KA.2) "Left-induction for*": \(R ; S \subseteq S \Rightarrow R * ; S \subseteq S\)
Axiom (KA.3) "Right-induction for*": \(Q ; R \subseteq Q \Rightarrow Q ; R^{*} \subseteq Q\)
Axiom (KA.4) "Definition of \({ }^{+\prime}: \quad R^{+}=R ; R^{*}\)
```

    Kleene Algebra - Example for Using the Induction Axioms
    "Left-ind.*": $R \circ S \subseteq S \Rightarrow R^{*} \circ S \subseteq S \quad$ "Right-ind.*": $Q \circ R \subseteq Q \Rightarrow Q \circ R * \subseteq Q$
Theorem (KA.14) "Shuffle *": $R ; R^{*}=R * ; R$
Proof:
$R \circ R$ *
$\subseteq\langle$ "Identity of $;$ ", "Monotonicity of $;$ " with "Reflexivity of *" $\rangle$
$R^{*} \circ R \circ R$ *
$\subseteq\left\langle " R i g h t-i n d u c t i o n\right.$ for *" with ${ }^{Q} Q:=R^{*} \circ R$ ’ and subproof:
$R * ; R ; R$
$\subseteq\langle$ Monotonicity with "* increases", "я-idempotency of *" $\rangle$
$R *$ \% $R$
)
$R * ; R$
$\subseteq\langle$ "Identity of $\circ$ ", "Monotonicity of $\circ$ " with "Reflexivity of *" $\rangle$
$R * ; R \circ R$ *
$\subseteq \^{\prime}$ Left-induction for *" with `\(S:=R ; R^{*`}\) and subproof:
$R ; R$; $R$ *
$\subseteq\langle$ Monotonicity with "* increases", "я-idempotency of *" $\rangle$
$R ; R$ *
)
$R \stackrel{R}{ }$ *

```

\section*{Kleene Algebra - Not Only Relations: Formal Languages}

Definition: A word over "alphabet" \(A\) is a sequence of elements of \(A\).
Definition: A formal language over "alphabet" \(A\) is a set of words over \(A\).

Interpret:
- II as the language containing only the empty word
- \(\cup\) as language union
- \({ }_{9}\) as language concatenation: \(L_{1} \doteqdot L_{2}=\left\{u, v \mid u \in L_{1} \wedge v \in L_{2} \bullet u \sim v\right\}\)
- _* as language iteration: \(\quad L^{*}=\left(\cup i: \mathbb{N} \bullet L^{i}\right)\)

Then:
- Formal languages over \(A\) form a Kleene algebra.
- Regular languages over \(A\) form a Kleene algebra.
(A regular language is generated by a regular grammar, and accepted by a finite automaton.)

\section*{Kleene Algebra - Not Only Relations: Control Flow Semantics}

Definition: A trace is a sequence of commands,

Interpret:
- \(\mathbb{I}\) as the singleton trace set containing the empty trace
- \(\cup\) as trace set union
- \(\%\) as trace set concatenation
- _* as trace set iteration

Then:
- Kleene algebra can be used for reasoning about traces (possible executions) of imperative programs
- Kleene algebra provides semantics for control flow

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-13

\section*{Part 2: Programming with Arrays}
\(\Longrightarrow\) Exercise 10.3

\section*{Modelling Arrays as Partial Functions}

Precedence 100 for: _ \(\rightarrow_{-}\)
Associating to the right: \({ }_{-} \rightarrow_{-}\)
Declaration: \(\rightarrow_{-}: \operatorname{set} A \rightarrow \operatorname{set} B \rightarrow \operatorname{set}(A \leftrightarrow B) \quad\) - type "\tfun" for \(\rightarrow\)
Axiom "Definition of \(\rightarrow\) ":
\(X \rightarrow Y=\left\{f \mid f^{\circ} \circ f \subseteq \operatorname{id} Y \wedge \operatorname{Dom} f=X\right\}\)
Useful for the domain of arrays:
Precedence 100 for:
Non-associating:
Declaration:_.._: \(\mathbb{N} \rightarrow \mathbb{N} \rightarrow\) set \(\mathbb{N} \quad\) "."." type: \(\backslash .\).
Axiom "Definition of ..": m .. \(n=\{i \mid m \leq i \leq n\}\)
Theorem "Membership in ..": \(i \in m \ldots n \equiv m \leq i \leq n\)
Theorem "Membership in \(0 . . ": i \in 0 . . n \equiv i \leq n\)
Array access: \(a[i] \quad \Longrightarrow a @ i\)
Array update: \(a[i]:=E \quad \Longrightarrow \quad a:=a \oplus\{\langle i, E\rangle\}\)

Swapping Two Elements of an Array: Specification
\[
\begin{aligned}
& \quad i \leq k \geq j \wedge \mathrm{xs}=x s_{0} \in(0 . . k) \rightarrow \mathbb{N}, \\
& \Rightarrow \mathrm{N} \\
& \quad \text { Swap } \\
& \quad] \\
& \mathrm{xs}=x s_{0} \oplus\left\{\left\langle i, x s_{0} @ j\right\rangle,\left\langle j, x s_{0} @ i\right\rangle\right\}
\end{aligned}
\]

\section*{Swapping Two Elements of an Array: Implementation}
```

z:= xs[i] ;
xs[i] := xs[j] ;
xs[j]:= z

```

Theorem "Array swap":
```

    \(i \leq k \geq j \wedge \mathrm{xs}=x s_{0} \in(0 . . k) \rightarrow \mathbb{N}\),
    $\Rightarrow \mathrm{E} z:=\mathrm{xs} @ i_{i}$
$\mathrm{xs}:=\mathrm{xs} \oplus\{\langle i, \mathrm{xs} @ j\rangle\} ;$
$\mathrm{xs}:=\mathrm{xs} \oplus\{\langle j, z\rangle\}$
]
$\mathrm{xs}=x s_{0} \oplus\left\{\left\langle i, x s_{0} @ j\right\rangle,\left\langle j, x s_{0} @ i\right\rangle\right\}$

```

\section*{Sortedness}

Declaration: sorted: \((\mathbb{N} \leftrightarrow \mathbb{N}) \rightarrow \mathbb{B}\)
Axiom "Definition of `sorted" ":

Note: No assumption that \(R\) is univalent or contiguous!
Theorem "Sortedness":

Specification of Sorting - First Attempt
xs \(\in(0 . . k) \rightarrow{ }_{\llcorner } \mathbb{N}\),
\(\Rightarrow\) E SORT
〕
\(x s \in(0 . . k) \rightarrow \mathbb{L}^{\prime}, \wedge\) sorted \(x s\)
```

Theorem "Sorting 0":
xs \in (0..k) }
F [ p:= 0;
while p}\not=k+1 do
xs:= xs }\oplus{\langlep,42\rangle}
p:=p+1
od
]
xs \in(0..k) \longrightarrow}\mp@subsup{}{L}{}\mathbb{N},^ sorted x
Proof:
xs \in (0..k) \longrightarrow) N N,
=>\langle?\rangle
xs \in (0..k) ๑, N , ^ Ran ((0.. 0) \triangleleft xs) = {xs@ @ }
\# [p:= 0] \"Assignment" with substitution\
xs \in (0..k) -> , \mathbb{N, ^ Ran ((0..p) }\checkmark\textrm{xs})={\textrm{xs}@0}

```

```

        ] \"While" with subproof:
                        ?
        >
    ```

```

    =>\langle?\rangle
        xs \in (0..k) \longrightarrow, NN, ^ sorted xs
    ```
 Bag-based Specification of Sorting
```

        xs
    => E SORT
}
xs \in (0..k) }->\mp@subsup{}{\imath}{}\mathbb{N},^^ sorted x
\wedge lp|p\in xs \bullet snd pS=lp|p\inxs

```

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-15
Topological Sort — LADM 14.4, pp. 287-291
Topological Sort - Introduction

A topological sort of a acyclic simple directed graph \((V, B)\) is a
 \(E \cup E^{\breve{ }}=V \times V\) and \(B \subseteq E\).
Since \((V, B)\) is a DAG, \(B^{*}\) is an order: \(B^{*} \cap B^{* \sim} \subseteq \mathbb{I} \subseteq B^{*} \supseteq B^{*}\); \(B^{*}\)
\(E\) is normally presented as a sequence in \(\operatorname{Seq} V\) that is sorted with repect to \(E\) and contains all elements of \(V\).

Example: The DAG above has, among others, the following topological sorts:
- \([5,7,3,11,8,2,9,10]\) - visual left-to-right, top-to-bottom
- \([3,5,7,8,11,2,9,10]\) - smallest-numbered available vertex first
- \([5,7,3,8,11,10,9,2]-\) fewest edges first
- \([7,5,11,3,10,8,9,2]\) - largest-numbered available vertex first
- \([5,7,11,2,3,8,9,10]\) - attempting top-to-bottom, left-to-right
- \([3,7,8,5,11,10,2,9]-\) (arbitrary)
\(B=\{\langle 3,8\rangle,\langle 3,10\rangle,\langle 5,11\rangle,\langle 7,8\rangle,\langle 7,11\rangle,\langle 8,9\rangle,\langle 11,2\rangle,\langle 11,9\rangle,\langle 11,10\rangle\}\)

Static single assignment form: Each variable is assigned once, and assigned before use.
v5 := v4 - 2
v7 := v4 * v1 v3 := v1 + 1 v11 := v5 * v7 v8 := v7 - v3 v2 := v11 + 2 v9 : = v11 * v8 v10 := v11 * v3

We can consider SSA as encoding data-flow graphs.
Each admissible re-ordering of an SSA sequence is a different topological sort of that graph.

It is frequently easier to think in terms of that graph than in terms of re-orderings!

Static single assignment form: Each variable is assigned once, and assigned before use.
[7, 5, 11, 3, 10, 8, 9, 2]
\begin{tabular}{|c|c|}
\hline v7 := v4 & Let \(E\) be the topological sort of \((V, B)\); \\
\hline v5 \(:=\mathrm{v} 4\) & ted st \\
\hline v11 := v5 * v7 & Depth-2 pipelining requires \(B \subseteq C\) \\
\hline \[
\text { v3 := v1 + } 1
\] & Depth-3 pipelining requires \(B \subseteq C \circ C: C\) \\
\hline v8 : = v7 & The "next-step" relation: \(S=C-C ; \mathrm{C}^{+}\) \\
\hline := v11 + & \begin{tabular}{l}
Depth-2 pipelining requires \(B \cap S=\{ \}\). \\
Depth-3 pipelining requires \(\quad B \cap(S \cup S ; S)=\)
\end{tabular} \\
\hline
\end{tabular}

Example: Most of the original example topological sorts induce pipeline stalls:
- \([5,7,3,11,8,2,9,10]-\) visual left-to-right, top-to-bottom
- \([3,5,7,8,11,2,9,10]-\) smallest-numbered available vertex first
- \([5,7,3,8, \overline{11,1} 0,9,2]-\) fewest edges first
- \([7,5, \overline{11}, 3,10,8,9,2]\) - largest-numbered available vertex first
- \([5,7,11,2,3,8,9,10]\) - attempting top-to-bottom, left-to-right
- \([3, \overline{7,8}, 5, \underline{11,10}, 2,9]-\) (arbitrary)
\(B=\{\langle 3,8\rangle,\langle 3,10\rangle,\langle 5,11\rangle,\langle 7,8\rangle,\langle 7,11\rangle,\langle 8,9\rangle,\langle 11,2\rangle,\langle 11,9\rangle,\langle 11,10\rangle\}\)

\section*{Topological Sort - Specification}

A topological sort of a acyclic simple directed graph \((V, B)\) is a linear order \(E\) containing \(B\), that is, \(E \cap E^{\sim} \subseteq \mathbb{I} \subseteq E \supseteq E \circ E\) and \(E \cup E^{\llcorner }=V \times V\) and \(B \subseteq E\).

Since \((V, B)\) is a DAG, \(B^{*}\) is an order: \(B^{*} \cap B^{* \sim} \subseteq \mathbb{I} \subseteq B^{*} \supseteq B^{*} \circ B^{*}\)
\(E\) is normally presented as a sequence in Seq \(V\) that is sorted with repect to \(E\) and contains all elements of \(V\).

C-style procedure declaration: Seq \(T\) topSort(set \(T\) vs)
Precondition: \(\quad v s=V\)
Define: \(\quad C\) is the expression " \(\{u, v \mid u\) precedes \(v\) in \(s\}\) " (of type \(T \leftrightarrow T\))
\(E\) is the expression " \(C \cup \mathbb{I}^{\prime} \quad\) - both containing the free variable \(s\)
Real postcondition: \(E \cap E^{\leftrightharpoons} \subseteq \mathbb{I} \subseteq E \supseteq E ; E \wedge E \cup E^{\leftrightharpoons}=V \times V \wedge B \subseteq E\).

\section*{One Formalisation of _precedes_in_}

Precedence 50 for: _precedes_in_
Conjunctional: _precedes_in_
Declaration: _precedes_in_: \(A \rightarrow A \rightarrow \operatorname{Seq} A \rightarrow \mathbb{B}\)
Axiom "Def. `_precedes_in_'": \(x\) precedes \(y\) in \(\epsilon \equiv\) false
Axiom "Def. `_precedes_in_'": \(x\) precedes \(y\) in \((x \triangleleft \mathrm{zs}) \equiv y \in \mathrm{zs}\)
Axiom "Def. `_precedes_in-'": \(x \neq z \Rightarrow\) (\(x\) precedes \(y\) in \((z \triangleleft \mathrm{zs}) \equiv x\) precedes \(y\) in zs)

1 precedes 3 in \([1,2] \equiv\) ?
1 precedes 3 in \([3] \equiv\) ?
1 precedes 3 in \([3,1,3] \equiv\) ?

A topological sort of a acyclic simple directed graph \((V, B)\) is a linear order \(E\) containing \(B\).
Since \((V, B)\) is a DAG, \(B^{*}\) is an order: \(B^{*} \cap B^{* \sim} \subseteq \mathbb{I} \subseteq B^{*} \supseteq B^{*}\); \(B^{*}\) \(E\) is normally presented as a sequence in \(\operatorname{Seq} V\) that is sorted with repect to \(E\) and contains all elements of \(V\).

\(\begin{array}{lll}\text { Interface types: } & \text { var } v s: \text { set } T & \text {....... Input: } V \\ & \text { var } s: \operatorname{Seq} T & \text {..... Output, representing } E\end{array}\)
Precondition: \(\quad v s=V\)
Define: \(\quad C\) is the expression " \(\{u, v \mid u\) precedes \(v\) in \(s\}\) " (of type \(T \leftrightarrow T\))
\(E\) is the expression " \(C \cup \mathbb{I}\) " -both containing the free variable \(s\)

Representation-level postcondition: \(\quad(\forall u, v \mid u(B) v \bullet u\) precedes \(v\) in \(s)\)
\(\wedge\{v \mid v \in s\}=V\)
\(\wedge\) length \(s=\# V\)

Topological Sort - Simple Algorithm
Given a DAG \((V, B)(\) with \(V\) : set \(T)\),
calculate sequence \(s\) encoding a topological sort \(E\).
var \(v s:\) set \(T ; s: \operatorname{Seq} T\)
vs : = \(V\); - not-yet-used vertices
\(\{v s=V\} \quad\) - Precondition

\(s:=\epsilon\) ㄹ Initialising accumulator for result sequence
\(\{(v s\) and \(\{v \mid v \in s\}\) partition \(V) \wedge\) length \(s+\# v s=\# V \wedge\)
\((\forall u, v \mid v \in s \wedge u(B) v \bullet u\) precedes \(v\) in \(s)\} \quad\)-Invariant
while \(v s \neq\{ \}\) do
Choose a source \(u\) of the subgraph \((v s, B \cap(v s \times v s))\) induced by \(v s\);
\(v s, s:=v s-\{u\}, s \triangleright u\)
od
\(\{(\forall u, v \mid u(B) v \bullet u\) precedes \(v\) in \(s)\)
\(\wedge\{v \mid v \in s\}=V \wedge\) length \(s=\# V \quad\) - Postcondition
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{The "Tableau" Presentation of the Previous Slide Closely Corresponds to Our Correctness Proof Presentation} \\
\hline ```
Theorem "While-example":
 Pre
 \(\Rightarrow \mathrm{EINIT}_{\text {i }}\)
 while \(B\)
 do
 C
 od;
 FINAL
]
 Post
``` & \begin{tabular}{l}
Proof: \\
Pre -....- Precondition
\[
\begin{aligned}
& \Rightarrow[\operatorname{INIT}]\langle ?\rangle \\
& Q \quad \cdots \cdot . \cdot \text { Invariant } \\
& \Rightarrow[\text { while } B \text { do } \\
& C
\end{aligned}
\] \\
od ] 〈"While" with subproof: \\
\(B \wedge Q \quad\)..... Loop condition and invariant \\
Q ...... Invariant \\
) \\
\(\neg B \wedge Q \quad \cdots \cdots+\) Negated loop condition, and invariant \\
\(\Rightarrow[\) FINAL \(]\langle ?\rangle\) \\
Post ...... Postcondition
\end{tabular} \\
\hline
\end{tabular}

> Recall: The "While" Rule

The constituents of a while loop "while \(B\) do \(C\) od" are:
- The loop condition \(B: \mathbb{B}\)
- The (loop) body C: Cmd

The conventional while rule allows to infer only correctness statements for while loops that are in the shape of the conclusion of this inference rule, involving an invariant condition \(Q: \mathbb{B}\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\multirow[t]{9}{*}{}} & & \\
\hline & & \multicolumn{6}{|l|}{\multirow[t]{8}{*}{}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

This rule reads:
- If you can prove that execution of the loop body \(C\) starting in states satisfying the loop condition \(B\) preserves the invariant \(Q\),
- then you have proof that the whole loop also preserves the invariant \(Q\), and in addition establishes the negation of the loop condition.

\section*{Recall: The "While" Rule - Induction for Partial Correctness}


The invariant will need to hold
- immediately before the loop starts,
- after each execution of the loop body,
- and therefore also after the loop ends.

The invariant will typically mention all variables that are changed by the loop, and explain how they are related.
Frequent pattern: Generalised postcondition using the negated loop condition

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-17
A2, Topological Sort

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-17

\section*{Part 1: A2: "Distributivity of 9 with univalent over \(\cap\) " etc....}

\section*{For Univalent Relations ... - LADM Hint, for M2-like Context}

Theorem: If \(F: A \leftrightarrow B\) is univalent, then \(F \circ(R \cap S)=(F \circ R) \cap(F ; S)\)
Hint: Assume determinacy; then show the equation using relation extensionality, and start from the RHS \(\langle b, d\rangle \in(F ; R) \cap(F ; S)\). In the expansions of the two relation compositions here, introduce different bound variables.

\section*{For Univalent Relations ... - LADM Hint, for M2-like Context}

Theorem: If \(F: A \leftrightarrow B\) is univalent, then \(F \circ(R \cap S)=(F \circ R) \cap(F ; S)\)
Hint: Assume determinacy; then show the equation using relation extensionality, and start from the RHS \(\langle b, d\rangle \in(F ; R) \cap(F ; S)\). In the expansions of the two relation compositions here, introduce different bound variables.

Theorem "Distributivity of composition with univalent over \(\cap\) ": univalent \(F \Rightarrow F ;(R \cap S)=F ; R \cap F ; S\)
Proof:

\section*{For Univalent Relations ... - LADM Hint, for M2-like Context}

Theorem: If \(F: A \leftrightarrow B\) is univalent, then \(F \%(R \cap S)=(F ; R) \cap(F ; S)\)
Hint: Assume determinacy; then show the equation using relation extensionality, and start from the RHS \(\langle b, d\rangle \in(F ; R) \cap(F ; S)\). In the expansions of the two relation compositions here, introduce different bound variables.

Theorem "Distributivity of composition with univalent over \(\cap\) ":
univalent \(F \Rightarrow F ;(R \cap S)=F ; R \cap F ; S\)
Proof:
Assuming `univalent \(F\) ' and using with "Univalence":
Using "Relation extensionality":
For any ' \(x\) ’, \({ }^{\prime} z\) ':
\[
x(F ; R \cap F ; S) z
\]
\[
\equiv\langle ?\rangle
\]
\[
x(F ;(R \cap S)) z
\]
```

Theorem "Distributivity of composition with univalent over \cap ":
univalent $F \Rightarrow F \circ(R \cap S)=F \circ R \cap F ; S$
Proof:
Assuming `univalent \(F\) ` and using with "Univalence":
Using "Relation extensionality":
For any ${ }^{\prime} x$, ${ }^{\prime} z$ ':
$x(F ; R \cap F ; S) z$
$\equiv\langle$ "Relation intersection", "Relation composition" \rangle
$\left(\exists y_{1} \bullet x(F) y_{1}(R) z\right) \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)$
$\equiv\langle ?\rangle$
$\exists y \cdot x(F) y(R) z \wedge y(S) z$
$\equiv\langle$ "Relation intersection" \rangle
$\exists y \bullet x(F) y(R \cap S) z$
$\equiv\langle$ "Relation composition" \rangle
$x(F ;(R \cap S)) z$

```
```

Theorem "Distributivity of composition with univalent over \cap ":
univalent $F \Rightarrow F ;(R \cap S)=F ; R \cap F ; S$
Proof:
Assuming `univalent \(F\) ` and using with "Univalence":
Using "Relation extensionality ":
For any ${ }^{\prime} x$, ${ }^{`} z$ ':
$x(F ; R \cap F ; S) z$
$\equiv\langle$ "Relation intersection", "Relation composition" \rangle
$\left(\exists y_{1} \bullet x(F) y_{1}(R) z\right) \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)$
$\equiv\langle$ "Distributivity of \wedge over \exists " \rangle
$\exists y_{1} \bullet x(F) y_{1}(R) z \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)$
$\equiv\langle$ "Distributivity of \wedge over \exists " \rangle
$\exists y_{1} \bullet \exists y_{2} \bullet x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z$
$\equiv\langle ?\rangle$
$\exists y \bullet x(F) y(R) z \wedge y(S) z$
$\equiv\langle$ "Relation intersection" \rangle
$\exists y \bullet x(F) y(R \cap S) z$
$\equiv\langle$ "Relation composition" \rangle
$x(F ;(R \cap S)) z$

```

Theorem "Distributivity of composition with univalent over \(\cap\) ":
univalent \(F \Rightarrow F ;(R \cap S)=F ; R \cap F ; S\)
Proof:
Assuming `univalent \(F\) ' and using with "Univalence":
Axiom "Univalence":

Using "Relation extensionality":
For any ‘ \(x\) ’, \(z\) ':
univalent \(R\)
\(\equiv \forall b_{1} \bullet \forall b_{2} \bullet \forall a \bullet\)
\(x(F ; R \cap F ; S) z\)
\(\equiv\langle\) "Relation intersection", "Relation composition" \(\rangle\)
\(\left(\exists y_{1} \bullet x(F) y_{1}(R) z\right) \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)\)
\(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
\(\exists y_{1} \bullet x(F) y_{1}(R) z \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)\)
\(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
\(\exists y_{1} \bullet \exists y_{2} \bullet x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z\)
\(\equiv\langle ?\rangle\)
\(\exists y_{1} \bullet \exists y_{2} \bullet y_{2}=y_{1} \wedge x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z\)
\(\equiv\langle ?\rangle\)
\(\exists y \bullet x(F) y(R) z \wedge y(S) z\)
\(\equiv\langle\) "Relation intersection" \(\rangle\)
\(\exists y \bullet x(F) y(R \cap S) z\)
\(\equiv\langle\) "Relation composition" \(\rangle\)
\(x(F ;(R \cap S)) z\)

Theorem "Distributivity of composition with univalent over \(\cap\) ":
univalent \(F \Rightarrow F ;(R \cap S)=F ; R \cap F ; S\)
Proof:
Assuming `univalent \(F\) ' and using with "Univalence":
Using "Relation extensionality":
For any \({ }^{\prime} x\), \({ }^{\prime} z\) ':
\(x(F ; R \cap F ; S) z\)
\(\equiv\langle\) "Relation intersection", "Relation composition" \(\rangle\)
\(\left(\exists y_{1} \bullet x(F) y_{1}(R) z\right) \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)\)
\(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
\(\exists y_{1} \bullet x(F) y_{1}(R) z \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)\)
\(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
\(\exists y_{1} \bullet \exists y_{2} \bullet x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z\)
\(\equiv\langle ?\rangle\)
\(\exists y_{1} \bullet \exists y_{2} \bullet y_{2}=y_{1} \wedge x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z\)
\(\equiv\langle\) "Trading for \(\exists\) ", "One-point rule for \(\exists\) ",
substitution, "Idempotency of \(\wedge\) ")
\(\exists y \bullet x(F) y(R) z \wedge y(S) z\)
\(\equiv\langle\) "Relation intersection" \(\rangle\)
\(\exists y \cdot x(F) y(R \cap S) z\)
\(\equiv\) 〈"Relation composition" 〉
\(x(F \circ(R \cap S)) z\)
```

Theorem "Distributivity of composition with univalent over \cap ":
univalent $F \Rightarrow F ;(R \cap S)=F ; R \cap F ; S$
Proof:
Assuming `univalent \(F\) ` and using with "Univalence":
Using "Relation extensionality":
For any ${ }^{\prime} x$, ${ }^{\prime} z$ ':
$x(F ; R \cap F ; S) z$

```
```

Axiom "Univalence":
univalent R
\equiv \forallb b \bullet \forall b b \bullet \foralla\bullet
a(R) bl}\mp@subsup{b}{1}{\wedge}a(R)\mp@subsup{b}{2}{
=> b}=\mp@subsup{b}{1}{

```
        \(a(R) b_{1} \wedge a(R) b_{2}\)
    \(\Rightarrow b_{1}=b_{2}\)

```

Theorem "Distributivity of composition with univalent over \cap ":
univalent $F \Rightarrow F \circ(R \cap S)=F \circ R \cap F \circ S$
Proof:
Assuming `univalent \(F\) and using with "Univalence": Using "Relation extensionality": For any ' \(x\) ’, \({ }^{2} z\) : \(x(F ; R \cap F ; S) z\) \(\equiv\langle\) "Relation intersection", "Relation composition" \(\rangle\) \(\left(\exists y_{1} \bullet x(F) y_{1}(R) z\right) \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)\) \(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\) \(\exists y_{1} \bullet x(F) y_{1}(R) z \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)\) \(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\) \(\exists y_{1} \bullet \exists y_{2} \bullet x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z\) \(\equiv\left\langle\right.\) Assumption `univalent F^{\prime}, "Identity of \wedge " \rangle
$\exists y_{1} \bullet \exists y_{2} \bullet\left(x(F) y_{1} \wedge x(F) y_{2} \Rightarrow y_{2}=y_{1}\right)$
$\wedge x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z$
$\equiv\langle$ "Strong modus ponens" \rangle
$\exists y_{1} \bullet \exists y_{2} \bullet y_{2}=y_{1} \wedge x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z$
$\equiv\langle$ "Trading for \exists ", "One-point rule for \exists ",
substitution, "Idempotency of \wedge " \rangle
$\exists y \bullet x(F) y(R) z \wedge y(S) z$
$\equiv\langle$ "Relation intersection" \rangle

```
Theorem "Distributivity of composition with univalent over \(\cap\) ":
    univalent \(F \Rightarrow F \circ(R \cap S)=F ; R \cap F ; S\)
Proof:
    Assuming `univalent \(F\) ` and using with "Univalence":
        Using "Relation extensionality":
            For any ` \(x, z\) :
                    \(x(F ; R \cap F ; S) z\)
            \(\equiv\langle\) "Relation intersection", "Relation composition" \(\rangle\)
                \(\left(\exists y_{1} \bullet x(F) y_{1}(R) z\right) \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)\)
            \(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
                \(\exists y_{1} \bullet x(F) y_{1}(R) z \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)\)
            \(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
                        \(\exists y_{1} \bullet \exists y_{2} \bullet x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z\)
            \(\equiv\langle\cdots \cdots\) Assumption univalent \(F\) with "Definition of \(\Rightarrow\) via \(\wedge\) "
                            Subproof for \({ }^{\wedge} \forall y_{1} \bullet \forall y_{2} \bullet x(F) y_{1} \wedge x(F) y_{2} \equiv y_{2}=y_{1} \wedge x(F) y_{1} \wedge x(F) y_{2}\)
                        For any \({ }^{`} y_{1}{ }^{`},{ }^{\prime} y_{2}{ }^{\prime}\) :
                        Side proof for (1) \(\mathfrak{x}(F) y_{1} \wedge x(F) y_{2} \Rightarrow y_{2}=y_{1}\) :
                            By Assumption `univalent \(F\) `
                    Continuing:
                                    By local property (1) with "Definition of \(\Rightarrow\) via \(\wedge\) "
                        \(\rangle\)
                        \(\exists y_{1} \bullet \exists y_{2} \bullet y_{2}=y_{1} \wedge x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z\)
            \(=\) / "Tradinc for 7 " "Ono-noint rule for \(\exists\) "
Theorem "Distributivity of composition with univalent over \(\cap\) ":
    univalent \(F \Rightarrow F \circ(R \cap S)=F \circ R \cap F ; S\)
Proof:
    Assuming `univalent \(F\) ' and using with "Univalence":
        Using "Relation extensionality":
            For any \(\begin{gathered} \\ x\end{gathered}, z\) :
                \(x(F ; R \cap F ; S) z\)
            \(\equiv\langle\) "Relation intersection", "Relation composition" \(\rangle\)
                    \(\left(\exists y_{1} \bullet x(F) y_{1}(R) z\right) \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)\)
            \(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
                    \(\exists y_{1} \bullet x(F) y_{1}(R) z \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)\)
            \(\equiv\langle\) "Distributivity of \(\wedge\) over \(\exists\) " \(\rangle\)
                    \(\exists y_{1} \bullet \exists y_{2} \bullet x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z\)
            \(\equiv\langle\boldsymbol{\sim} \cdot \boldsymbol{*}\) Assumption univalent \(F\) with "Definition of \(\Rightarrow\) via \(\wedge\) "
                            Subproof for \({ }^{\prime} x(F) y_{1} \wedge x(F) y_{2} \equiv y_{2}=y_{1} \wedge x(F) y_{1} \wedge x(F) y_{2}\) :
                        ----. By Assumption univalent \(F\) with "Definition of \(\Rightarrow\) via \(\wedge\) "
                        By "Definition of \(\Rightarrow\) via \(\wedge\) " with Assumption `univalent \(F\) '
                    \(\rangle\)
                    \(\exists y_{1} \bullet \exists y_{2} \bullet y_{2}=y_{1} \wedge x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z\)
            \(\equiv\langle\) "Trading for \(\exists\) ", "One-point rule for \(\exists\) ",
                    substitution, "Idempotency of \(\wedge\) " \(\rangle\)
                    \(\exists y \bullet x(F) y(R) z \wedge y(S) z\)
```

Theorem "Distributivity of composition with univalent over \cap ":
univalent $F \Rightarrow F \circ(R \cap S)=F \circ R \cap F \circ S$
Proof:
Assuming `univalent \(F\) ` and using with "Univalence":
Using "Relation extensionality ":
For any ${ }^{\prime} x, z$:
$x(F ; R \cap F ; S) z$
$\equiv\langle$ "Relation intersection", "Relation composition" \rangle
$\left(\exists y_{1} \bullet x(F) y_{1}(R) z\right) \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)$
\equiv ("Distributivity of \wedge over \exists " \rangle
$\exists y_{1} \bullet x(F) y_{1}(R) z \wedge\left(\exists y_{2} \bullet x(F) y_{2}(S) z\right)$
$\equiv\langle$ "Distributivity of \wedge over \exists " \rangle
$\exists y_{1} \bullet \exists y_{2} \bullet x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z$
$\equiv\left\langle\right.$ "Definition of $\Rightarrow \operatorname{via} \wedge$ " with Assumption `univalent $\left.F^{\prime}\right\rangle$
$\exists y_{1} \bullet \exists y_{2} \bullet y_{2}=y_{1} \wedge x(F) y_{1}(R) z \wedge x(F) y_{2}(S) z$
$\equiv\langle$ "Trading for \exists ", "One-point rule for \exists ", substitution, "Idempotency of \wedge " \rangle
$\exists y \cdot x(F) y(R) z \wedge y(S) z$
$\equiv\langle$ "Relation intersection" \rangle
$\exists y \bullet x(F) y(R \cap S) z$
$\equiv\langle$ "Relation composition" \rangle
$x(F ;(R \cap S)) z$

```
Theorem "Partial-function application of 9 ":
    univalent \(f\) univalent \(g \wedge \wedge\), \(x \in \operatorname{Dom}(f \circ g) \underset{g}{ } \Rightarrow(f \circ g) @ x=g @(f @ x)\)
Proof: Assuming univalent \(f\) univalent \(g^{\prime},{ }^{\prime} x \in \operatorname{Dom}(f ; g)\) :
    Side proof for \({ }^{\prime} x \in \operatorname{Dom} f^{\prime}\) :
        By assumption ` \(x \in \operatorname{Dom}(f ; g)\) ` with "Membership in domain of \(;\) ", "Weakening"
    Side proof for \({ }^{\prime} f\) @ \(x \in\) Dom \(^{\prime}\) :
            \(x \in \operatorname{Dom}(f \circ g)\) - This is an assumption
            \(\Rightarrow\langle\) "Membership in domain of 9 ", "Weakening" \(\rangle\)
            \(\exists y \mid x(f) y \bullet y \in \operatorname{Dom} g\)
            \(\equiv\left\langle\right.\) "Partial-function application" with assumption 'univalent \(f\) ' and local property \(\left.x \in \operatorname{Dom} f^{\prime}\right\rangle\)
            \(\exists y \mid y=f @ x \bullet y \in \operatorname{Dom} g\)
            \(\equiv\langle\) "One-point rule for \(\exists\) ", substitution 〉
                \(f @ x \in \operatorname{Dom} q\)
    Side proof for " \(U\) " ' univalent \((f \circ g\) )":
        By "Univalence of composition \({ }^{\circ}\) with assumptions `univalent \(f\) " and `univalent \(g\) '
        Continuing:
            \((f ; g) @ x=g @(f @ x)\)
            \(\equiv\left\langle\right.\) "Partial-function application" with local property " \(U\) " and assumption ' \(\left.x \in \operatorname{Dom}(f \circ g)^{\prime}\right\rangle\)
                \(x(f ; g) g @(f @ x)\)
            \(\equiv\langle\) "Relation composition" \(\rangle\)
            \(\exists y \bullet x(f) y(g) g @(f @ x)\)
            \(\equiv\langle\) "Partial-function application" with assumption `univalent \(f\)
                and local property ' \(x \in \operatorname{Dom} f\), "Trading for \(\exists\) " \(\rangle\)
                \(\exists y \mid y=f @ x \cdot y(g) g @(f @ x)\)
            \(\equiv\langle\) "One-point rule for \(\exists\) ", substitution
                \(f @ x(g) g @(f @ x)\)
            \(\equiv\left\langle\right.\) "Relationship with @" with assumption `univalent \(g\) ` and local property ` \(\left.f @ x \in \operatorname{Dom} g^{\prime}\right\rangle\)
                true
Theorem "Injectivity and @":
        univalent \(f \wedge\) injective \(f \wedge x_{1} \in \operatorname{Dom} f \wedge x_{2} \in \operatorname{Dom} f \Rightarrow\left(f @ x_{1}=f @ x_{2} \equiv x_{1}=x_{2}\right)\)
Proof:
    Assuming `univalent \(f\) ', `injective \(f\) ' and using with "Injectivity",
            \({ }^{\prime} x_{1} \in \operatorname{Dom} f^{\prime},{ }^{\prime} x_{2} \in \operatorname{Dom} f^{\prime}:\)
        Using "Mutual implication":
            Subproof:
                Assuming \({ }^{`} x_{1}=x_{2}{ }^{`}\) :
                    \(f @ x_{1}\)
                    \(=\left\langle\right.\) Assumption \(\left.{ }^{`} x_{1}=x_{2}{ }^{`}\right\rangle\)
                        \(f @ x_{2}\)
            Subproof for \({ }^{\prime} f @ x_{1}=f @ x_{2} \Rightarrow x_{1}=x_{2}{ }^{`}\) :
            Side proof for \({ }^{\prime} x_{1}(f) f @ x_{1}\) :
                By "Relationship with @" with assumptions `univalent \(f\) ' and ' \(x_{1} \in \operatorname{Dom} f^{\prime}\)
                Continuing:
                    \(f @ x_{1}=f @ x_{2}\)
                    \(\equiv\left\langle\right.\) "Partial-function application" with assumptions `univalent \(f\) " and ` \(\left.x_{2} \in \operatorname{Dom} f^{\prime}\right\rangle\)
                    \(x_{2}(f) f @ x_{1}\)
                    \(\equiv\left\langle\right.\) "Identity of \(\wedge\) ", local property \(\left.{ }^{\prime} x_{1}(f) f @ x_{1}{ }^{`}\right\rangle\)
                            \(x_{1}(f) f @ x_{1} \wedge x_{2}(f) f @ x_{1}\)
                    \(\Rightarrow\left\langle\right.\) Assumption `injective \(\left.f^{\prime}\right\rangle\)
                        \(x_{1}=x_{2}\)
```

Theorem "Injectivity and @ ":
univalent $f \wedge$ injective $f \wedge x_{1} \in \operatorname{Dom} f \wedge x_{2} \in \operatorname{Dom} f \Rightarrow\left(f @ x_{1}=f @ x_{2} \equiv x_{1}=x_{2}\right)$
Proof:
Assuming `univalent \(f^{\prime}\) injective \(f^{\wedge}\) and using with "Injectivity", \({ }^{\prime} x_{1} \in \operatorname{Dom} f^{\prime},{ }^{\prime} x_{2} \in \operatorname{Dom} f^{\prime}:\) Using "Mutual implication": Subproof: Assuming \({ }^{`} x_{1}=x_{2}{ }^{`}\) : \(f @ x_{1}\) \(=\left\langle\right.\) Assumption \(\left.{ }^{`} x_{1}=x_{2}{ }^{`}\right\rangle\) \(f @ x_{2}\) Subproof for \(\urcorner @\) @ \(x_{1}=f @ x_{2} \Rightarrow x_{1}=x_{2}{ }^{`}:\)
$x_{1}=x_{2}$
$\Leftarrow\left\langle\right.$ Assumption `injective \(\left.f^{\prime}\right\rangle\) \(x_{1}(f) f @ x_{1} \wedge x_{2}(f) f @ x_{1}\) \(\equiv\langle\) "Relationship with @" with assumptions `univalent f^{\prime} and ${ }^{\prime} x_{1} \in \operatorname{Dom} f^{\prime}$, "Identity of \wedge " \rangle
$x_{2}(f) f @ x_{1}$
$\equiv\left\langle\right.$ "Partial-function application" with assumptions `univalent f^{\prime} and $\left.{ }^{\prime} x_{2} \in \operatorname{Dom} f^{\prime}\right\rangle$
$f @ x_{1}=f @ x_{2}$

```
Theorem "Injectivity and @":
    univalent \(f \wedge\) injective \(f \wedge x_{1} \in \operatorname{Dom} f \wedge x_{2} \in \operatorname{Dom} f \Rightarrow\left(f @ x_{1}=f @ x_{2} \equiv x_{1}=x_{2}\right)\)
Proof: - "..." Raymond Zhao
    Assuming `univalent \(f^{\prime},{ }^{`} x_{1} \in \operatorname{Dom} f^{\prime},{ }^{\prime} x_{2} \in \operatorname{Dom} f^{\prime}\) :
        Assuming `injective \(f\) ' and using with "Injectivity":
            \(x_{1}=x_{2}\)
            \(\Rightarrow\langle\) "Leibniz" \(\rangle\)
            \((f @ z)\left[z:=x_{1}\right]=(f @ z)\left[z:=x_{2}\right]\)
            \(\equiv\langle\) Substitution \(\rangle\)
            \(f @ x_{1}=f @ x_{2}\)
            \(\equiv\) 〈 "Partial-function application" with
                Assumption \({ }^{\prime} x_{2} \in \operatorname{Dom} f^{\prime}\) and Assumption `univalent \(\left.f^{\prime}\right\rangle\)
            \(x_{2}(f) f @ x_{1}\)
            \(\equiv\langle\) "Identity of \(\wedge\) " \(\rangle\)
            true \(\wedge x_{2}(f) f @ x_{1}\)
            \(\equiv\langle\) "Relationship with @" with
                Assumption `univalent \(f^{\prime}\) and Assumption ' \(\left.x_{1} \in \operatorname{Dom} f^{\prime}\right\rangle\)
            \(x_{1}(f) f @ x_{1} \wedge x_{2}(f) f @ x_{1}\)
            \(\Rightarrow\left\langle\right.\) Assumption `injective \(\left.f^{`}\right\rangle\)
                \(x_{1}=x_{2}\)
```

\#eorem "Mirrored `decode2`":
- decode2 t (map not bs) = map (second (map not)) (decode2 (t %) bs)
Proof: "HTree induction'":

```

```

 ={ "Mirror", "Definition of decode2"",)
 = map (second, (map not)) (just (x }\textrm{x},\textrm{bs}.
 *)
 =(\begin{array}{l}{\mathrm{ Definition of decode2`"}}\\{\mathrm{ decode2 }\ulcornerx\lrcorner(map not bs)}\end{array})
 Subproof for: \forall X A, (map not HTre bs)
 lol
 *)
 *)
 =("Map (second (map not)) (decode2 ((l, \triangleM, r)") e)
    ```

```

 Induction step: \
 Cases:`b`,`b = "false`
 Case b)!
 *)
 =1"Definition of "decode2
 *)
    ```

```

 decode2 (l & & r) (map not (b d bs))
 (assumtion b = false", "Definition of
 =("Definition of decode2
 *)
    ```

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

\section*{Wolfram Kahl}

2023-11-17

\section*{Part 2: Topological Sort}

Recall: Topological Sort — Simple Algorithm (5) 7 (3) Given a DAG \((V, B)\) (with \(V\) : set \(T\) ), calculate sequence \(s\) encoding a topological sort \(E\).
var \(v s:\) set \(T ; s: S e q T\)
vs : = \(V\); - not-yet-used vertices
\(\{v s=V\} \quad\) - Precondition

\(s:=\epsilon\) ㄹ Initialising accumulator for result sequence
\(\{(v s\) and \(\{v \mid v \in s\}\) partition \(V) \wedge\) length \(s+\# v s=\# V \wedge\)
\((\forall u, v \mid v \in s \wedge u(B) v \bullet u\) precedes \(v\) in \(s)\} \quad\) - Invariant
while \(v s \neq\{ \}\) do
Choose a source \(u\) of the subgraph \((v s, B \cap(v s \times v s))\) induced by \(v s\);
\(v s, s:=v s-\{u\}, s \triangleright u\)
od
\(\{(\forall u, v \mid u(B) v \bullet u\) precedes \(v\) in \(s)\)
\(\wedge\{v \mid v \in s\}=V \wedge\) length \(s=\# V \quad\) - Postcondition
How to "Choose a source \(u\) of the subgraph induced by vs" efficiently?


Topological Sort - Making Choosing Minimal Elements Easier
To store mappings \(V \rightarrow X\) in "array \(\ldots\) of \(X\) ", "assume" \(V=0 . . k=\{i: \mathbb{N} \mid 0 \leq i \leq k\}\).
var sources: \(\operatorname{Seq}(0 . . k)\) - three new variables make vs superfluous
var preCount : array \(0 . . k\) of \(\mathbb{N}_{\iota}\),
var postSet : array \(0 . . k\) of \(\mathbb{P}(0 \ldots k) \quad\) - read-only version of \(B: V \leftrightarrow V\) as \(V \leftrightarrow \mathbb{P} V\)
Coupling invariant:
\(\{u \mid u \in\) sources \(\}=v s-\left(\right.\) Ran \(\left.B^{\prime}\right) \wedge \quad\) - sources contains sources of \(B^{\prime}=B \cap(v s \times v s)\)
\(\left(\forall v \mid v \in v s \cdot \operatorname{preCount}[v]=\#\left(B^{\prime \sim}(\{v\} \mid)\right)\right) \wedge\)
\(\left(\forall u \mid u \in v s \cdot \operatorname{postSet}[u]=B^{\prime}(\{u\} D)\right)\)
Initialisation:
for \(v \in 0 \ldots k\) do preCount \([v]:=\#\left(B^{\wedge}(\{\{v\} \mid))\right.\) od ;
for \(u \in 0 . . k\) do postSet \([u]:=B(\{\{u\})\) od ;
sources := \(\epsilon\);

for \(v \in 0 \ldots k\) do if \(\operatorname{preCount}[v]=0\) then sources \(:=\) sources \(\triangleright v\) fiod
```

 Topological Sort - Complete "Translated" LADM Algorithm
 forv }\in0..k\mathrm{ do preCount[v]:= \# (}\mp@subsup{B}{}{`}0{{v}|) od
for }u\in0..k\mathrm{ do postSet[u]:= B {{u}| od ;
sources:= \epsilon;
for v\in }0..k\mathrm{ do if preCount[v]=0 then sources:= sources }\trianglerightv\mathrm{ fi od
ghost vs:= 0..k;
- B' = B\cap(vs\timesvs)
s:= \epsilon
while sources \# \epsilon do - Coupling invariant:
u:= head sources ;
s:= s\trianglerightu ;
sources:= tail sources ; - remove u from sources
ghost vS:=vs-{u} ;
forv v postSet[u] do
preCount[v]:= preCount[v]-1 ;
if preCount[v]=0 then sources:= sources }\trianglerightv\textrm{fi
od
od

```

\section*{Topological Sort - Complete \(O(\# B+\# V)\) Algorithm}
```

for p\inB do

```
    preCount \([\) snd \(p]:=\operatorname{preCount}[\) snd \(p]+1\)
    postSet \([\) fst \(p]:=\operatorname{postSet[fst~p]\cup \{ snd~p\} }\)
od ;
sources \(:=\epsilon ;\) for \(v \in 0 \ldots k\) do if preCount \([v]=0\) then sources \(:=\) sources \(\triangleright v\) fi od
ghost vs \(:=0 . . k\); - \(B^{\prime}=B \cap(v s \times v s)\)
\(s:=\epsilon\)
while sources \(\neq \epsilon\) do - Coupling invariant:
    \(u:=\) head sources ;
\(\{u \mid u \in\) sources \(\}=v s-\left(\right.\) Ran \(\left.B^{\prime}\right) \wedge\)
    \(\left(\forall v \mid v \in v s \bullet \operatorname{preCount}[v]=\#\left(B^{\prime} \sim(\{v\} D)\right)\right.\)
    \(s:=s \triangleright u\);
\(\wedge\left(\forall u \mid u \in v s \bullet \operatorname{postSet}[u]=B^{\prime}(\{u\} D)\right)\)
    sources \(:=\) tail sources ; - remove \(u\) from sources
    ghost vs := vs - \{u\} ;
    for \(v \in \operatorname{postSet}[u]\) do
        preCount \([v]:=\operatorname{preCount}[v]-1\);
        if preCount \([v]=0\) then sources \(:=\) sources \(\triangleright v \mathrm{fi}\)
    od
od
```

Topological Sort - Complete O(\# B + \# V) Algorithm - Using Pair Iteration
for }\langleu,v\rangle\inB\mathrm{ do
preCount[v]:= preCount[v]+1
postSet[u]:= postSet[u]\cup{v}
od;
sources:= \epsilon; for v\in 0..k do if preCount[v]=0 then sources:= sources }\trianglerightv\mathrm{ fi od
ghost vs := 0..k; - - 列 = B\cap(vs \timesvs)
s:= \epsilon

```

```

 \wedge(\forallu|u\invs \bullet postSet[u]=\mp@subsup{B}{}{\prime}({{u}D))
 s:= s\trianglerightu ;
 sources := tail sources \ - remove }u\mathrm{ from sources
 ghost vs:= vS - {u};
 for v \in postSet[u] do
 preCount[v]:= preCount[v]-1;
 if preCount[v]=0 then sources := sources }\trianglerightv\textrm{fi
 od
 od

```


Representation relation: \(\quad R: X \leftrightarrow Y \quad\) - "coupling invariant" relates abstract states \(X\) with concrete implementation states \(Y\) :
- Compatible initialisation:
\(j \subseteq i \neq R\)
- Operation simulation:
\(R ; g_{k} \subseteq f_{k} 9 R\)
- Compatible results: \(R ; q \subseteq p\)

\section*{Topological Sort - Summary}
- The "Simple Algorithm" can be proved correct wrt. a mathematical characterisation of "Choose a source \(u\) "
- As a "Finalisation" relation relating states with \(u\)-values, this is not univalent.
- Given the coupling invariant, " \(u:=\) head sources" chooses a "compatible result".
- The for-loop updating the refined state implements "vs:=vs-\{u\}" by re-establishing the coupling invariant

\section*{- Separation of concerns between}
- high-level algorithm correctness proof
- data representation decisions for low-level efficiency implemented as refinement makes the whole proof is more modular, and easier to understand, and the development more maintainable and reusable.

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-20

\section*{Relational Semantics of Simple Imperative Programs}

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-20

\section*{Part 1: Ghosts for Complexity}
```

Recall: Topological Sort - Complete $O(\# B+\# V)$ Algorithm (Pair Iteration)
for $\langle u, v\rangle \in B$ do
$\operatorname{preCount}[v]:=\operatorname{preCount}[v]+1$
postSet $[u]:=\operatorname{postSet}[u] \cup\{v\}$
od ;
sources := ϵ; for $v \in 0 \ldots k$ do if preCount $[v]=0$ then sources $:=$ sources $\triangleright v$ fi od
ghost os :=0.. k;
- $B^{\prime}=B \cap(v s \times v s)$
$s:=\epsilon$
while sources $\neq \epsilon$ do -Coupling invariant: $\left\{\begin{array}{|c|}\{u \mid u \in \text { sources }\}=v s-\left(\text { Ran } B^{\prime}\right) \wedge\end{array}\right.$
$u:=$ head sources ; $\quad\left(\forall v \mid v \in v\right.$ s $\operatorname{preCount[v]=\# (B^{\prime \sim }0\{ v\} D))}$
$s:=s \triangleright u$;
$\wedge\left(\forall u \mid u \in v s \bullet \operatorname{postSet}[u]=B^{\prime}(\{u\} D)\right)$
sources := tail sources ; - remove u from sources
ghost vs := vs - \{u\} ;
for $v \in \operatorname{postSet}[u]$ do
preCount $[v]:=\operatorname{preCount}[v]-1$;
if $\operatorname{preCount}[v]=0$ then sources $:=$ sources $\triangleright v$ fi
od
od

```

\section*{Recall: Ghost Variables}

If a language supports "ghost variables" then:
- ghost variables cannot occur in if-conditions, while-conditions, RHS of assignments, function call arguments.
- That is, values of ghost variables do not influence program flow or results.
- Compilers will normally suppress ghost variables and their assignments.
"Ghost variables" can make proofs easier: They can be used to keep track of values that are important for understanding/documenting/proving the logic of the program.

On the "topological sort" example of the previous slide, the ghost variables vs contains the state of the abstract version of the algorithm, so that the coupling invariant relating vs with the refined state \(\langle\) sources, preCount, postSet \(\rangle\) can be verified before and after the loop body.

Ghost variables can also be used to "instrument" a program for proving complexity bounds - see the next slide.
```

 Topological Sort - Complete O(# B + #V)-ghosted Algorithm
 ghost int stepCount = 0 ;
for }\langleu,v\rangle\inB\mathrm{ do
preCount[v]:= preCount[v] + 1; ghost stepCount++ ;
postSet[u]:= postSet[u]\cup{v} ; ghost stepCount++
od ;
sources:= \epsilon ;
for v\in0..k do ghost stepCount++ if preCount[v] = 0 then sources:= sources\trianglerightv\mathrm{ fi od}
s:= \epsilon
while sources \# \epsilon do
u := head sources ; s := s\trianglerightu ; ghost stepCount++ ;
sources:= tail sources ; - remove }u\mathrm{ from sources
forv }\in\mathrm{ postSet [u] do
preCount[v] := preCount[v]-1 ; ghost stepCount++ ;
if preCount[v]=0 then sources:= sources }\trianglerightv\textrm{fi
od
od ;
ghost assert stepCount }\leq\mp@subsup{C}{1}{}\cdot\#B+\mp@subsup{C}{2}{}\cdot\#V - complexity postcondition

```

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-20
Part 2: Relational Semantics

So far, we have been using the dynamic logic notation:
\[
P \Rightarrow[C] Q
\]
with its partial correctness meaning:
If command \(C\) is started in a state in which the precondition \(P\) holds then it will terminate only in a state in which the postcondition \(Q\) holds.

What are \(P, Q, C\) ?
- \(P\) and \(Q\) are some kind of Boolean expressions - of type ExpriB
- \(C\) is a command - of type Cmd
- We also need expression \(e\) for assignment RHSs, " \(x:=e^{\prime \prime}\) — of type ExprV

\section*{The Programming Language: Expressions and Commands}

The types Cmd, ExprV, and ExpriB are abstract syntax tree (AST) types
Declaration: ExprV, ExpriB : Type
Declaration: Var' : Var \(\rightarrow\) ExprV
Declaration: Int \(: \mathbb{Z} \rightarrow\) ExprV
Declaration: _ \({ }^{\prime}\) _ : ExprV \(\rightarrow\) ExprV \(\rightarrow\) ExprV
Declaration: true \({ }^{\prime}\), false \({ }^{\prime}\) : ExpriB
Declaration: \(\neg^{\prime}\) _ : Expr \(\mathbb{B} \rightarrow\) Expr \(\mathbb{B}\)
Declaration: _ \(\wedge^{\prime}{ }_{-}: \operatorname{Expr} \mathbb{B} \rightarrow\) Expr \(\mathbb{B} \rightarrow\) Expr \(\mathbb{B}\)
Declaration: _ \(=^{\prime}{ }_{-}:\)ExprV \(\rightarrow\) ExprV \(\rightarrow\) Expr \(\mathbb{B}\)
Declaration: Cmd : Type
Declaration: _i- : Cmd \(\rightarrow\) Cmd \(\rightarrow\) Cmd
Declaration: _: =_ \(\quad: \operatorname{Var} \rightarrow\) ExprV \(\rightarrow\) Cmd
Declaration: if_then_else_fi: ExpriB \(\rightarrow\) Cmd \(\rightarrow\) Cmd \(\rightarrow\) Cmd
Declaration: while_do_od :ExpriB \(\rightarrow\) Cmd \(\rightarrow\) Cmd

\section*{Formalising Partial Correctness - Semantics Types}

So far, we have been using the dynamic logic notation:
\[
P \Rightarrow[C] Q
\]
with its partial correctness meaning:

If command \(C\) is started in a state in which the precondition \(P\) holds then it will terminate only in a state in which the postcondition \(Q\) holds.

What does "state" mean? "starts"? "holds"? "terminates"? ...
- States assign variable to values
- here we simply model states as function
- " \(P\) holds in state s": semantics of Boolean expressions: sat \(:\) ExpriB \(\rightarrow\) set State ( \(s \in \operatorname{sat} P \quad\) iff \(\quad\) "condition \(P\) is satisfied in state \(s\) ")
(Alternatively, start from eval \(\mathbb{B}:\) State \(\mathbb{B} \rightarrow \operatorname{Expr} \mathbb{B} \rightarrow \mathbb{B}\) and define sat \(P=\{s \mid\) eval \(\mathbb{B} s P\}\) )

\section*{Types for Semantics of Expressions and Commands}

What does "state" mean? "holds"? ...
Imperative programs, such as Cmd, transform a State that assigns values to variables.
Declaration: Var : Type
— variables
Declaration: Value : Type
Declaration: State : Type
— storable values

Axiom "Definition of `State`": State \(=\) Var \(\rightarrow\) Value
Declaration: eval : State \(\rightarrow\) ExprV \(\rightarrow\) Value
- value expression semantics

Declaration: sat : Expr \(\mathbb{B} \rightarrow\) set State
- Boolean expression semantics

Declaration: \({ }_{-} \oplus_{-}^{\prime}:(A \rightarrow B) \rightarrow\langle A, B\rangle \rightarrow(A \rightarrow B) \quad\) - state update
Axiom "Definition of function override":
\(\left(x=z \Rightarrow\left(f \oplus^{\prime}\langle x, y\rangle\right) z=y\right)\)
\(\wedge\left(x \neq z \Rightarrow\left(f \oplus^{\prime}\langle x, y\rangle\right) z=f z\right)\)

\section*{Semantics of Commands}

What does "starts" mean? "terminates"? ...
Program execution induces a state transformation relation.
Declaration: \(\left.\llbracket _\right]:\)Cmd \(\rightarrow\) (State \(\leftrightarrow\) State \()\)
\(\left.s_{1} 〔 \llbracket C \rrbracket\right) s_{2} \quad\) iff "when started in state \(s_{1}\), command \(C\) can terminate in state \(s_{2}{ }^{\prime}\).
Inductive definition of \(\llbracket \rrbracket_{-}\)over the structure of \(C m d\) :
Axiom "Semantics of \(:=\) ": \(\quad \llbracket x:=e \rrbracket=\left\{s:\right.\) State \(\bullet\left\langle s, s \oplus^{\prime}\langle x\right.\), eval \(\left.\left.s e\rangle\right\rangle\right\}\)
Axiom "Semantics of \({ }_{i}\) ": \(\llbracket C_{1} i C_{2} \rrbracket=\llbracket C_{1} \rrbracket \stackrel{q}{q} \llbracket C_{2} \rrbracket\)
Axiom "Semantics of "if" ":
\(\llbracket\) if \(B\) then \(C_{1}\) else \(C_{2} \mathrm{fi} \rrbracket=\left(\right.\) sat \(\left.B \triangleleft \llbracket C_{1} \rrbracket\right) \cup\left(\right.\) sat \(\left.B \triangleleft \llbracket C_{2} \rrbracket\right)\)
Axiom "Semantics of `while" ":
\(\llbracket\) while \(B\) do \(C\) od \(\rrbracket=(\text { sat } B \triangleleft \llbracket C \rrbracket)^{*} \triangleright\) sat \(B\)

\section*{Formalising Partial Correctness}

So far, we have been using the dynamic logic notation:
\[
P \Rightarrow[C] Q
\]
with its partial correctness meaning:

If command \(C\) is started in a state in which the precondition \(P\) holds then it will terminate only in a state in which the postcondition \(Q\) holds.

Declaration: \({ }_{-} \Rightarrow[-]_{-}:\)Expr \(\mathbb{B} \rightarrow\) Cmd \(\rightarrow\) Expr \(\mathbb{B} \rightarrow \mathbb{B}\)
Axiom "Partial Correctness":
\[
(P \Rightarrow[C] Q) \equiv \llbracket C \rrbracket(\mid \text { sat } P \mid) \subseteq \text { sat } Q
\]

Theorem "Partial Correctness":
\[
(P \Rightarrow[C] Q) \equiv \forall s_{1}, s_{2} \bullet s_{1} \in \operatorname{sat} P \wedge s_{1}(\llbracket C \rrbracket) s_{2} \Rightarrow s_{2} \in \text { sat } Q
\]

\section*{Soundness of the Inference Rules for Correctness}

Since partial correctness statements \((P \Rightarrow[C] Q)\) are now defined via the relational semantics, we can prove soundness of the Hoare logic proof rules by deriving them, e.g.:

Derived inference rule "Sequence": \(\quad{ }^{\prime} P \Rightarrow\left[C_{1}\right] Q Q^{`}, ~ Q \Rightarrow\left[C_{2}\right] R\)
\[
\vdash P \Rightarrow\left[C_{1} ; C_{2}\right] R^{`}
\]

\section*{Proof:}

Assuming \(\left.\left(C_{1}\right) ` P \Rightarrow E C_{1}\right] Q\) and using with "Partial correctness",
\(\left(C_{2}\right)^{`} Q \Rightarrow\left[C_{2}\right] R\) and using with "Partial correctness":
\(P \Rightarrow\left[C_{1} ; C_{2}\right] R\) \(\equiv\langle\) "Partial correctness" \(\rangle\)
\(\llbracket C_{1} ; C_{2} \rrbracket(\mid\) sat \(P \mid) \subseteq\) sat \(R\) \(\equiv\left\langle "\right.\) Semantics of \(i\) ", "Relational image of \({ }^{\circ}\) " \(\rangle\)
\(\llbracket C_{2} \rrbracket\left(\| C_{1} \rrbracket(\mid\right.\) sat \(P \mid) \subseteq\) sat \(R\) \(\Leftarrow\left\langle\right.\) Antitonicity with assumption \(\left.\left(C_{1}\right)\right\rangle\)
\(\llbracket C_{2} \rrbracket(\mid\) sat \(Q) \subseteq\) sat \(R\) \(\equiv\left\langle\right.\) Assumption \(\left.\left(C_{2}\right)\right\rangle\) true

\section*{Soundness of the Inference Rules for Correctness (ctd.)}

Derived inference rule "Conditional":
\[
\vdash \frac{{ }^{\prime} B \wedge^{\prime} P \Rightarrow\left[C_{1}\right] Q, \quad \neg^{\prime} B \wedge^{\prime} P \Rightarrow\left[C_{2}\right] Q}{`} P \Rightarrow\left[\text { if } B \text { then } C_{1} \text { else } C_{2} \mathrm{fi}\right] Q `
\]

Derived inference rule "While":
\[
\vdash \frac{` B \wedge^{\prime} Q \Rightarrow[C] Q^{`}}{` Q \Rightarrow[\text { while } B \text { do } C \text { od }] \neg^{\prime} B \wedge^{\prime} Q}
\]

\section*{"Operational Semantics", "Axiomatic Semantics"}

For a command C: Cmd, we introduced it relational semantics \(\llbracket C \rrbracket:\) State \(\leftrightarrow\) State.
This semantics only captures the terminating behaviours of \(C\), in the shape of an "input-output relation".

This is also called "big-step operational semantics", or "natural semantics".
"Small-step operational semantics" maps \(C\) to a relation of type State \(\leftrightarrow\left(\right.\) State \(^{*} \cup\) State \(\left.^{\infty}\right)\) :
- Each start state \(s_{0}\) is related to all possible execution sequences starting from \(s_{0}\).
- All intermediate states (after each assignment) are recorded.
- Non-terminating behaviours give rise to infinite state sequences.
- Terminating behaviours give rise to finite sequences \(s_{0}, \ldots, s_{n}\), with \(s_{0}(\llbracket C \rrbracket) s_{n}\)
- this is either a proof obligation, or a way to define \(\llbracket C \rrbracket\).
"Axiomatic semantics" is the set of correctness statements \((P \Rightarrow[C] Q)\) that can be derived about \(C\) in a inference system of the kind we have used.
As seen on the previous slides, such an inference system can (and should!) be justified against the operational semantics.

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-22

\section*{Total Correctness}

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-22

\section*{Part 1: Relational Semantics: Partial Correctness}
\[
\begin{aligned}
& \text { Bag-based Specification of Sorting } \\
& x s_{0}=\mathrm{xs} \in(0 . . k) \rightarrow{ }_{L}, \mathbb{N}, \\
& \Rightarrow[\operatorname{SORT} \\
& \exists \\
& \text { xs } \in(0 . . k) \rightarrow{ }_{L}, \wedge \text { sorted xs } \\
& \wedge 2 p|p \in \mathrm{xs} \bullet \operatorname{snd} p S=2 p| p \in x s_{0} \bullet \operatorname{snd} p S
\end{aligned}
\]

Theorem＂Sorting 0＇＂：
A Verified Sorting Algorithm
\(x s_{0}=\mathrm{xs} \in(0 . . k) \rightarrow{ }_{\llcorner } \mathbb{N}\),
\(\Rightarrow\) E while true do
xs \(:=x s \oplus\{\langle 0,42\rangle\}\)
od
J
xs \(\in(0 . . k) \rightarrow \mathbb{N}, \wedge\) sorted \(x s\)
\[
\wedge l p \mid p \in \mathrm{xs} \bullet \text { snd } p S=l p \mid p \in x s_{0} \bullet \text { snd } p S
\]

Proof structure？

Theorem＂Sorting 0 ＂＂：

od J
xs \(\in(0 . . k) \rightarrow{ }_{\llcorner } \mathbb{N}, \wedge\) sorted \(x s\)
\(\wedge l p \mid p \in \mathrm{xs} \bullet\) snd \(p S=2 p \mid p \in x s_{0} \bullet\) snd \(p S\)

\section*{Proof：}
\(x s_{0}=\mathrm{xs} \in(0 . . k) \rightarrow{ }_{\llcorner } \mathbb{N}\),
\(\Rightarrow\langle ?\rangle\)
\(\Rightarrow E\) while true do \(\quad\) xs \(:=x s \oplus\{\langle 0,42\rangle\} \quad\) od
］＜＂While＂with subproof：
\[
\Rightarrow[\mathrm{xs}:=\mathrm{xs} \oplus\{\langle 0,42\rangle\}]
\]
\(\langle ?\rangle\)
\(?\)
\(?\)
\(\Rightarrow\langle ?\rangle\)
\(\mathrm{xs} \in(0 \ldots k) \rightarrow{ }_{2}, \wedge\) sorted xs \(\wedge 2 p \mid p \in \mathrm{xs} \bullet\) snd \(p S=2 p \mid p \in x_{s_{0}} \bullet\) snd \(p S\)

\section*{A Verified Sorting Algorithm}

\section*{A Verified Sorting Algorithm}
\[
\begin{aligned}
& \text { while true do } \\
& \text { xs[0] := } 42
\end{aligned}
\]
```

while true do
xs[0] := 42

```
\[
x s_{0}=x s \in(0 . . k) \rightarrow \mathbb{N}^{0}
\] \(\Rightarrow\) E while true do

XS \(:=x S \oplus\{\langle 0,42\rangle\}\)
od

> J
xs \(\in(0 . . k) \rightarrow{ }_{\llcorner } \mathbb{N}, \wedge\) sorted \(x s\)
\[
\wedge l p|p \in \mathrm{xs} \bullet \operatorname{snd} p S=l p| p \in x s_{0} \bullet \text { snd } p S
\]

Proof
\(x s_{0}=\mathrm{xs} \in(0 . . k) \rightarrow{ }_{\llcorner } \mathbb{N}\),
\(\Rightarrow\langle ?\rangle\)
Q－Invariant
\(\Rightarrow\) E while true do \(\quad\) xs \(:=x s \oplus\{\langle 0,42\rangle\} \quad\) od
（＂While＂with subproof：
\[
\Rightarrow[x s:=x s \oplus\{\langle 0,42\rangle\}]
\]

〈？〉
？
```

 ?
 xs \in (0..k) ๑->
 \wedgelp|p\in xs \bullet snd pS = lp|p\in xs 的 (snd pS
    ```
) Which other conditions ere

\section*{while true do}
\(\mathrm{xs}[0]:=42\)

Theorem＂Sorting \(0^{\prime}\)＂：
\[
\begin{aligned}
& x s_{0}=x s \in(0 . . k) \rightarrow{ }_{2}, \\
& \Rightarrow \text { while true do } \\
& \text { xs }:=x s \oplus\{\langle 0,42\rangle\}
\end{aligned}
\]
od
〕
xs \(\in(0 \ldots k) \rightarrow \mathbb{N}, \wedge\) sorted xs
\[
\wedge \ p|p \in \mathrm{xs} \cdot \operatorname{snd} p S=l p| p \in x s_{0} \cdot \text { snd } p S
\]

Proof：
\(x s_{0}=x s \in(0 . . k) \rightarrow{ }_{\llcorner } \mathbb{N}\),
\(\Rightarrow\langle ?\rangle\)
Q－Invariant
\(\Rightarrow[\) while true do \(\mathrm{xs}:=\mathrm{xs} \oplus\{\langle 0,42\rangle\}\) od
true \(\wedge Q\)
\(\Rightarrow[\mathrm{xs}:=\mathrm{xs} \oplus\{\langle 0,42\rangle\}]\)
（？）
Q
＞
\(\neg\) true \(\wedge Q\)
\(\Rightarrow\langle ?\rangle\)
xs \(\in(0 . . k) \rightarrow \mathbb{N}^{\prime} \wedge\) sorted xs
\[
\wedge\langle p| p \in \mathrm{xs} \cdot \operatorname{snd} p)=2 p \mid p \in x s_{0} \bullet \text { snd } p S
\]

\section*{A Verified Sorting Algorithm}
```

```
while true do
```

```
while true do
    xs[0] := 42
```

```
    xs[0] := 42
```

```

Theorem＂Sorting \(0^{\prime}\)＂：
\[
\begin{aligned}
& x s_{0}=x s \in(0 . . k) \rightarrow \mathbb{N}^{2} \text {, } \\
& \Rightarrow \text { E while true do } \\
& \mathrm{xs}:=\mathrm{xs} \oplus\{\langle 0,42\rangle\}
\end{aligned}
\]
od〕
\(\mathrm{xs} \in(0 . . k) \rightarrow \mathbb{N}, \wedge\) sorted xs
\[
\wedge \ell p \| p \in \operatorname{xs} \cdot \operatorname{snd} p S=2 p \mid p \in x s_{0} \cdot \operatorname{snd} p S
\]

Proof：
\(x s_{0}=x s \in(0 . . k) \rightarrow \mathbb{L}\),
\(\Rightarrow\langle ?\rangle\)
Q－Invariant
\(\Rightarrow\)［while true do xs ：\(=\mathrm{xs} \oplus\{\langle 0,42\rangle\} \quad\) od
］〈＂While＂with subproof：
true \(\wedge Q\)
\(\Rightarrow[\mathrm{xs}:=\mathrm{xs} \oplus\{\langle 0,42\rangle\}] \quad\) How can we choose the invariant to make
（？）
Q
）
\(\neg\) true \(\wedge Q\)
\(\Rightarrow\) 〈＂Definition of＇false＂＂，＂Zero of \(\wedge\)＂，＂ex falso quodlibet＂\(\rangle\)
\(\mathrm{xs} \in(0 . . k) \rightarrow \mathbb{N}, \wedge\) sorted xs
\(\wedge \ell p \mid p \in \mathrm{xs} \bullet\) snd \(p S=2 p \mid p \in x s_{0} \bullet\) snd \(p S\)

Theorem＂Sorting \(0^{\prime}\)＂：
\(x s_{0}=x s \in(0 . . k) \rightarrow{ }_{2} \mathbb{N}\) ， \(\Rightarrow\) E while true do
xs \(:=x s \oplus\{\langle 0,42\rangle\}\)
od
J
xs \(\in(0 \ldots k) \rightarrow{ }_{2}, \wedge\) sorted xs
\(\wedge \ p \mid p \in \mathrm{xs} \cdot \operatorname{snd} p)=\ell p \mid p \in x s_{0} \bullet\) snd \(p S\)
Proof：
\(x s_{0}=x s \in(0 . . k) \rightarrow{ }_{2}, \mathbb{N}\),
\(\Rightarrow\langle\)＂Right－zero of \(\Rightarrow\)＂\(\rangle\) This program has herewith been
true－Invariant
\(\Rightarrow\) E while true do \(\mathrm{xs}:=\mathrm{xs} \oplus\{\langle 0,42\rangle\}\) od
I＜＂While＂with subproof：

\section*{true \(\wedge\) true}
\(\Rightarrow[\mathrm{xs}:=\mathrm{xs} \oplus\{\langle 0,42\rangle\}\}\)
〈＂Idempotency of \(\wedge\)＂，＂Assignment＂with substitution 〉
true
）
\(\neg\) true \(\wedge\) true
\(\Rightarrow\langle\)＂Contradiction＂，＂ex falso quodlibet＂\(\rangle\)

\(\wedge\langle p| p \in \mathrm{xs} \bullet \operatorname{snd} p)=\langle p| p \in x \mathrm{~s}_{0} \bullet \operatorname{snd} p S\)

Can we already complete some proof obligations now，without even fixing the invariant？
```

 Partial Correctness: "Terminate Only in States Satisfying Postcondition"
 Axiom "Partial Correctness": $\quad(P \Rightarrow[C] Q) \equiv \llbracket C \rrbracket(\mid$ sat $P D \subseteq$ sat Q
Axiom "Semantics of `while`": $\quad \llbracket$ while B do C od $\rrbracket=($ sat $B \triangleleft \llbracket C \rrbracket) * ~ s a t B$
Theorem "Partial correctness of 'while true"": $\quad P \Rightarrow[$ while true' do C od $] Q$
Proof:
$P \Rightarrow\left[\right.$ while true ${ }^{\prime}$ do C od $] Q$
$\equiv\langle$ "Partial correctness" \rangle
\llbracket while true' do C od $\rrbracket($ sat $P \mid \subseteq$ sat Q
$\equiv\langle$ "Semantics of `while" " \rangle That is:
$\left(\left(\text { sat true }{ }^{\prime} \triangleleft \llbracket C \rrbracket\right)^{*} \triangleright\right.$ sat true' $)(\mid$ sat $P \mid) \subseteq$ sat Q
$\equiv\left\langle\right.$ "sat true $\left.{ }^{\prime \prime}\right\rangle$
$((U \triangleleft \llbracket C \rrbracket) * \triangleright U)(\mid$ sat $P \mid) \subseteq \operatorname{sat} Q$
$\equiv\left\langle " \triangleright U^{\prime \prime}\right\rangle$
$\}(|\operatorname{sat} P|) \subseteq$ sat Q
$\equiv\langle$ "Relational image under $\}$ " \rangle
$\} \subseteq$ sat $Q \quad$ - This is "Empty set is least"

```

That is:
Any "while true" loop is partially correct with respect to any pre-post-condition specification.

\section*{Domain and Range Relation-algebraically}
- In the abstract relation-algebraic setting, we are only dealing with relation types \(A \leftrightarrow B\)
- No set types, and therefore no direct way to express Dom, \(\triangleleft,\left(\|_{-} \mid\right)\), etc.
- One candidate for "relations representing sets" are subidentities, \(q \subseteq \mathbb{I}\)
- In set theory, \(\operatorname{id} A\) is a relation that can just serve as a representation of set \(A\)
- id allows us to define \(\triangleleft\) :

Theorem (14.237) "Domain restriction via \(\circ\) ": \(A \triangleleft R=\mathrm{id} A \circ R\)
- In the abstract relation-algebraic setting, the role of the operation

Dom : \((A \leftrightarrow B) \rightarrow \operatorname{set} A\)
is taken by the new operation
dom: \((A \leftrightarrow B) \rightarrow(A \leftrightarrow A)\)
\(\operatorname{dom} R=R ; R^{`} \cap \mathbb{I}\)
taking each relation \(R\) to the subidentity relation representing the set Dom \(R\)
- In set theory:
```

dom R = id (Dom R)

```

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-22
Part 2: Total Correctness

Precondition-Postcondition Specifications in Dynamic Logic Notation
- Program correctness statement in LADM (and much current use): "Hoare triple": \(\{P\} C\{Q\}\)
Meaning (LADM ch. 10): "Total correctness":
If command \(C\) is started in a state in which the precondition \(P\) holds
then it will terminate in a state in which the postcondition \(Q\) holds.
- So far, we have been using the dynamic logic notation:
\[
P \Rightarrow[C] Q
\]
with its partial correctness meaning:
If command \(C\) is started in a state in which the precondition \(P\) holds
then it will terminate only in states in which the postcondition \(Q\) holds.
Differences between partial and total correctness:
Commands that do not terminate properly:
- Commands that crash - evaluating undefined expressions
- Infinite loops

\section*{Undefined Behaviors in C}
- Spatial memory safety violations
- Temporal memory safety violations
- Integer overflow
- Strict aliasing violations
- Alignment violations
- Unsequenced modifications
— printf("\%d」\%d", a++, a++);
- Data races
- Loops that neither perform I/O nor terminate

\section*{Rules That Work for Both}

\section*{Sequential composition:}

Primitive inference rule "Sequence":
` \(\left.P \Rightarrow E C_{1}\right] \quad Q\), \(\left.{ }^{\prime} Q \Rightarrow E C_{2}\right] R\) '
\(\left.{ }^{`} P \Rightarrow E C_{1} ; C_{2}\right] \quad R^{\prime}\)
Strengthening the precondition:


Weakening the postcondition:
\[
\frac{` P \Rightarrow[C] Q_{1} `, \quad Q_{1} \Rightarrow Q_{2} `}{` P \Rightarrow[C] Q_{2}^{`}}
\]

\section*{Total Correctness Rule for Assignment}

Used so far: Dynamic Logic Partial Correctness Assignment Axiom:
\[
Q[x:=E] \quad \Rightarrow[x:=E] \quad Q
\]

\section*{LADM Total Correctness Assignment Axiom (10.1):}
\[
\left\{\operatorname{dom}^{\prime} E^{\prime} \wedge Q[x:=E]\right\} \quad x:=E \quad\{Q\}
\]

For each programming-language expression \(E\), the predicate dom ' \(E\) '

Assignment ":=": Two characters; type ": ="

Substitution ":=":
One Unicode character; type " \(\backslash:=\) " is satisfied exactly in the states in which \(E\) is defined.
(dom is a meta-function taking expressions to Boolean conditions.)
Examples:
- dom'sqrt \((x / y)^{\prime} \equiv y \neq 0 \wedge x / y \geq 0\)
- dom' \(a @ i^{\prime} \equiv i \in \operatorname{Dom} a\)
- For int-variables \(i\) and \(j\) :
dom \(^{\prime} i+j^{\prime} \equiv \operatorname{minint} \leq x+y \leq\) maxint

\section*{Conditional Rule}

Each evaluation of an expression \(E\) needs to be guarded by a precondition \(\operatorname{dom}^{\prime} E^{\prime}\) :
\[
\frac{\{B \wedge P\} C_{1}\{Q\}}{\left\{\text { dom }^{\prime} B^{\prime} \wedge P\right\} \text { if } B \text { then } C_{1} \text { else } C_{2} f i \quad\{Q\}}
\]

\section*{"While" Rule}

So far: \(\quad\) © \(\wedge\) Q \(\Rightarrow \mathrm{E}\) C 子 \(\mathrm{Q}^{\prime}\)


Now two additional ingredients:
- Invariant: \(Q: \mathbb{B}\) - as before, ensuring functional correctness
- Variant (or "bound function"): \(T: \mathbb{Z}\) —ensuring termination
\[
\frac{\{B \wedge Q\} \subset\{Q\} \quad\left\{B \wedge Q \wedge T=t_{0}\right\} \quad C \quad\left\{T<t_{0}\right\}}{} \frac{B \wedge Q \Rightarrow T>0}{\left\{\text { dom }^{\prime} B^{\prime} \wedge Q\right\} \text { while } B \text { do } C \text { od }\{\neg B \wedge Q\}}
\]

In each iteration:
- The invariant \(Q\) is preserved.
- The variant \(T\) decreases.

Termination: The relation \(<\) on the subset \(\{t: \mathbb{Z} \mid t>0\}\) is well-founded.

Now two additional ingredients:
- Invariant: \(Q: \mathbb{B}\) - as before, ensuring functional correctness
- Variant (or "bound function"): \(T: \mathbb{Z}\) - ensuring termination
\[
\left.\frac{\left\{B \wedge Q \wedge T=t_{0}\right\} \quad C \quad\left\{Q \wedge T<t_{0}\right\} \quad B \wedge Q \Rightarrow T>0}{\left\{\text { dom ‘ } B^{\prime} \wedge Q\right\} \text { while } B \text { do } C \text { od }\{\neg B \wedge Q\}} \text { prov. ᄀoccurs(' } t_{0}{ }^{\prime}, ‘ B, C, Q, T^{\prime}\right)
\]

In each iteration:
- The invariant \(Q\) is preserved.
- The variant \(T\) decreases.

\section*{Recall: Total Correctness versus Partial Correctness}
- Program correctness statement in LADM (and much current use): "Hoare triple":
\[
\{P\} \subset\{Q\}
\]

Meaning (LADM ch. 10): "Total correctness":
If command \(C\) is started in a state in which the precondition \(P\) holds then it will terminate in a state in which the postcondition \(Q\) holds.
- So far, we have been using the dynamic logic notation:
\[
P \Rightarrow[C] Q
\]
with its partial correctness meaning:
If command \(C\) is started in a state in which the precondition \(P\) holds then it will terminate only in a state in which the postcondition \(Q\) holds.

\section*{Differences between partial and total correctness:}

Commands that do not terminate properly:
- Commands that crash - evaluating undefined expressions
- Infinite loops

\section*{Relation-Algebraic Total and Partial Correctness}
- Program correctness statement in LADM (and much current use): "Hoare triple":
\[
\{P\} \subset\{Q\}
\]

Meaning (LADM ch. 10): "Total correctness":
If command \(C\) is started in a state in which the precondition \(P\) holds then it will terminate in a state in which the postcondition \(Q\) holds.

Axiom "Total Correctness":
\((P \Rightarrow[\langle C\rangle] Q) \equiv\) sat \(P \subseteq \operatorname{Dom} \llbracket C \rrbracket \wedge \llbracket C \rrbracket(\mid\) sat \(P) \subseteq\) sat \(Q\)
- So far, we have been using the dynamic logic notation:
\[
P \Rightarrow[C] Q
\]
with its partial correctness meaning:
If command \(C\) is started in a state in which the precondition \(P\) holds
then it will terminate only in a state in which the postcondition \(Q\) holds.
Axiom "Partial Correctness ":
\((P \Rightarrow[C] Q) \equiv \llbracket C \rrbracket(\mid\) sat \(P \mid) \subseteq\) sat \(Q\)

\section*{Total and Partial Correctness in Predicate Logic}
- Program correctness statement in LADM (and much current use): "Hoare triple":
\(\{P\} C\{Q\}\)
Meaning (LADM ch. 10): "Total correctness":
If command \(C\) is started in a state in which the precondition \(P\) holds then it will terminate in a state in which the postcondition \(Q\) holds.
Theorem "Total Correctness":
\((P \Rightarrow[\langle C\rangle] Q)\)
\(\equiv\left(\forall s_{1} \| s_{1} \in \operatorname{sat} P \bullet \exists s_{2} \mid s_{1}(\llbracket C \rrbracket) s_{2} \bullet s_{2} \in \operatorname{sat} Q\right)\)
\(\wedge\left(\forall s_{1}, s_{2} \bullet s_{1} \in \operatorname{sat} P \wedge s_{1}(\llbracket C \rrbracket) s_{2} \Rightarrow s_{2} \in\right.\) sat \(\left.Q\right)\)
- So far, we have been using the dynamic logic notation:
\[
P \Rightarrow[C] Q
\]
with its partial correctness meaning:
If command \(C\) is started in a state in which the precondition \(P\) holds then it will terminate only in a state in which the postcondition \(Q\) holds.
Theorem "Partial Correctness":
\((P \Rightarrow[C] Q)\)
\(\equiv \forall s_{1}, s_{2} \bullet s_{1} \in \operatorname{sat} P \wedge s_{1}(\llbracket C \rrbracket) s_{2} \Rightarrow s_{2} \in\) sat \(Q\)

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-24

\section*{Temporal Logic: PLTL}

\section*{Syntax and Semantics of Propositional Logic}
- Given: A set \(\mathcal{P}\) of proposition symbols \(p, q, \ldots\)
- A propositional formula \(\varphi, \psi, \ldots\) is (an abstract syntax tree) generated by the following "grammar" (informal):
\[
\varphi::=T|F| p|\neg \varphi| \varphi \wedge \psi|\varphi \vee \psi| \varphi \Rightarrow \psi
\]
- A state is a function \(\alpha: \mathcal{P} \rightarrow \mathbb{B}\)
- The semantics of propositional formula \(\varphi\) is the function
\[
\llbracket \varphi \rrbracket:(\mathcal{P} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}
\]
that maps each state \(\alpha\) to a truth value, the "value of \(\varphi\) in \(\alpha\) ":
\[
\begin{aligned}
\llbracket T \rrbracket \alpha & =\text { true } \\
\llbracket \neg \varphi \rrbracket \alpha & =\neg(\llbracket \varphi \rrbracket \alpha) \\
\llbracket \varphi \wedge \psi \rrbracket \alpha & =\llbracket \varphi \rrbracket \alpha \wedge \llbracket \psi \rrbracket \alpha
\end{aligned}
\]
- \(\alpha\) satisfies \(\varphi\) iff \(\llbracket \varphi \rrbracket \alpha=\) true; this is also written: \(\alpha \vDash \varphi\)
- \(\varphi\) is valid iff \((\forall \alpha \bullet \llbracket \varphi \rrbracket \alpha=\) true \()\); this is also written: \(\vDash \varphi\)

\section*{Syntax and Semantics of Propositional Logic - Applications}
- Define a (Haskell) datatype for propositional formule: data PropForm \(p=\)...
- Write functions that takes each formula to its disjunctive/conjunctive normal form
```

toCNF, toDNF :: PropForm p P PropForm p

```

Use CalcСheck to prove that your implementations are correct
- Define the semantics as an evaluation function
```

evalPropForm :: PropForm p State p B Bool

```
- Define a representation of truth tables
- Write a truth table generation fucntion
- Write a validity checker using truth tables
validPropForm :: PropForm \(p \rightarrow\) Bool
- Write a satisfiability checker using truth tables
```

satPropForm :: PropForm p M Maybe (State p)

```
- Look up the DPLL algorithm and write a more efficient satisfiability solver

\section*{Syntax and Semantics of Predicate Logic}
- Given: A vocabulary/signature \(\Sigma\) consisting of
- a countably infinite set of variable symbols \(v, v_{1}, v_{2}, \ldots\)
- a countable set of function symbols \(f, g, \ldots\) (with arity information)
- a countable set of predicate symbols \(p, q, \ldots\) (with arity information)
- A term \(t, t_{1}, t_{2}\) is (an abstract syntax tree) generated by the following "grammar":
\[
t::=f\left(t_{1}, \ldots, t_{n}\right)
\]
- A predicate-logic/first-order-logic formula \(\varphi, \psi, \ldots\) is (an abstract syntax tree) generated by the following "grammar":
\[
\varphi::=p\left(t_{1}, \ldots, t_{n}\right)|\neg \varphi| \varphi \wedge \psi|\varphi \vee \psi| \varphi \Rightarrow \psi|(\forall v \bullet \varphi)|(\exists v \bullet \varphi)
\]
- An interpretation of \(\Sigma / \Sigma\)-structure \(\mathcal{A}\) consists of
- a domain set \(D\)
- a mapping of function symbols \(f\) to functions \(f^{\mathcal{A}}: D^{n} \rightarrow D\)
- a mapping of predicate symbols \(p\) to functions \(p^{\mathcal{A}}: D^{n} \rightarrow \mathbb{B}\)
- A variable assignment for \(\mathcal{A}\) is a function \(\alpha: \mathcal{V} \rightarrow D\)
- Semantics of terms: \(\llbracket t \rrbracket_{\mathcal{A}}:(\mathcal{V} \rightarrow D) \rightarrow D\)
- Semantics of formulae: \(\llbracket \varphi \rrbracket_{\mathcal{A}}:(\mathcal{V} \rightarrow D) \rightarrow \mathbb{B}\); we write " \(\mathcal{A}, \alpha \vDash \varphi^{\prime \prime}\) for \(\llbracket \varphi \rrbracket_{\mathcal{A}} \alpha=\) true
- ...
\(\longrightarrow\) RSD chapters 3, 4

\section*{Infinite Program Executions}
- Even simple imperative programming languages have programs that do not terminate - while true do ...
- Not all programs are expected to terminate:
- Operating systems
- Bank databases
- Online shops
- Pre-postcondition specifications are useless for programs that are expected to not terminate!
- Different patterns of specification are used for such systems:
- Each request will generate a response
- The ledger is always balanced
- Shipping commands are sent to the warehouse only after payment is confirmed
- Central concept: Time
- System behaviour: Different states at different time points
- Plausible abstraction: Discrete time, with time points taken from \(\mathbb{N}\)
- Infinite state sequences: Functions of type \(\mathbb{N} \rightarrow\) State

\section*{How to Reason About Infinite state sequences?}
- Infinite state sequences: Functions of type \(\mathbb{N} \rightarrow\) State
- Specification example sketches in predicate logic:
- \(\forall t_{0}, r I d, d_{i n} \quad\) |request \(\left(r I d, d_{i n}, t_{0}\right)\)
- \(\exists t_{1}, d_{\text {out }} \backslash t_{0}<t_{1} \quad \begin{aligned} & \text { - response }\left(r I d, d_{\text {out }}, t_{1}\right) \\ & \wedge \text { appropriate }\left(d_{\text {out }}, d_{\text {in }}\right)\end{aligned}\)
- \(\forall t \bullet\left(\sum\right.\) a Account • balance \(\left.a t\right)=0\)
- ...
- Lots of quantification about time points!
- Quantification about time points follows relatively few patterns!
- Temporal logics "internalise" these time point quantification patterns and allow to express them without bound variables for time points.

\section*{Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL)}
- Given: A set \(A\) of atomic propositions \(p, q, \ldots\)
- A PLTL formula \(\varphi, \psi, \ldots\) is (an abstract syntax tree) generated by the following "grammar" (informal):
\[
\varphi::=T|F| p|\neg \varphi| \varphi \wedge \psi|\varphi \vee \psi| \varphi \Rightarrow \psi|F \varphi| G \varphi|X \varphi| \varphi U \psi
\]
- A state associates a truth value with each atom: State \(=A \rightarrow \mathbb{B}\)
- A time line \(\alpha\) associates a state with each time point - for simplicity, we use \(\mathbb{N}\) for time points:
\(\alpha: \mathbb{N} \rightarrow A \rightarrow \mathbb{B}\)
- Given an LTL formula \(\varphi\) and a time line \(\alpha\), the semantics of \(\varphi\) in \(\alpha\), written " \(\llbracket \rrbracket \alpha^{\prime}\) ", is a function that associates with each time point \(t: \mathbb{N}\) the truth value " \(\llbracket \varphi \rrbracket \alpha t\) ":


Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 1
\(\llbracket \varphi \rrbracket \alpha t=\) true \(\quad\) iff \(\quad\) LTL formula \(\varphi\) holds in time line \(\alpha: \mathbb{N} \rightarrow A \rightarrow \mathbb{B}\) at time \(t\) :

Declaration: \(\llbracket \rrbracket \rrbracket: \operatorname{LTL} A \rightarrow(\mathbb{N} \rightarrow A \rightarrow \mathbb{B}) \rightarrow \mathbb{N} \rightarrow \mathbb{B}\)
An atomic proposition \(p\) is true at time \(t\) iff the time line contains, at time \(t\), a state in which \(p\) is true:
"Semantics of LTL atoms": 【‘ \(p \rrbracket \alpha t \equiv \alpha t p\)
"Semantics of LTL \(\neg\) ": \(\llbracket \neg^{\prime} \varphi \rrbracket \alpha t \equiv \neg \llbracket \varphi \rrbracket \alpha t\)
"Semantics of LTL \(\wedge\) ": \(\llbracket \varphi \wedge^{\prime} \psi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha t \wedge \llbracket \psi \rrbracket \alpha t\)
"Semantics of LTL \(\vee\) ": \(\llbracket \varphi \vee^{\prime} \psi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha t \vee \llbracket \psi \rrbracket \alpha t\)
"Semantics of LTL \(\Rightarrow\) ": \(\llbracket \varphi \Rightarrow^{\prime} \psi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha t \Rightarrow \llbracket \psi \rrbracket \alpha t\)
- \(\llbracket p \rrbracket \alpha 0=\) ?
- \(\llbracket p \wedge q \rrbracket \alpha 0=\) ?
- \(\llbracket p \rrbracket \alpha 3=\) ?
- 【p \(p \vee \neg \rrbracket \rrbracket 3=\) ?
- \(\llbracket q \rrbracket \alpha 0=\) ?
- \(\llbracket q \Rightarrow r \rrbracket \alpha 42=\) ?
\(\alpha=\)
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \(p\) & \(q\) & \(r\) & \(s\) \\
\hline 0 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 1 & \(\checkmark\) & \(\checkmark\) & & \\
\hline 2 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 3 & & \(\checkmark\) & & \\
\hline 4 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 5 & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) \\
\hline \(6,16,26, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) \\
\hline \(7,17,27, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline \(8,18,28, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(9,19,29, \ldots\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline \(10,20,30, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(11,21,31, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline \(12,22,32, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(13,23,33, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline \(14,24,34, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(15,25,35, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline
\end{tabular}

Syntax and Semantics of Propositional Linear－Time Temporal Logic（PLTL） 2
\(\llbracket \varphi \rrbracket \alpha t=\) true \(\quad\) iff \(\quad\) LTL formula \(\varphi\) holds in time line \(\alpha: \mathbb{N} \rightarrow A \rightarrow \mathbb{B}\) at time \(t:\)

Declaration： \(\mathbb{\llbracket _ \rrbracket}\) ：LTL \(A \rightarrow(\mathbb{N} \rightarrow A \rightarrow \mathbb{B}) \rightarrow \mathbb{N} \rightarrow \mathbb{B}\)
\(F \varphi\) is true at time \(t\) if \(\varphi\) is true at some time \(t^{\prime} \geq t\) ：
＂Semantics of＇\(F^{\bullet}\)＂：
\[
\llbracket F \varphi \rrbracket \alpha t \equiv \exists t^{\prime}: \mathbb{N} \mid t \leq t^{\prime} \bullet \llbracket \varphi \rrbracket \alpha t^{\prime}
\]
\(G \varphi\) is true at time \(t\) if \(\varphi\) is true at all times \(t^{\prime} \geq t\) ．
＂Semantics of＇G＂＂：
\(\llbracket G \varphi \rrbracket \alpha t \equiv \forall t^{\prime}: \mathbb{N} \mid t \leq t^{\prime} \bullet \llbracket \varphi \rrbracket \alpha t^{\prime}\)
－\(\llbracket G p \rrbracket \alpha 0=\) ？\(\bullet \llbracket F s \rrbracket \alpha 7=\) ？
－\(\llbracket G p \rrbracket \alpha 5=\) ？\(\quad\)－\(\llbracket F \neg p \rrbracket \alpha 0=\) ？
\(\bullet \llbracket F q \rrbracket \alpha 0=\) ？\(\bullet \llbracket F \neg p \rrbracket \alpha 100=\) ？
\(\alpha=\)
\begin{tabular}{|c|c|c|c|c|}
\hline Time & \(p\) & \(q\) & \(r\) & \(s\) \\
\hline 0 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 1 & \(\checkmark\) & \(\checkmark\) & & \\
\hline 2 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 3 & & \(\checkmark\) & & \\
\hline 4 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 5 & \(\checkmark\) & \(\checkmark\) & & \\
\hline 6，16，26，．． & \(\checkmark\) & & \(\checkmark\) & \\
\hline 7，17，27，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 8，18，28，\(\ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline 9，19，29，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 10，20，30，．． & \(\checkmark\) & & \(\checkmark\) & \\
\hline 11，21，31，．． & \(\checkmark\) & \(\checkmark\) & & \\
\hline 12，22，32，\(\ldots\) & \(\checkmark\) & & \(v\) & \\
\hline 13，23，33，\(\ldots\) & \(v\) & \(\checkmark\) & & \\
\hline 14，24，34，\(\ldots\) & ， & & \(v\) & \\
\hline 15，25，35，\(\ldots\) & & & & \\
\hline
\end{tabular}

Syntax and Semantics of Propositional Linear－Time Temporal Logic（PLTL） 3 \(\llbracket \varphi \rrbracket \alpha t=\) true \(\quad\) iff \(\quad\) LTL formula \(\varphi\) holds in time line \(\alpha: \mathbb{N} \rightarrow A \rightarrow \mathbb{B}\) at time \(t:\)

Declaration： \(\mathbb{\llbracket} \mathbb{\rrbracket}: \operatorname{LTL} A \rightarrow(\mathbb{N} \rightarrow A \rightarrow \mathbb{B}) \rightarrow \mathbb{N} \rightarrow \mathbb{B}\)
\(X \varphi\) is true at time \(t \operatorname{iff} \varphi\) is true at time \(t+1\) ：
＂Semantics of＇\(X\)＂＂：
\[
\llbracket X \varphi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha(\text { suc } t)
\]
－\(\llbracket X p \rrbracket \alpha 0=?\)
－\(\llbracket F(s \wedge X s) \rrbracket \alpha 0=?\)
－【Xq】 \(\alpha 0=\) ？
－\(\llbracket F(s \wedge X s) \rrbracket \alpha 10=\) ？
－\(\llbracket q \wedge X r \rrbracket \alpha 1=\) ？
－\(\llbracket G(q \equiv X r) \rrbracket \alpha 12=\) ？
－\(\llbracket G F(q \wedge X r) \rrbracket \alpha 0=\) ？
－\(\llbracket G F(q \equiv X r) \rrbracket \alpha 12=\) ？
\(\alpha=\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time & \(p\) & \(q\) & & \(r\) & \(s\) \\
\hline 0 & \(\checkmark\) & & & \(\checkmark\) & \\
\hline 1 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 2 & \(\checkmark\) & & & \(\checkmark\) & \\
\hline 3 & & \(\checkmark\) & & & \\
\hline 4 & \(\checkmark\) & & & \(\checkmark\) & \\
\hline 5 & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) \\
\hline 6，16，26，．． & \(\checkmark\) & & & \(\checkmark\) & \\
\hline 7，17，27，．． & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 8，18，28，\(\ldots\) & \(\checkmark\) & & & \(\checkmark\) & \\
\hline 9，19，29，．． & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline 10，20，30，\(\ldots\) & \(\checkmark\) & & & \(\checkmark\) & \\
\hline 11，21，31，．．． & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 12，22，32，\(\ldots\) & \(\checkmark\) & & & \(\checkmark\) & \\
\hline 13，23，33，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 14，24，34，\(\ldots\) & \(\checkmark\) & & & \(\checkmark\) & \\
\hline 15，25，35，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline
\end{tabular}

\section*{Syntax and Semantics of Propositional Linear－Time Temporal Logic（PLTL） 4}
\(\llbracket \varphi \rrbracket \alpha t=\) true \(\quad\) iff \(\quad\) LTL formula \(\varphi\) holds in time line \(\alpha: \mathbb{N} \rightarrow A \rightarrow \mathbb{B}\) at time \(t\) ：

Declaration： \(\mathbb{\llbracket} \rrbracket\) ： \(\operatorname{LTL} A \rightarrow(\mathbb{N} \rightarrow A \rightarrow \mathbb{B}) \rightarrow \mathbb{N} \rightarrow \mathbb{B}\)
\(\varphi U \psi\) is true at time \(t\) if \(\psi\) is true at some time \(t^{\prime} \geq t\) ，and for all times \(t^{\prime \prime}\) such that \(t \leq t^{\prime \prime}<t^{\prime}, \varphi\) is true．
\[
\begin{aligned}
& \text { Axiom "Semantics of ' } U^{\prime} \text { ": ...... "until" } \\
& \llbracket \varphi U \psi \rrbracket \alpha t \\
& \equiv \exists t^{\prime}: \mathbb{N} \mid t \leq t^{\prime} \\
& \text { - } \llbracket \downarrow \rrbracket \alpha t^{\prime} \\
& \wedge \forall t^{\prime \prime}: \mathbb{N} \mid t \leq t^{\prime \prime}<t^{\prime} \bullet \llbracket \varphi \rrbracket \alpha t^{\prime \prime} \\
& \text { - 【pUq】 } \alpha 0=\text { ? } \\
& \text { - } \llbracket p U(q \wedge r) \rrbracket \alpha 42=\text { ? } \\
& \text { - 【pUs】 } \alpha 0=\text { ? } \\
& \text { - } \llbracket p U(q \wedge s) \rrbracket \alpha 42=\text { ? } \\
& \text { - } \llbracket \neg s U \neg p \rrbracket \alpha 0=\text { ? } \\
& \text { - } \llbracket(p \vee r) U s \rrbracket \alpha 1=\text { ? }
\end{aligned}
\]
\(\alpha=\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time & \(p\) & \(q\) & \(r\) & & \(s\) \\
\hline 0 & \(\checkmark\) & & \(\checkmark\) & ， & \\
\hline 1 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 2 & \(\checkmark\) & & ， & ， & \\
\hline 3 & & \(\checkmark\) & & & \\
\hline 4 & \(\checkmark\) & & \(\checkmark\) & ， & \\
\hline 5 & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) \\
\hline 6，16，26，\(\ldots\) & \(v\) & & \(\checkmark\) & ／ & \\
\hline 7，17，27，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 8，18，28，\(\ldots\) & \(\checkmark\) & & \(\checkmark\) & ， & \\
\hline 9，19，29，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & & ， & \\
\hline 10，20，30，\(\ldots\) & \(\checkmark\) & & & ， & \\
\hline 11，21，31，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 12，22，32，\(\ldots\) & \(\checkmark\) & & & ， & \\
\hline 13，23，33，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 14，24，34，\(\ldots\) & \(\checkmark\) & & & ， & \\
\hline 15，25，35，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline
\end{tabular}

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-11-27

\section*{Frama-C and ACSL}

\section*{Frama-C: https: //www.frama-c.com/}

Frama-C is an open-source extensible and collaborative platform dedicated to sourcecode analysis of C software. The Frama-C analyzers assist you in various source-coderelated activities, from the navigation through unfamiliar projects up to the certification of critical software.
- Platform with multiple plug-ins
- Plug-in for total correctness proofs: WP
- Specification language: ACSL "ANSI C Specificatiion Language"
- Similar to JML
- Based on first-order predicate logic
- Not all ACSL features are currently supported by Frama-C and WP

\section*{Frama-C and ACSL - https: //www.frama-c.com/}

Frama-C: An industrially-used framework for C code analysis and verification
- Delegates "simple" proofs to external tools, mostly Satisfiability-Modulo-Theories solvers (e.g., Z3)
- Practical Program Proof = Verification Condition Generation (VCG) + SMT checking

\section*{ACSL: ANSI-C Specification Language}
- Similar to the JML - Java Modelling Language
- But Java is more complex:

Statements that can raise exceptions need additional postconditions for those.
- ACSL "is" standard first-order predicate logic in C syntax.
- ACSL allows definition of inductive datatypes
- natural abstractions for specification, but rather clumsy in ACSL
- From discrete math to C: A big gap to bridge!

\section*{Start reading:}
https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf

\section*{ACSL Function Contracts}

Overall program correctness is based on function contracts, mainly:
- "requires": Procedure call precondition
- "assigns": Global variables that may be updated
- "ensures": Procedure call postcondition

May refer to \(\backslash\) result for the return value.
Contracts of exported functions are part of the module interface, and therefore should be in the module interface file ( \(* . h\) ).

\section*{all_zeros.h:}
```

/*@ requires n\geq0 ^ \valid(t + (0.. n-1));
assigns \nothing;
ensures \result }\not=0\Leftrightarrow(\forall\mathrm{ integer j; 0 s j<n m t[j] \# 0);
*/
int all_zeros(int *t, int n);

```

\section*{ACSL Loop Annotations}

Total correctness While rule:
\[
\frac{\left\{B \wedge Q \wedge T=t_{0}\right\} \quad C \quad\left\{Q \wedge T<t_{0}\right\} \quad B \wedge Q \Rightarrow T>0}{\left\{\text { dom }^{\prime} B^{\prime} \wedge Q\right\} \quad \text { while } B \text { do } C \text { od } \quad\{\neg B \wedge Q\}} \text { prov. } \neg \operatorname{occurs}\left({ }^{\prime} t_{0}{ }^{\prime}, ' B, C, Q, T^{\prime}\right)
\]
"loop invariant \(Q\) ": Property always true in the following loop
- true at loop entry, at each loop iteration, at loop exit
- usually contains a generalisation of the post-condition
- may need to contain additional "sanity" conditions
"loop assigns footprint": What may be assigned to within the loop
"loop variant \(T\) ": To prove termination:
- Integer metric \(T\) that is strictly decreasing at each iteration and bounded by 0
```

all_zeros.c: all_zeros
/*@ requires n\geq0 ^ \valid(t+(0.. n-1));
assigns \nothing;
ensures \result }\not=0\Leftrightarrow(\forall\mathrm{ integer j; 0 < j<n m t[j] झ0);
*/
int all_zeros(int *t, int n) {
int k=0;
/*@ loop invariant 0 \leq k \leq n;

```

```

 loop assigns k;
 loop variant n-k;
 */
 while(k<n){
 if (t[k] = 0)
 return 0;
 k++;
 }
 return 1;
 }

```
```

findMax1.c: findMax Attempt 1
/*@ requires n>0;
requires \valid(a + (0 .. n-1));
ensures \forall integer i ; 0\leqi<n=> \result \geqa[i];
ensures \exists integer i ; 0 \leqi<n | \result \equiva[i];
*/
int findMax(int n, int a[]) {
int i;
/*@ loop invariant }\forall\mathrm{ integer j; 0 < j<i ma[j] झ0;
loop invariant 0\leqi\leqn;
loop variant n-i;
*/
for(i = 0; i < n; i++) a[i] = 0;
return 0;
}
frama-c-gui -wp findMax1.c
"RTE": Run-time exceptions (include undefined behaviour)

```
```

findMax1a.c: The findMax Attempt 1a
/*@ requires n>0;
requires \valid(a + (0 .. n-1));
ensures \forall integer i ; 0\leqi<n=> \result \geqa[i];
ensures }\exists\mathrm{ integer i ; 0 { i<n = \result }\equiva[i];
*/
int findMax(int n, int a[]) {
int i;
/*@ loop invariant }\forall\mathrm{ integer j ; 0 s j<i व a[j] 三 0;
loop invariant 0\leqi\leqn;
loop assigns i, a[0 .. n-1];
loop variant n-i;
*/
for(i = 0; i<n; i++)a[i] = 0;
return 0;
}

```

\section*{findMax Attempt 2}
```

findMax2.c:
/*@ requires n\geq1;
ensures }\forall\mathrm{ integer i; 0 < i<n ma[i] }\leq
mathrm{ result;
ensures \exists integer i; 0\leqi<n ^a[i] \equiv\result;
assigns \nothing;
*/
int findMax(int n, int a[]) {
int i;
/*@
loop invariant 0\leqi\leqn;
loop assigns i;
*/
for(i=0; i < n; i++);
return 0;
}

```

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

\section*{Wolfram Kahl}

2023-11-29

\section*{Frama-C: Behaviours, Loop Variants}

\section*{Reconsidering the findMax Specification}
\(/ * @\) requires \(n \geq 1\);
requires \(\backslash\) valid_read \((a+(0 . . n-1))\);
ensures \(\forall\) integer \(i ; 0 \leq i<n \Rightarrow a[i] \leq \backslash\) result;
ensures \(\exists\) integer \(i ; 0 \leq i<n \wedge a[i] \equiv \backslash\) result;
assigns \(\backslash\) nothing;
*/
int findMax(int \(n\), int \(a[])\);
- "requires \(\backslash\) valid read \((a+(0 . . n-1))\) " is necessary for array access
(pointer dereference)
- "assigns \nothing" documents that findMax must not have memory side-effects
- What if we wish to replace "requires \(n \geq 1\) " with "requires \(n \geq 0\) "?
"ensures \(\exists\) integer \(i ; 0 \leq i<n \wedge a[i] \equiv \backslash\) result" would be unsatisfiable for " \(n \equiv 0\) "!
A different specification for that case is needed: findMax then has two distict behaviours, that can be specified separately:
max_element. .h: ACSL by Example": The max_element Algorithm - Specification
\#include "typedefs.h"
\(/ * @\) requires valid: \(\backslash\) valid_read \((a+(0 . . n-1))\);
assigns \(\backslash\) nothing;
ensures result: \(0 \leq \backslash\) result \(\leq n\);
behavior empty:
assumes \(n \equiv 0\);
assigns \(\backslash\) nothing; ensures result: \(\backslash\) result \(\equiv 0\);
behavior not_empty: assumes \(\quad 0<n\); assigns \(\backslash\) nothing; ensures result: \(0 \leq \backslash\) result \(<n\); ensures upper: \(\forall\) integer \(i ; 0 \leq i<n \quad \Rightarrow a[i] \leq a[\backslash\) result \(]\); ensures first: \(\quad \forall\) integer \(i ; 0 \leq i<\backslash\) result \(\Rightarrow a[i]<a[\backslash\) result \(]\);
complete behaviors; disjoint behaviors;
*/
size_type max_element(const value_type* a, size_type \(n\) );
```

max_element."ACSL by Example": The max_element Algorithm - Implementation
\#include "max_element.h"
size_type max_element(const value_type* a, size_type n)
{ if (0u<n) {
size_type max = 0u;
/*@ loop invariant bound: 0 \leq i \leq n;
loop invariant max: 0\leq max< n;
loop invariant upper: }\forall\mathrm{ integer k; 0 s k<i ma[k] sa[max];
loop invariant first: }\forall\mathrm{ integer }k;0\leqk<\boldsymbol{max}=>a[k]<a[max]
loop assigns max, i;
loop variant n-i;
*/
for (size_type i = 1u; i<n; i++) {
if (a[max]<a[i]) { max=i; }
}
return max;
}
return n;
}

```

\section*{ACSL By Example - Conventions}

SizeValueTypes.h:
```

\#ifndef SIZEVALUETYPES
typedef int value_type;
typedef unsigned int size_type;
typedef int bool;
\#define false 0
\#define true 1
\#define SIZEVALUETYPES
\#endif
IsValidRange.h:
\#ifndef ISVALIDRANGE
\#include "SizeValueTypes.h"
/*@ predicate IsValidRange(value_type* a, integer n)
=(0\leqn) ^ \valid(a+(0.. n-1));
*/

```

\section*{ACSL Loop Annotations}

Total correctness While rule:
\[
\left.\frac{\{B \wedge Q\} C\{Q\} \quad\left\{B \wedge Q \wedge T=t_{0}\right\} C\left\{T<t_{0}\right\} \quad B \wedge Q \Rightarrow T \geq 0}{\left\{\text { dom ' } B^{\prime} \wedge Q\right\} \text { while } B \text { do } C \text { od }\{\neg B \wedge Q\}} \text { prov. } \rightarrow \text { occurs (' } t_{0}{ }^{\prime}, ' B, C, Q, T^{\prime}\right)
\]
"loop invariant \(Q\) ": Property "always" true in the following loop:
- true at loop entry, at each loop iteration, at loop exit
- usually contains a generalisation of the post-condition
- may need to contain additional "sanity" conditions
"loop assigns footprint": What may be assigned to within the loop
"loop variant \(T\) ": To prove termination:
- Integer metric \(T\) that is strictly decreasing at each iteration and bounded by 0
- Conceptually, this establishes a well-founded relation on the states encountered at start and end of loop body executions.
\(s_{1} \& s_{2} \equiv \llbracket T \rrbracket s_{1}>\llbracket T \rrbracket s_{2} \quad\) - (using \(\llbracket \rrbracket\) also for expression semantics evalV)
- Any expression \(T\) for which the premises can be proven is acceptable.
- Some expressions \(T\) may make these proofs easier than others...

\section*{Loop Variants 1}
```

{B\wedgeQ}C{Q} {B\wedgeQ\wedgeT=\mp@subsup{t}{0}{}}C{T<\mp@subsup{t}{0}{\prime}}\quadB\wedgeQ=>T\geq0}\mathrm{ prov. ᄀoccurs('t}\mp@subsup{t}{0}{\prime},',B,C,Q,\mp@subsup{T}{}{\prime}
{dom 'B'^Q} while B do Cod {\negB^Q}

```
/ / @ assigns \(\backslash\) nothing;
void \(f()\) \{
    int \(i=10\);
    /*@ loop assigns i;
            loop variant \(i ; / / ` T\)
        */
    while ( \(i>0\) )
    \{
        i--;
    \}
\}
- \(T\) needs to be some upper bound for the "number of iterations still remaining"

\section*{Loop Variants 2}
\(\{B \wedge Q\} C\{Q\} \quad\left\{B \wedge Q \wedge T=t_{0}\right\} C\left\{T<t_{0}\right\} \quad B \wedge Q \Rightarrow T \geq 0\) prov. \(\neg\) occurs (' \(\left.t_{0}{ }^{\prime}, ' B, C, Q, T^{\prime}\right)\) \(\left\{\right.\) dom ' \(\left.B^{\prime} \wedge Q\right\}\) while \(B\) do \(C\) od \(\{\neg B \wedge Q\}\)
```

//@ assigns \nothing;
void f() {
int i = 10;
/*@ loop assigns i;
loop variant i; //`T
*/
while (i\geq0)
{
i--;
}
}

```

ACSL only requires \(B \wedge Q \Rightarrow T \geq 0\)
ACSL def., section "Loop Variants":
"its value at the beginning of the iteration must be nonnegative."
```

 Loop Variants 3
 {B\wedgeQ}C{Q}\quad{B\wedgeQ\wedgeT=\mp@subsup{t}{0}{}}C{T<\mp@subsup{t}{0}{}}\quadB\wedgeQ=>T\geq0
{dom 'B'^Q} while B do C od }{\negB\wedgeQ

```
```

/ / @ assigns \backslash nothing;

```
/ / @ assigns \(\backslash\) nothing;
void \(f()\) \{
void \(f()\) \{
    int \(i=10\);
    int \(i=10\);
    /*@ loop assigns i;
    /*@ loop assigns i;
            loop variant \(i\); //` \(T\)
            loop variant \(i\); //` \(T\)
        */
        */
    while ( \(i \geq-1\) )
    while ( \(i \geq-1\) )
    \{
    \{
        i--;
        i--;
    \}
    \}
\}
```

\}

```
[wp] [Alt-Ergo ] Goal typed_f_loop_variant_positive : Timeout (Qed:1ms) (10s)
    - We need \(B \wedge Q \Rightarrow T \geq 0 \quad\) !

\section*{Loop Variants 4}
```

$\{B \wedge Q\} C\{Q\} \quad\left\{B \wedge Q \wedge T=t_{0}\right\} C\left\{T<t_{0}\right\} \quad B \wedge Q \Rightarrow T \geq 0$ prov. \neg occurs (' $\left.t_{0}{ }^{\prime}, ' B, C, Q, T^{\prime}\right)$
$\{$ dom ‘ B ’ $\wedge Q\}$ while B do C od $\{\neg B \wedge Q\}$

```
```

/ / @ assigns \nothing;
void $f()$ \{
int $i=10$;
/*@ loop assigns i;
loop variant $i ; 1 / ` T$ */
while $(i>0)$ \{
if ($i \% 2 \equiv 0$) $\{i--;\}$
else $\quad\{i=i-3 ;\}$
\}
\}

```
- T needs to be some upper bound for the "number of iterations still remaining"
- \(T\) does not need to be a tight upper bound!
- Simpler variants may have "faster proofs"

\section*{Loop Variants 5}
\(\{B \wedge Q\} C\{Q\} \quad\left\{B \wedge Q \wedge T=t_{0}\right\} C\left\{T<t_{0}\right\} \quad B \wedge Q \Rightarrow T \geq 0\) prov. \(\neg\) occurs ( \(\left.{ }^{\prime} t_{0}^{\prime}, ' B, C, Q, T^{\prime}\right)\) \(\{\) dom ‘ \(B \prime \wedge Q\}\) while \(B\) do \(C\) od \(\quad\{\neg B \wedge Q\}\)
```

/ /@ assigns \nothing;
void f () {
int i = 10;
/*@ loop assigns i;
loop variant i / 2; //`T` */
while (i > 0) {
if (i % 2 \equiv 0) { i--; }
else {i=i-3;}
}
}

```
- T needs to be some upper bound for the "number of iterations still remaining"
- T does not need to be a tight upper bound!
- More complex variants may have "slower proofs", or time-outs...
```

 Loop Variants 6
 $\underline{\{B \wedge Q\} C\{Q\} \quad\left\{B \wedge Q \wedge T=t_{0}\right\} C\left\{T<t_{0}\right\} \quad B \wedge Q \Rightarrow T \geq 0}$ prov. $\operatorname{accurs}\left({ }^{\prime} t_{0}{ }^{\prime},{ }^{\prime} B, C, Q, T^{\prime}\right)$
$\left\{\right.$ dom ' $\left.B^{\prime} \wedge Q\right\} \quad$ while B do C od $\quad\{\neg B \wedge Q\}$
\#define N 1000
/ / @ assigns \nothing;
void $f()$ \{
int $i=0$;
/*@ loop assigns i;
loop variant $N-i ; / / ` T$
*/
while $(i \leq N)$
\{
i++;
\}
\}

```
- T needs to be decreasing, even if your counters are increasing!

\section*{Loop Variants 7}
```

$\underline{\{B \wedge Q\} C\{Q\} \quad\left\{B \wedge Q \wedge T=t_{0}\right\} C\left\{T<t_{0}\right\} \quad B \wedge Q \Rightarrow T \geq 0}$ prov. \rightarrow occurs(' $\left.t_{0}{ }^{\prime}, ' B, C, Q, T^{\prime}\right)$
$\{$ dom ‘ B ’ $\wedge Q\}$ while B do C od $\{\neg B \wedge Q\}$

```
```

//@ assigns \nothing;
void f() {
int i=100,k=200;
/*@ loop assigns i,k;
loop variant i + k; //`T
*/
while(i\geq0^k\geq0)
{
if((i+k) % 2 \equiv0) { i--;}
else {k--;}
}
}

```
- If your loop is not a "plain for-loop", several variables may be involved in the variant.

\section*{Loop Variants 8}
\(\{B \wedge Q\} C\{Q\} \quad\left\{B \wedge Q \wedge T=t_{0}\right\} C\left\{T<t_{0}\right\} \quad B \wedge Q \Rightarrow T \geq 0\) prov. \(\neg\) occurs (' \(t_{0}{ }^{\prime}, ' B, C, Q, T^{\prime}\) )
\(\{\) dom ‘ \(B\) ’ \(\wedge Q\}\) while \(B\) do \(C\) od \(\{\neg B \wedge Q\}\)
```

/ /@ assigns \nothing;
void f() {
int i = 0,k=10;
/*@ loop assigns i, k;
loop invariant 0\leqi\leqk+1^0\leqk;
loop variant k* (k+1)+i; //`T
*/
while (k>0)
{
if(i>0){i--;}
else {i=k;k--;}
}}

```
- Invariants may be needed to contribute to provability of the variant.
- Finding appropropriate variants can be tricky...
```

Loop Variants }
{B\wedgeQ}C{Q}\quad{B\wedgeQ\wedgeT=\mp@subsup{t}{0}{}}C{T<\mp@subsup{t}{0}{}}\quadB\wedgeQ=>T\geq0
{dom 'B'^Q} while B do C od }{\negB\wedgeQ

```
```

//@ assigns \nothing;

```
//@ assigns \nothing;
void f() {
void f() {
    int i = 0,k = 10;
    int i = 0,k = 10;
    /*@ loop assigns i,k;
    /*@ loop assigns i,k;
        loop invariant 0\leqi\leq (k+1)*(k+1) ^ 0 \leq k;
        loop invariant 0\leqi\leq (k+1)*(k+1) ^ 0 \leq k;
        loop variant k*k*(k+1)+i; //`T
        loop variant k*k*(k+1)+i; //`T
    */
    */
    while (k>0)
    while (k>0)
    {
    {
        if( i >0) { i--; }
        if( i >0) { i--; }
        else {i=k*k;k--;}
        else {i=k*k;k--;}
    }
    }
}
```

}

```
    - ...

\section*{Loop Variants 9}
```

{B\wedgeQ}C{Q} {B\wedgeQ\wedgeT=\mp@subsup{t}{0}{}}C{T<\mp@subsup{t}{0}{\prime}}\quadB\wedgeQ=>T\geq0}\mathrm{ prov. ᄀoccurs(' }\mp@subsup{t}{0}{\prime},',B,C,Q,\mp@subsup{T}{}{\prime}
{dom ‘B'^Q} while B do C od { }\negB\wedgeQ

```
```

//@ assigns \nothing;
void f() {
int i=0,k=10;
/*@ loop assigns ???;
loop variant ???;
*/
while (}k>0
{
if(i>0){ i--;}
else {i=k*k;k--;}
}
}

```

\section*{Loop Variants 9}
\(\{B \wedge Q\} C\{Q\} \quad\left\{B \wedge Q \wedge T=t_{0}\right\} C\left\{T<t_{0}\right\} \quad B \wedge Q \Rightarrow T \geq 0\) prov. \(\neg\) occurs (' \(\left.t_{0}{ }^{\prime}, ' B, C, Q, T^{\prime}\right)\) \(\{\) dom ‘ \(B \prime \wedge Q\}\) while \(B\) do \(C\) od \(\{\neg B \wedge Q\}\)
```

//@assigns \nothing;
void f() {
int i = 0,k=10;
/*@ loop assigns i, k;
loop invariant 0\leqi\leq(k+1)*(k+1)^0\leqk;
loop variant k*k*(k+1)+i; //`T
*/
while (}k>0\mathrm{)
{
if(i>0) { i--;}
else {i=k*k;k--;}
}
}

```

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-12-01
Part 1: Midterm 2

\section*{M2.1: Alternative definition of antisymmetry (1)}

Theorem "Alternative definition of antisymmetry":
antisymmetric \(R \equiv \neg(\exists x \bullet \exists y \mid x \neq y \bullet x(R) y(R) x)\)
Proof:
antisymmetric \(R\)
\(\equiv\langle\) "Definition of antisymmetry" \(\rangle\)
\(R \cap R ` \mathbb{I}\)
\(\equiv\langle\) "Relation inclusion" \(\rangle\)
\(\forall x \bullet \forall y \bullet x\left(R \cap R^{`}\right) y \Rightarrow x(\mathbb{I}) y\)
\(\equiv\langle "\) Relationship via \(\mathbb{I} "\rangle\)
\(\forall x \bullet \forall y \bullet x\left(R \cap R^{-}\right) y \Rightarrow x=y\)
\(\equiv\langle\) "Relation intersection" \(\rangle\)
\(\forall x \bullet \forall y \bullet x(R) y \wedge x\left(R^{\smile}\right) y \Rightarrow x=y\)
\(\equiv\langle\) "Relation converse" \(\rangle\)
\(\forall x \bullet \forall y \bullet(x(R) y(R) x) \Rightarrow x=y\)
\(\equiv\langle\) "Definition of \(\neq\) ", "Contrapositive" \(\rangle\)
\(\forall x \bullet \forall y \bullet x \neq y \Rightarrow \neg(x(R) y(R) x)\)
\(\equiv\langle " T r a d i n g\) for \(\forall\) " (9.2) \(\rangle\)
\(\forall x \bullet \forall y \mid x \neq y \bullet \neg(x(R) y(R) x)\)
\(\equiv\langle\) "Generalised De Morgan" \(\rangle\)
\(\neg(\exists x \bullet \exists y \mid x \neq y \bullet x(R) y(R) x)\)

\section*{M2.1: Alternative definition of antisymmetry (2)}

Theorem "Alternative definition of antisymmetry":
```

 antisymmetric R \equiv\neg(\existsx\bullet\existsy|x\not=y\bulletx(R)y(R)x)
    ```

Proof:
\(\neg(\exists x \bullet \exists y \mid x \neq y \bullet x(R) y(R) x)\)
\(\equiv\langle\) "Definition of \(\neq\) ", "Trading for \(\exists\) " \(\rangle\)
\(\neg(\exists x \bullet \exists y \mid x(R) y(R) x \bullet \neg(x=y))\)
\(\equiv\langle\) "Generalised De Morgan" \(\rangle\)
\(\forall x \bullet \forall y \mid x(R) y(R) x \bullet x=y\)
\(\equiv\langle\) "Relationship via \(\mathbb{I} "\rangle\)
\(\forall x \bullet \forall y \mid x(R) y(R) x \bullet x(\mathbb{I}) y\)
\(\equiv\langle\) "Relation inclusion", "Relation intersection", "Relation converse" \(\rangle\)
\(R \cap R^{`} \subseteq \mathbb{I}\)
\(\equiv\langle\) "Definition of antisymmetry" \(\rangle\)
antisymmetric \(R\)

\section*{M2.1: Alternative definition of univalence}

Theorem "Alternative definition of univalence": univalent \(R \equiv R \circ \sim \mathbb{I} \subseteq \sim R\)
Proof:
\[
R \circ \sim \mathbb{I} \subseteq \sim R
\]
\(\equiv\langle\) "Relation inclusion" \(\rangle\)
\(\forall x \bullet \forall y \bullet x(R ; \sim \mathbb{I}) y \Rightarrow x(\sim R) y\)
\(\equiv\langle\) "Relation composition" \(\rangle\)
\(\forall x \bullet \forall y \bullet\left(\exists y^{\prime} \bullet x(R) y^{\prime}(\sim \mathbb{I}) y\right) \Rightarrow x(\sim R) y\)
\(\equiv\langle "\) Relation complement" \(\rangle\)
\(\forall x \bullet \forall y \bullet\left(\exists y^{\prime} \bullet x(R) y^{\prime} \wedge \neg\left(y^{\prime}(\mathbb{I}) y\right)\right) \Rightarrow \neg(x(R) y)\)
\(\equiv\langle " R e l a t i o n s h i p ~ v i a ~ I I "\rangle\)
\(\forall x \bullet \forall y \bullet\left(\exists y^{\prime} \bullet x(R) y^{\prime} \wedge \neg\left(y^{\prime}=y\right)\right) \Rightarrow \neg(x(R) y)\)
\(\equiv\langle "\) Witness" \(\rangle\)
\(\forall x \bullet \forall y \bullet \forall y^{\prime} \bullet x(R) y^{\prime} \wedge \neg\left(y^{\prime}=y\right) \Rightarrow \neg(x(R) y)\)
\(\equiv\langle "\) Trading for \(\forall\) " \(\rangle\)
\(\forall x \bullet \forall y \bullet \forall y^{\prime} \mid x(R) y^{\prime} \bullet \neg\left(y^{\prime}=y\right) \Rightarrow \neg(x(R) y)\)
\(\equiv\langle " C o n t r a p o s i t i v e "\rangle\)
\(\forall x \bullet \forall y \bullet \forall y^{\prime} \mid x(R) y^{\prime} \bullet x(R) y \Rightarrow y^{\prime}=y\)
\(\equiv\langle\) "Trading for \(\forall\) ", "Interchange of dummies for \(\forall\) " \(\rangle\)
\(\forall y \bullet \forall z \bullet \forall x \bullet x(R) y \wedge x(R) z \Rightarrow y=z\) \(\equiv\langle\) "Univalence" \(\rangle\)
univalent \(R\)

M2．1：＂Bounded domain＂
Theorem（14．135）＂Bounded domain＂：Dom \(R \subseteq A \equiv\) id \(A \circ R=R\)
Proof：
Dom \(R \subseteq A\)
\(\equiv\langle\)＂Set inclusion＂\(\rangle\)
\(\forall x \bullet x \in \operatorname{Dom} R \Rightarrow x \in A\)
\(\equiv\left\langle{ }^{\prime}\right.\) Membership in｀Dom＂＂\(\rangle\)
```

 \forallx\bullet(\existsy\bulletx(R)y) => x 隹A
    ```
\(\equiv\langle " W i t n e s s "\rangle\)
\(\forall x \bullet \forall y \bullet x(R) y \Rightarrow x \in A\)
\(\equiv\langle\)＂Definition of \(\Rightarrow\) via \(\wedge\)＂\(\rangle\) \(\forall x \bullet \forall y \bullet x \in A \wedge x(R) y \equiv x(R) y\)
\(\equiv\langle\)＂One－point rule for \(\exists\)＂，substitution 〉 \(\forall x \bullet \forall y \bullet\left(\exists x^{\prime} \mid x=x^{\prime} \bullet x^{\prime} \in A \wedge x^{\prime}(R) y\right) \equiv x(R) y\)
\(\equiv\langle\)＂Trading for \(\exists\)＂\(\rangle\)
\(\forall x \bullet \forall y \bullet\left(\exists x^{\prime} \bullet x=x^{\prime} \in A \wedge x^{\prime}(R) y\right) \equiv x(R) y\)
\(\equiv\langle\)＂Relationship via｀id＂＂\(\rangle\)
\(\forall x \bullet \forall y \bullet\left(\exists x^{\prime} \bullet x(\operatorname{id} A) x^{\prime}(R) y\right) \equiv x(R) y\)
\(\equiv\langle " R e l a t i o n ~ c o m p o s i t i o n "\rangle\)
\(\forall x \bullet \forall y \bullet x(\operatorname{id} A ; R) y \equiv x(R) y\)
\(\equiv\langle\)＂Relation extensionality＂\(\rangle\)
id \(A ; R=R\)

\section*{M2．1：＂Bounded range＂}

Theorem＂Bounded range＂：\(B \subseteq \operatorname{Ran} R \equiv \mathrm{id} B \subseteq R{ }^{\circ} ; R\)
Proof：
\(B \subseteq \operatorname{Ran} R\)
\(\equiv\langle\)＂Set inclusion＂\(\rangle\)
\(\forall y \bullet y \in B \Rightarrow y \in \operatorname{Ran} R\)
\(\equiv\left\langle{ }^{\prime}\right.\) Membership in｀Ran｀＂\(\rangle\)
\(\forall y \bullet y \in B \Rightarrow(\exists x \bullet x(R) y)\)
\(\equiv\langle\)＂Idempotency of \(\wedge\)＂\(\rangle\)
\(\forall y \bullet y \in B \Rightarrow \exists x \bullet x(R) y \wedge x(R) y\)
\(\equiv\langle\)＂Relation converse＂\(\rangle\)
\(\forall y \bullet y \in B \Rightarrow \exists x \bullet y\left(R^{\sim}\right) x(R) y\)
\(\equiv\langle\)＂Relation composition＂\(\rangle\)
\(\forall y \bullet y \in B \Rightarrow y\left(R^{\smile} ; R\right) y\)
\(\equiv\langle\)＂One－point rule for \(\forall\)＂，substitution \(\rangle\)
\(\forall y \bullet \forall y^{\prime} \mid y=y^{\prime} \bullet y^{\prime} \in B \Rightarrow y\left(R^{\smile} ; R\right) y^{\prime}\)
\(\equiv\langle\)＂Trading for \(\forall\)＂\(\rangle\)
\(\forall y \bullet \forall y^{\prime} \bullet y=y^{\prime} \in B \Rightarrow y\left(R^{\smile} ; R\right) y^{\prime}\)
\(\equiv\langle\)＂Relationship via｀id＂＂\(\rangle\)
\(\forall y \bullet \forall y^{\prime} \bullet y(i d B) y^{\prime} \Rightarrow y\left(R{ }^{〔} ; R\right) y^{\prime}\)
\(\equiv\langle\)＂Relation inclusion＂\(\rangle\)
id \(B \subseteq R{ }^{-}{ }_{\circ} R\)

\section*{M2．2：＂Surjectivity of composition＂}

Theorem＂Surjectivity of composition＂：
surjective \(Q \Rightarrow\) surjective \(R \Rightarrow\) surjective \((Q ; R)\)
Proof：
Assuming＂\(Q\)＂｀surjective \(Q\)｀and using with＂Definition of surjectivity＂： Assuming＂\(R\)＂｀surjective \(R\)｀and using with＂Definition of surjectivity＂：

Using＂Definition of surjectivity＂：
\((Q ; R)^{-} ;(Q ; R)\)
\(=\left\langle "\right.\) Converse of \({ }^{\circ}\)＂\(\rangle\)

\(\supseteq\langle\) Monotonicity with assumption＂\(Q\)＂\(\rangle\)
\(R\) 요 \(\stackrel{R}{ }\)
\(=\left\langle " I d e n t i t y\right.\) of \({ }^{\circ}\)＂\(\rangle\)
\(R\) § \(R\)
\(\supseteq\langle\) Assumption＂\(R\)＂\(\rangle\)
II

\section*{M2.2: "Injectivity of composition" (1)}

Theorem "Injectivity of composition":
injective \(R \Rightarrow\) injective \(S \Rightarrow\) injective \((R ; S)\)
Proof:
Assuming `injective \(R\) ’, `injective \(S\) :
Using "Definition of injectivity":
\((R ; S) \circ(R ; S)\)
\(=\langle\) "Converse of \(;\) " \(\rangle\)
\(R \circ S \circ S^{-} \circ R^{\prime}\)
\(\subseteq\langle\) Monotonicity with assumption `injective \(S\) ` with "Definition of injectivity" \(\rangle\)
\(R \circ \mathbb{I} \circ R\)
\(=\left\langle\right.\) "Identity of \({ }^{\circ}\) " \(\rangle\)
\(R\); \(R\)
\(\subseteq\langle\) Assumption `injective \(R\) ` with "Definition of injectivity" \(\rangle\)
II

\section*{M2.2: "Injectivity of composition" (2)}

Theorem "Injectivity of composition":
injective \(R \Rightarrow\) injective \(S \Rightarrow\) injective \((R ; S)\)
Proof:
Assuming `injective \(R\) `, `injective \(S\) : Using "Definition of injectivity":
\((R ; S) ;(R ; S)\)
\(=\langle " C o n v e r s e ~ o f ~ ; "\rangle\)
\(R \circ\left(S \circ S^{-}\right)\)) \(R^{-}\)
\(\subseteq\) 〈"Monotonicity of 9 " with "Monotonicity of 9 "
with assumption `injective \(S\) ` with "Definition of injectivity" \(\rangle\)
\(R\); \(\mathbb{I}{ }_{9} R^{\text {- }}\)
\(=\left\langle " I d e n t i t y\right.\) of \(\left.{ }^{\circ}{ }^{\prime \prime}\right\rangle\)
\(R\); \(R\)
\(\subseteq\langle\) Assumption `injective \(R\) ` with "Definition of injectivity" \(\rangle\)
II
With explicit "Monotonicity of ..." invocations, all enclosing operations need to be traversed outside-in!

\section*{M2.2: "Injectivity of composition" (3)}

Theorem "Injectivity of composition": \(\quad\) injective \(R \Rightarrow\) injective \(S \Rightarrow\) injective \((R ; S)\)
Proof:
Assuming `injective \(R\) `, `injective \(S\) : injective \((R ; S\) )
\(\equiv\langle\) "Definition of injectivity" \(\rangle\)
\((R ; S) \circ(R ; S){ }^{-} \subseteq \mathbb{I}\)
\(\equiv\langle\) "Converse of 9 " \(\rangle\)
\(R ; S ; S\); \(R\) " \(\subseteq \mathbb{I}\)
\(\Leftarrow\langle\) "Transitivity of \(\subseteq\) " with "Monotonicity of 9 " with "Monotonicity of ;" with assumption `injective \(S\) ` with "Definition of injectivity" \(\rangle\)
\(R ; \mathbb{I} ; R^{\smile} \subseteq \mathbb{I}\)
\(\equiv\left\langle "\right.\) Identity of \(\left.{ }^{\circ}{ }^{\prime \prime}\right\rangle\)
\(R \circ R\) \(\subseteq \mathbb{I}\)
\(\equiv\langle\) Assumption `injective \(R\) ` with "Definition of injectivity" \(\rangle\)
true
With explicit "Monotonicity of ..." invocations, all enclosing operations need to be traversed outside-in! - Here starting with " \(\subseteq\) "!
Transitivity theorems are (heterogeneous) mono-/anti-tonicity theorems as well!

\section*{M2.2: "Injectivity of composition" (4)}

Theorem "Injectivity of composition":
injective \(R \Rightarrow\) injective \(S \Rightarrow\) injective \((R ; S)\)
Proof:
Assuming `injective \(R\) `, `injective \(S\) : injective \((R ; S)\)
\(\equiv\langle\) "Definition of injectivity" \(\rangle\)
\((R ; S) \circ(R ; S){ }^{〔} \subseteq \mathbb{I}\)
\(\equiv\left\langle\right.\) "Converse of \({ }_{9}\) " \(\rangle\)
\(R ; S ; S\) ¢ \(S^{\prime} \subseteq \mathbb{I}\)
\(\Leftarrow\langle\) Antitonicity
with assumption `injective \(S\) ` with "Definition of injectivity" \(\rangle\)
\(R ; \mathbb{I} ; R\) © \(\mathbb{I}\)
\(\equiv\left\langle\right.\) "Identity of \({ }^{\circ}\) " \(\rangle\)
\(R ; R\) © \(\mathbb{I}\)
\(\equiv\langle\) Assumption `injective \(R\) ` with "Definition of injectivity" \(\rangle\) true

\section*{M2.2: Theorem "M2.2a"}

The following theorem statement contains an obvious invitation to use a modal role for the proof:

Theorem "M2.2a":
\(Q \subseteq \mathbb{I} \Rightarrow R \cap S ; Q=(R \cap S) ; Q\)
Proof:
Assuming ` \(Q \subseteq \mathbb{I}\) :
\(R \cap S ; Q\)
\(\subseteq\langle\) "Modal rule" \(\rangle\)
\(\left(R \circ Q^{\sim} \cap S\right) \circ Q\)
\(\subseteq\left\langle\right.\) Monotonicity with assumption \(\left.{ }^{`} Q \subseteq \mathbb{I}^{`}\right\rangle\)
\(\left(R ; \mathbb{I}^{`} \cap S\right) ; Q\)
\(=\langle\) "Converse of \(\mathbb{I}\) ", "Identity of;" \(\rangle\)
\((R \cap S) ; Q\)
\(\subseteq\langle\) "Sub-distributivity of ; over \(\cap\) " \(\rangle\)
\(R ; Q \cap S\); \(Q\)
\(\subseteq\left\langle\right.\) Monotonicity with assumption \(\left.{ }^{`} Q \subseteq \mathbb{I}^{`}\right\rangle\)
\(R \circ \mathbb{I} \cap S ; Q\)
\(=\langle\) "Identity of \(q\) " \(\rangle\)
\(R \cap S ; Q\)
```

Theorem "M2.2a":
R\subseteq\mathbb{I}=>Q\capR;S=R;(Q\capS)
Proof:
Assuming `R \subseteq\mathbb{I}: Q\capR;S \subseteq \ " M o d a l ~ r u l e " \rangle R;(R ` % Q \capS)
\subseteq\langleMonotonicity with assumption `R\subseteq\mathbb{I} R;(II` % Q \capS)
= \langle"Converse of II", "Identity of;" "
R\circ(Q\capS)
\subseteq\langle"Sub-distributivity of ; over \cap" }
R;Q\capR;S
\subseteq\langleMonotonicity with assumption `R\subseteq\mathbb{I}\rangle
II;Q\capR;S
= \langle"Identity of %" }
Q\capR;S

```

\section*{M2.3: Recall: The "While" Rule for Partial Correctness}

The constituents of a while loop "while \(B\) do \(C\) od" are:
- The loop condition \(B: \mathbb{B}\)
- The (loop) body C: Cmd

The conventional while rule allows to infer only correctness statements for while loops that are in the shape of the conclusion of this inference rule, involving an invariant condition \(Q: \mathbb{B}\) :
\[
\vdash \frac{\curlyvee B \wedge Q \Rightarrow[C] Q}{\bigcirc Q \Rightarrow[\text { while } B \operatorname{docod}] \neg B \wedge Q}
\]

This rule reads:
- If you can prove that execution of the loop body \(C\) starting in states satisfying the loop condition \(B\) preserves the invariant \(Q\),
- then you have proof that the whole loop also preserves the invariant \(Q\), and in addition establishes the negation of the loop condition.

M2．3：Using the＂While＂Rule for Partial Correctness（0）
Theorem＂While－example＂：
Pre
\(\Rightarrow\) E INIT \(\boldsymbol{i}\)
while \(B\)
do \(C\) od \(;\)
FINAL
\(\exists\)
Post
```

Proof:
Pre .--."- Precondition
=>[INIT]〈?\rangle
Q --\cdots", Invariant
\# while }B\mathrm{ do
C
od] {"While" with subproof:
???
=>[C]\langle?\rangle
???
>
???
=>[FINAL]〈?\rangle
Post- Postcondition

```

The invariant \(Q\) will be the precondition of the whole while－loop．

\section*{M2．3：Using the＂While＂Rule for Partial Correctness（1）}
```

Theorem "While-example":
Pre
$\Rightarrow E$ INIT ;
while B
do Cod ;
FINAL
〕
Post

```
Proof:
        Pre .-.... Precondition
    \(\Rightarrow[\) INIT \(]\langle ?\rangle\)
        Q ...... Invariant
    \(\Rightarrow \mathrm{E}\) while \(B\) do
                C
            od ] 〈"While" with subproof:
                        \(B \wedge Q \quad\)--... (1) Loop condition and invariant
            \(\Rightarrow[C]\langle ?\rangle\)
                        ???
        )
        ???
    \(\Rightarrow[\) FINAL \(]\langle ?\rangle\)
    Post ...... Postcondition
（1）：At the start of a loop body iteration，the loop condition \(B\) just checked as true，and we expect the invariant \(Q\) to hold．

\section*{M2．3：Using the＂While＂Rule for Partial Correctness（2）}
```

Theorem "While-example":
Pre
\# [INIT;
while B
do C od;
FINAL
]
Post

```
Proof:
    Pre -....- Precondition
    \(\Rightarrow[\) INIT \(]\langle ?\rangle\)
        Q .-...- Invariant
    \(\Rightarrow \mathrm{E}\) while \(B\) do
            C
            od ] ["While" with subproof:
                        \(B \wedge Q \quad\)-....- (1) Loop condition and invariant
                \(\Rightarrow[C]\langle ?\rangle\)
                        Q ...... (2) Invariant
        )
        ???
        \(\Rightarrow[\) FINAL] 〈? 〉
    Post - -...- Postcondition
（2）：After a loop body iteration，we expect the invariant \(Q\) to still hold．
（The loop condition \(B\) may be true or false for the next check！）

M2.3: Using the "While" Rule for Partial Correctness (3)
Theorem "While-example":

> Proof:
Pre
while \(B\)
do Codi FINAL
    〕
    Post

Pre .-...- Precondition
\[
\Rightarrow\left[\mathrm{INIT}_{i}\right.
\]
\[
\begin{gathered}
\Rightarrow[\text { INIT }]\langle ?\rangle \\
Q \quad-\quad .- \text { Invariant }
\end{gathered}
\]
\(\Rightarrow\) while \(B\) do
C
od ] ["While" with subproof:
\(B \wedge Q \quad\)-....• (1) Loop condition and invariant \(\Rightarrow[C]\langle ?\rangle\)

Q --..." (2) Invariant
\(\rangle\)
\(\neg B \wedge Q \cdots(3)\) Negated loop condition, and invariant
\(\Rightarrow[\) FINAL \(]\langle ?\rangle\)
Post \(\quad\)...... Postcondition
(3): After the loop exists, the loop condition \(B\) must have become false, and we expect the invariant \(Q\) to still hold.

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-12-01
Part 2: Graphs, Subgraphs, Lattices Graph Homomorphisms

\section*{Graphs}

Definition: A graph is a tuple \(\langle V, E, s r c, \operatorname{trg}\rangle\) consisting of
- a set \(V\) of vertices or nodes
- a set \(E\) of edges or arrows
- a mapping src : \(E \rightarrow V\) that assigns each edge its source node
- a mapping trg : \(E \rightarrow V\) that assigns each edge its target node

Example graph:
\[
\langle\{x, y, z\},\{a, b, c, d\},\{\langle a, x\rangle,\langle b, z\rangle,\langle c, z\rangle,\langle d, x\rangle\},\{\langle a, y\rangle,\langle b, y\rangle,\langle c, z\rangle,\langle d, y\rangle\}\rangle
\]


\section*{Graphs, Induced Subgraphs}

Definition: A graph is a tuple \(\langle V, E, s r c, \operatorname{trg}\rangle\) consisting of
- a set \(V\) of vertices or nodes
- a set \(E\) of edges or arrows
- a mapping src : \(E \rightarrow V\) that assigns each edge its source node
- a mapping trg : \(E \rightarrow V\) that assigns each edge its target node

Definition: Let two graphs \(G_{1}=\left\langle V_{1}, E_{1}, s r C_{1}, \operatorname{trg} g_{1}\right\rangle\) and \(G_{2}=\left\langle V_{2}, E_{2}, s r C_{2}, \operatorname{trg} g_{2}\right\rangle\) be given.
- \(G_{1}\) is called a subgraph of \(G_{2}\) iff \(V_{1} \subseteq V_{2}\) and \(E_{1} \subseteq E_{2}\) and \(s r c_{1} \subseteq s r c_{2}\) and \(t r g_{1} \subseteq t r g_{2}\).

Def. and Theorem: Given a subset \(V_{0} \subseteq V\) of the vertex set of graph \(G=\langle V, E, s r c, \operatorname{trg}\rangle\), the edges incident with only nodes in \(V_{0}\) are \(E_{0}:=E \cap s r c \leadsto\left(\left|V_{0}\right|\right) \cap t r g^{\leftrightharpoons}\left(\left|V_{0}\right|\right)\), and then \(G_{0}:=\left\langle V_{0}, E_{0}, E_{0} \triangleleft s r c, E_{0} \triangleleft \operatorname{trg}\right\rangle\) is called the subgraph of \(G\) induced by \(V_{0}\). It is a graph, and a subgraph of \(G\). - Induced subgraphs are well-defined

\(a \in \operatorname{trg}^{\hookrightarrow}(|\{y, z\}|), \quad\) but \(\quad a \notin s r c^{\smile}(\mid\{y, z\})\)

\section*{Graphs, Subgraphs}

Definition: A graph is a tuple \(\langle V, E, s r c, \operatorname{trg}\rangle\) consisting of
- a set \(V\) of vertices or nodes
- a set \(E\) of edges or arrows
- a mapping src : \(E \rightarrow V\) that assigns each edge its source node
- a mapping trg : \(E \rightarrow V\) that assigns each edge its target node

Definition: Let two graphs \(G_{1}=\left\langle V_{1}, E_{1}, s r c_{1}, \operatorname{trg}{ }_{1}\right\rangle\) and \(G_{2}=\left\langle V_{2}, E_{2}, s r c_{2}, \operatorname{trg} g_{2}\right\rangle\) be given.
- \(G_{1}\) is called a subgraph of \(G_{2}\) iff \(V_{1} \subseteq V_{2}\) and \(E_{1} \subseteq E_{2}\) and \(s r c_{1} \subseteq s r c_{2}\) and \(\operatorname{trg} g_{1} \subseteq \operatorname{trg}\).
- We write Subgraph \({ }_{G}\) for the set of all subgraphs of \(G\).
- For a given graph \(G\), we write \(G_{1} \sqsubseteq_{G} G_{2}\) if both \(G_{1}\) and \(G_{2}\) are subgraphs of \(G\), and \(G_{1}\) is a subgraph of \(G_{2}\).
Theorem: \(\sqsubseteq_{G}\) is an ordering on Subgraph \({ }_{G}\).
Theorem: \(\sqsubseteq_{G}\) has greatest element \(G\) and least element \(\langle\},\{ \},\{ \},\{ \}\rangle\).
Theorem: \(\sqsubseteq_{G}\) has binary meets defined by intersection.
Theorem: \(\sqsubseteq_{G}\) has binary joins defined by union.
Theorem: \(\sqsubseteq_{G}\) has pseudo-complements, but not complements.


The subgraph induced by \(\{y, z\}\) has the subgraph induced by \(\{x\}\) as pseudo-complement, but their union is not the whole graph.

\section*{Joins and Meets}
- Given an order \(\sqsubseteq, z\) is an "upper bound" of two elements \(x\) and \(y\) iff \(x \sqsubseteq z \wedge y \sqsubseteq z\)
- Given an order \(\sqsubseteq\), the two elements \(x\) and \(y\) have \(j\) as "join" or "least upper bound" (lub), iff \(\forall z \bullet j \sqsubseteq z \equiv x \sqsubseteq z \wedge y \sqsubseteq z\)
- The order \(\subseteq\) "has binary joins" if for any two elements, there is a join - see "Characterisation of \(\cup\) " for the inclusion order \(\subseteq\)
- Given an order \(\sqsubseteq\), the set \(S\) of elements has \(j\) as "join" or "least upper bound" (lub), iff \(\forall z \bullet j \sqsubseteq z \equiv(\forall x \mid x \in S \bullet x \sqsubseteq z)\)
- The order \(\subseteq\) "has arbitrary joins" if for any set of elements, there is a join - see "Characterisation of \(\cup\) "
- Given an order \(\sqsubseteq\), the set \(S\) of elements has \(m\) as "meet" or "greatest lower bound" (glb), iff \(\forall z \bullet z \sqsubseteq m \equiv(\forall x \mid x \in S \bullet z \sqsubseteq x)\)
- The order \(\subseteq\) "has binary meets" if for any two-element set, there is a meet - see "Characterisation of \(\cap\) "
- The order \(\subseteq\) "has arbitrary meets" if for any set of elements, there is a meet.

\section*{Lattices}

Definition: A lattice is a partial order with binary meets and joins.

\section*{Examples:}
- For every graph \(G\), its subgraphs, that is, \(\left\langle\right.\) Subgraph \(\left._{G}, \sqsubseteq_{G}\right\rangle\) with \(\sqcap_{G}\) and \(\sqcup_{G}\)
- \(\langle\mathbb{Z}, \leq\rangle\) with \(\downarrow\) and \(\uparrow\)
- \(\langle\mathbb{Z}, \geq\rangle\) with \(\uparrow\) and \(\downarrow\)
- \(\langle\mathbb{N}, \leq\rangle\) with \(\downarrow\) and \(\uparrow\)
- \(\langle\mathbb{N}, \mid\rangle\) with \(g c d\) and \(l c m\)
- \(\langle\wp A, \subseteq\rangle\) with \(\cap\) and \(\cup\)
- Equivalence relations on \(A\) ordered wrt. \(\subseteq\), with \(\cap\) and \(\left(E_{1} \cup E_{2}\right)^{*}\)

Algebraic Definition: A lattice \(\langle A, \sqcap, \sqcup\rangle\) consists of a set \(A\) with two binary operations \(\sqcap\), \(\sqcup\) on \(A\) such that:
- \(\sqcap\) and \(\sqcup\) each are idempotent, symmetric, and associative
- The absorption laws hold: \(x \sqcup(x \sqcap y)=x=x \sqcap(x \sqcup y)\)

A Boolean lattice \(\langle A, \sqcap, \sqcup, \perp, \mathrm{~T}, \sim\rangle\) in addition has least and greatest elements \(\perp\) and T , and a unary complement operation \(\sim\) satisfying \(\sim x \sqcap x=\perp\) and \(\sim x \sqcup x=\mathrm{T}\).

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-12-04

\section*{Temporal Logic and Model Checking}

Temporal Logics for Specification of Reactive and Distributed Systems
- Reactive Systems: No clear input-output relation
- Operating systems
- Embedded systems
- Network protocols
- Specification techniques: Temporal logics
- Rich choice of temporal logics - multiple classification criteria
- Some important logics are (polynomial-time) decidable - Model checking

\section*{Reading More about Temporal Logics}
- E. Allen Emerson: Temporal and Modal Logic, pages 995-1072 of Jan van Leeuwen (ed.): Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, Elsevier Science Publishers B. V., 1990
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
Thode Library Bookstacks: QA 76 .H279 1990
"Post-print"? linked on Wikipedia:
https://profs.info.uaic.ro/~masalagiu/pub/handbook3.pdf
- Michael R. A. Huth and Mark D. Ryan: Logic in Computer Science, Modelling and Reasoning about Systems, 2nd edition, Cambridge University Press 2004,
Thode Library Bookstacks: QA 76.9 L63H88 2004

\section*{Modal Logics}
- Original philosophical motivation: Express different modalities:

The proposition "Napoleon was victorious at Waterloo"
- is false in this world,
- but could be true in another world.
- Typical modal operators:
- "possibly": \(\diamond p\) - "it is imaginable that \(p\) holds" "diamond \(p\) "
- "necessarily": \(\square p-\) "it is not imaginable that \(p\) doesn't hold" "box \(p\) "
- Kripke (1963): "possible world semantics" (orig. Kanger 1957)

\section*{Temporal Logics}
- Prior (1955): Tense Logic - notation still customary today
- instead of \(\diamond p\) now temporally: \(F p\) - " \(p\) will eventually be true"
- instead of \(\square p\) now temporally: \(G p\) - " \(p\) will always be true"
- Two kinds of applications: Temporal logics are used
- in AI, to let programs reason about the world,
- in software technology, to let the world reason about programs
- Pnueli (1977): "The Temporal Logic of Programs":

Argues for using temporal logics as tool for specification and verification, in particular for reactive systems such as operating systems and network protocols

\section*{Propositional Logics versus First-order Predicate Logics}
- Temporal Propositional Logics:
- Classical junctors: \(\wedge, \vee, \neg\)
- Temporal operators: F, G
- Extension to temporal predicate logics
- variable, constant, function and predicate symbols as usual
- uninterpreted / partially interpreted / fully interpreted
- local/global variables
- sometimes restrictions on permitted formulae with respect to the interaction between quantifiers and temporal operators, e.g.:
\[
(\forall y: G(P(y))) \Leftrightarrow(G(\forall y: P(y)))
\]
"Formula of Barcan" - "highly undecidable" logics

\section*{Linear Time versus Branching Time}

This distinction is mainly semantic, but also reflected in syntax
- Linear Time:
- At any point only one possible future

\section*{- Branching Time:}
- At any point multiple possible futures

Both approaches are used in software technology

\section*{Further Aspects of Time}
- Time Points versus Time Intervals
- Some properties are easier to formulate using intervals.
- Discrete Time versus Continuous Time
- Continuous (or dense) time first considered in philosophy
- Possible application in real time systems
- Future Only versus Also Past
- Philosophiscal approaches: Past at least as important as future
- Software: Frequently only future
- Past operators are frequently useful in compositional specifications.
- Propositional logics - first-order predicate logics
- Endogeneous time (global) - exogeneous time (compositional)
- Linear time - branching time
- Time points - time intervals
- Discrete time - continuous time
- Future - also past

\section*{Temporal Operators of Linear-Time Propositional Logic}
- F \(p\) —"eventually \(p\) "

- Gp - "always \(p\) "

- X \(p\) - "in the next state \(p\) "

- \(p U q\) - "eventually \(q\), and until then \(p\) " (until)


\section*{Propositional Linear-Time Temporal Logic - Syntax}

Definition: The set of formulae of propositional linear-time temporal logic is the smallest set generated by the following rules:
- every atomic proposition \(P: A P\) is a formula;
- if \(p\) and \(q\) are formulae, then \(p \wedge q\) and \(\neg p\) are formulae, too;
- if \(p\) and \(q\) are formulae, then \(p U q\) and \(X p\) formulae, too.

\section*{Abbreviations:}
\(p \vee q: \equiv \neg(\neg p \wedge \neg q)\)
\(p \Rightarrow q: \equiv \neg p \vee q\)
\(p \Leftrightarrow q: \equiv \quad(p \Rightarrow q) \wedge(q \Rightarrow p)\)
true \(: \equiv p \vee \neg p\)
false : \(\equiv \neg\) true
```

$F p: \equiv$ true $U p$
$G p: \equiv \neg F \neg p$
$F^{\infty} p$: $: G F p$ —"infinitely often"
$G^{\infty} p: \equiv F G p$ - "almost everywhere"
$p B q: \equiv \neg((\neg p) U q) \quad$ - " p before q "

```

Syntax and Semantics of Propositional Linear－Time Temporal Logic（PLTL） 1
\(\llbracket \varphi \rrbracket \alpha t=\) true iff \(\quad\) LTL formula \(\varphi\) holds in time line \(\alpha: \mathbb{N} \rightarrow A \rightarrow \mathbb{B}\) at time \(t:\)

Declaration：\(\llbracket \rrbracket \rrbracket: \operatorname{LTL} A \rightarrow(\mathbb{N} \rightarrow A \rightarrow \mathbb{B}) \rightarrow \mathbb{N} \rightarrow \mathbb{B}\)
An atomic proposition \(p\) is true at time \(t\) iff the time line contains，at time \(t\) ，a state in which \(p\) is true：
＂Semantics of LTL atoms＂：【‘ \(p \rrbracket \alpha t \equiv \alpha t p\)
＂Semantics of LTL \(\neg^{\prime}: \llbracket \neg^{\prime} \varphi \rrbracket \alpha t \equiv \neg \llbracket \varphi \rrbracket \alpha t\)
＂Semantics of LTL \(\wedge^{\prime \prime}: \llbracket \varphi \wedge^{\prime} \psi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha t \wedge \llbracket \psi \rrbracket \alpha t\)
＂Semantics of LTL \(\vee^{\prime \prime}: \llbracket \varphi \vee^{\prime} \psi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha t \vee \llbracket \psi \rrbracket \alpha t\)
＂Semantics of LTL \(\Rightarrow\)＂：\(\llbracket \varphi \Rightarrow^{\prime} \psi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha t \Rightarrow \llbracket \psi \rrbracket \alpha t\)
－\(\llbracket p \rrbracket \alpha 0=\) ？
－\(\llbracket p \wedge q \rrbracket \alpha 0=?\)
－\(\llbracket p \rrbracket \alpha 3=\) ？
－【p \(\vee \vee \neg q \rrbracket \alpha 3=\) ？
－\(\llbracket q \rrbracket \alpha 0=\) ？
－\(\llbracket q \Rightarrow r \rrbracket \alpha 42=\) ？
\(\alpha=\)
\begin{tabular}{|l|c|l|l|l|}
\hline Time & \(p\) & \(q\) & \(r\) & \(s\) \\
\hline 0 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 1 & \(\checkmark\) & \(\checkmark\) & & \\
\hline 2 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 3 & & \(\checkmark\) & & \\
\hline 4 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 5 & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) \\
\hline \(6,16,26, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) \\
\hline \(7,17,27, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline \(8,18,28, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(9,19,29, \ldots\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline \(10,20,30, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(11,21,31, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline \(12,22,32, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(13,23,33, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline \(14,24,34, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(15,25,35, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline
\end{tabular}

\section*{Syntax and Semantics of Propositional Linear－Time Temporal Logic（PLTL） 2}
\(\llbracket \varphi \rrbracket \alpha t=\) true \(\quad\) iff \(\quad\) LTL formula \(\varphi\) holds in time line \(\alpha: \mathbb{N} \rightarrow A \rightarrow \mathbb{B}\) at time \(t\) ：

Declaration：\(\llbracket \rrbracket \rrbracket: \operatorname{LTL} A \rightarrow(\mathbb{N} \rightarrow A \rightarrow \mathbb{B}) \rightarrow \mathbb{N} \rightarrow \mathbb{B}\)
\(F \varphi\) is true at time \(t\) if \(\varphi\) is true at some time \(t^{\prime} \geq t\) ：
＂Semantics of＇\(F\)＂＂：
\[
\llbracket F \varphi \rrbracket \alpha t \equiv \exists t^{\prime}: \mathbb{N} \mid t \leq t^{\prime} \bullet \llbracket \varphi \rrbracket \alpha t^{\prime}
\]
\(G \varphi\) is true at time \(t\) if \(\varphi\) is true at all times \(t^{\prime} \geq t\) ．
＂Semantics of＇G＇＂：
\(\llbracket G \varphi \rrbracket \alpha t \equiv \forall t^{\prime}: \mathbb{N} \mid t \leq t^{\prime} \bullet \llbracket \varphi \rrbracket \alpha t^{\prime}\)
－\(\llbracket G p \rrbracket \alpha 0=? \quad \bullet \llbracket F s \rrbracket \alpha 7=?\)
－\(\llbracket G p \rrbracket \alpha 5=\) ？\(\bullet \llbracket F \neg p \rrbracket \alpha 0=\) ？
－\(\llbracket F q \rrbracket \alpha 0=? \quad \bullet \llbracket F \neg p \rrbracket \alpha 100=\) ？
\(\alpha=\)
\begin{tabular}{|c|c|c|c|c|}
\hline Time & \(p\) & \(q\) & \(r\) & \(s\) \\
\hline 0 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 1 & \(\checkmark\) & \(\checkmark\) & & \\
\hline 2 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 3 & & \(\checkmark\) & & \\
\hline 4 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 5 & \(\checkmark\) & \(\checkmark\) & & \\
\hline 6，16，26，．． & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(7,17,27, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline \(8,18,28, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline 9，19，29，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 10，20，30，．． & \(\checkmark\) & & \(\checkmark\) & \\
\hline 11，21，31，．． & \(\checkmark\) & \(\checkmark\) & & \\
\hline 12，22，32，．． & \(\checkmark\) & & \(\checkmark\) & \\
\hline 13，23，33，\(\ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 14，24，34，．．． & \(\checkmark\) & & \(\checkmark\) & \\
\hline 15，25，35，．． & \(\checkmark\) & \(\checkmark\) & & \\
\hline
\end{tabular}

\section*{Syntax and Semantics of Propositional Linear－Time Temporal Logic（PLTL） 3}
\(\llbracket \varphi \rrbracket \alpha t=\) true \(\quad\) iff \(\quad\) LTL formula \(\varphi\) holds in time line \(\alpha: \mathbb{N} \rightarrow A \rightarrow \mathbb{B}\) at time \(t\) ：

Declaration： \(\mathbb{\llbracket \rrbracket \rrbracket : ~ L T L ~} A \rightarrow(\mathbb{N} \rightarrow A \rightarrow \mathbb{B}) \rightarrow \mathbb{N} \rightarrow \mathbb{B}\)
\(X \varphi\) is true at time \(t\) iff \(\varphi\) is true at time \(t+1\) ：
＂Semantics of＇\(X\)＂＂：
\[
\llbracket X \varphi \rrbracket \alpha t \equiv \llbracket \varphi \rrbracket \alpha(\text { suc } t)
\]
－\(\llbracket X p \rrbracket \alpha 0=?\)
－\(\llbracket F(s \wedge X s) \rrbracket \alpha 0=?\)
－【Xq】 \(\alpha 0=\) ？
－\(\llbracket F(s \wedge X s) \rrbracket \alpha 10=\) ？
－\(\llbracket q \wedge X r \rrbracket \alpha 1=?\)
－\(\llbracket G(q \equiv X r) \rrbracket \alpha 12=\) ？
－\(\llbracket G F(q \wedge X r) \rrbracket \alpha 0=\) ？
－\(\llbracket G F(q \equiv X r) \rrbracket \alpha 12=\) ？
\(\alpha=\)
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \(p\) & \(q\) & \(r\) & \(s\) \\
\hline 0 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 1 & \(\checkmark\) & \(\checkmark\) & & \\
\hline 2 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 3 & & \(\checkmark\) & & \\
\hline 4 & \(\checkmark\) & & \(\checkmark\) & \\
\hline 5 & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) \\
\hline \(6,16,26, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) \\
\hline \(7,17,27, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline \(8,18,28, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(9,19,29, \ldots\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline \(10,20,30, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(11,21,31, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline \(12,22,32, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(13,23,33, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline \(14,24,34, \ldots\) & \(\checkmark\) & & \(\checkmark\) & \\
\hline \(15,25,35, \ldots\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline
\end{tabular}

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 4
\(\llbracket \varphi \rrbracket \alpha t=\) true \(\quad\) iff \(\quad\) LTL formula \(\varphi\) holds in time line \(\alpha: \mathbb{N} \rightarrow A \rightarrow \mathbb{B}\) at time \(t:\)

Declaration: \(\llbracket \rrbracket \rrbracket:\) LTL \(A \rightarrow(\mathbb{N} \rightarrow A \rightarrow \mathbb{B}) \rightarrow \mathbb{N} \rightarrow \mathbb{B}\)
\(\varphi U \psi\) is true at time \(t\) if \(\psi\) is true at some time \(t^{\prime} \geq t\), and for all times \(t^{\prime \prime}\) such that \(t \leq t^{\prime \prime}<t^{\prime}, \varphi\) is true.

\section*{Axiom "Semantics of ` \(U^{\prime}\) ": \(\quad\) "n-a "until"}
\(\llbracket \varphi U \psi \rrbracket \alpha t\)
\(\equiv \exists t^{\prime}: \mathbb{N} \mid t \leq t^{\prime}\)
- \(\llbracket \psi \rrbracket t^{\prime}\)
\(\wedge \forall t^{\prime \prime}: \mathbb{N} \mid t \leq t^{\prime \prime}<t^{\prime} \bullet \llbracket \varphi \rrbracket \alpha t^{\prime \prime}\)
- \(\llbracket p U q \rrbracket \alpha 0=\) ?
- \(\llbracket p U(q \wedge r) \rrbracket \alpha 42=\) ?
- \(\llbracket p U s \rrbracket \alpha 0=\) ?
- \(\llbracket p U(q \wedge s) \rrbracket \alpha 42=\) ?
- 【っsU \(\downarrow p \rrbracket \alpha 0=\) ?
- \(\llbracket(p \vee r) U s \rrbracket \alpha 1=\) ?
\(\alpha=\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time & \(p\) & \(q\) & \(r\) & & \(s\) \\
\hline 0 & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 1 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 2 & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 3 & & \(\checkmark\) & & & \\
\hline 4 & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 5 & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) \\
\hline 6, 16, 26, \(\ldots\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline \(7,17,27, \ldots\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 8,18,28, \(\ldots\) & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 9,19, \(29, \ldots\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 10,20,30, .. & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 11,21,31, \(\ldots\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 12, 22,32, \(\ldots\) & \(\checkmark\) & & \(\checkmark\) & & \\
\hline \(13,23,33, \ldots\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 14, 24,34, .. & \(\checkmark\) & & \(\checkmark\) & & \\
\hline \(15,25,35, \ldots\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline
\end{tabular}

\section*{Important Valid Formulae}
\begin{tabular}{lll}
\(\vDash G \neg p \Leftrightarrow \neg F p\) & \(\vDash G^{\infty} \neg p \Leftrightarrow \neg F^{\infty} p\) & \(\vDash X \neg p \Leftrightarrow \neg X p\) \\
\(\vDash F \neg p \Leftrightarrow \neg G p\) & \(\vDash F^{\infty} \neg p \Leftrightarrow \neg G^{\infty} p\) & \(\vDash((\neg p) U q) \Leftrightarrow \neg(p B q)\)
\end{tabular}
Idempotencies Implications
\begin{tabular}{lll}
\(\vDash F F p \Leftrightarrow F p\) & \(\vDash p \Rightarrow F p\) & \(\vDash G p \Rightarrow p\) \\
\(\vDash G G p \Leftrightarrow G p\) & \(\vDash X p \Rightarrow F p\) & \(\vDash G p \Rightarrow X p\) \\
\(\vDash F^{\infty} F^{\infty} p \Leftrightarrow F^{\infty} p\) & \(\vDash G p \Rightarrow F p\) & \(\vDash G p \Rightarrow X G p\) \\
\(\vDash G^{\infty} G^{\infty} p \Leftrightarrow G^{\infty} p\) & \(\vDash p U q \Rightarrow F q\) & \(\vDash G^{\infty} q \Rightarrow F^{\infty} q\) \\
\hline\(\vDash X F p \Leftrightarrow F X p\) & \(\vDash X G p \Leftrightarrow G X p\) & \(\vDash((X p) U(X q)) \Leftrightarrow X(p U q)\) \\
\hline\(\vDash F^{\infty} p \Leftrightarrow X F^{\infty} p \Leftrightarrow F F^{\infty} p \Leftrightarrow G F^{\infty} p \Leftrightarrow F^{\infty} F^{\infty} p \Leftrightarrow G^{\infty} F^{\infty} p\) \\
\(\vDash G^{\infty} p \Leftrightarrow X G^{\infty} p \Leftrightarrow F G^{\infty} p \Leftrightarrow G G^{\infty} p \Leftrightarrow F^{\infty} G^{\infty} p \Leftrightarrow G^{\infty} G^{\infty} p\)
\end{tabular}
(considering \(\Leftrightarrow\) to be conjunctional)

\section*{Interplay between Junctors and Temporal Operators}
\(\vDash F(p \vee q) \Leftrightarrow(F p \vee F q)\)
\(\vDash G(p \wedge q) \Leftrightarrow(G p \wedge G q)\)
\(\vDash F^{\infty}(p \vee q) \Leftrightarrow\left(F^{\infty} p \vee F^{\infty} q\right) \quad \vDash G^{\infty}(p \wedge q) \Leftrightarrow\left(G^{\infty} p \wedge G^{\infty} q\right)\)
\(\vDash p U(q \vee r) \Leftrightarrow(p U q \vee p U r)\)
\(\vDash(p \wedge q) U r \Leftrightarrow(p U r \wedge q U r)\)
\(\vDash X(p \vee q) \Leftrightarrow(X p \vee X q)\)
\(\vDash X(p \Rightarrow q) \Leftrightarrow(X p \Rightarrow X q)\)
\(\vDash X(p \wedge q) \Leftrightarrow(X p \wedge X q)\)
\(\vDash X(p \Leftrightarrow q) \Leftrightarrow(X p \Leftrightarrow X q)\)
\(\vDash(G p \vee G q) \Rightarrow G(p \vee q)\)
\(\vDash F(p \wedge q) \Rightarrow F p \wedge F q\)
\(\vDash\left(G^{\infty} p \vee G^{\infty} q\right) \Rightarrow G^{\infty}(p \vee q)\)
\(\vDash F^{\infty}(p \wedge q) \Rightarrow F^{\infty} p \wedge F^{\infty} q\)
\(\vDash((p U r) \vee(q U r)) \Rightarrow((p \vee q) U r)\)
\(\vDash(p U(q \wedge r)) \Rightarrow((p U q) \wedge(p U r))\)

\section*{Monotonicity and Fixpoint Characterisations}
\[
\begin{array}{ll}
\vDash G(p \Rightarrow q) \Rightarrow(F p \Rightarrow F q) & \vDash G(p \Rightarrow q) \Rightarrow\left(F^{\infty} p \Rightarrow F^{\infty} q\right) \\
\vDash G(p \Rightarrow q) \Rightarrow(G p \Rightarrow G q) & \vDash G(p \Rightarrow q) \Rightarrow\left(G^{\infty} p \Rightarrow G^{\infty} q\right) \\
\vDash G(p \Rightarrow q) \Rightarrow((p U r) \Rightarrow(q U r)) & \vDash G(p \Rightarrow q) \Rightarrow((r U p) \Rightarrow(r U q)) \\
\vDash G(p \Rightarrow q) \Rightarrow(X p \Rightarrow X q) &
\end{array}
\]

\section*{Fixpoint Characterisations:}
\[
\begin{array}{ll}
\vDash F p \Leftrightarrow p \vee X F p & \vDash(p U q) \Leftrightarrow q \vee(p \wedge X(p U q)) \\
\vDash G p \Leftrightarrow p \wedge X G p & \vDash(p B q) \Leftrightarrow \neg q \wedge(p \vee X(p B q))
\end{array}
\]

\section*{Variants of the Basic Temporal Operators}
- \(p U q\), until now, is known as "strong until": There is a future state \(q\), and until then \(p\).
- Alternative notations: \(p U_{s} q\) or \(p U_{\exists} q\).
- Weak until \(p U_{w} q\) or \(p U_{\forall} q\) : \(p\) holds as long as \(q\) does not hold - if necessary, forever.
- \(x \vDash p U_{\forall} q\) iff for all \(j: \mathbb{N}\) we have \(x^{j} \vDash p\) as far as for all \(k \leq j\) we have \(x^{k} \vDash \neg q\).

We have:
- \(\vDash p U_{\exists} q \Leftrightarrow p U_{\forall} q \wedge F q\)
- \(\vDash p U_{\forall} q \Leftrightarrow\left(p U_{\exists} q \vee G p\right) \Leftrightarrow\left(p U_{\exists} q \vee G(p \wedge \neg q)\right)\)

\section*{Past}

Until now, all operators are future-related - explicitly:
- \(F^{+} p\) - "in the future, eventually \(p^{\prime}\)
- \(G^{+} p \quad\) - "in the future, always \(p^{\prime \prime}\)
- \(X^{+} p \quad\) - "in the next state \(p\) "
- \(p U^{+} q \quad\) - "in the future, eventually \(q\), and until then \(p\) "

Purely future-oriented propositional linear-time temporal logic -
Propositional Linear-time Temporal Logic / Future: PLTLF
Corresponding past-oriented operators (originally \(P, H\), and \(S\) for since):
- \(F^{-} p \quad\) - "in the past at some point \(p^{\prime \prime}\)
- \(G^{-} p\) - "in the past, always \(p^{\prime \prime}\)
- \(X_{\exists}^{-} p \quad\) - "in the previous state we had \(p\) "
- \(p U^{-} q \quad\) - "in the past at some point \(q\), and since then \(p^{\prime \prime}\)

Logic only with past-oriented operators: PLTLP; with both: PLTLB.

\section*{Safety}
- Safety properties: "nothing bad happens"
- Invariance properties: every finite prefix of the execution satisfies the invariance condition
- in PLTLB: initially equivalent to \(G p\) for a past formula \(p\) : "nothing bad has happened until now" must always be true.
- Every formula constructed from past operators, \(\wedge, \vee, G\) and \(U_{w}\) is a safety property, e.g.:
\[
\left(p U_{w} q\right) \equiv_{i} G\left(G^{-} p \vee F^{-}\left(q \wedge X^{-} G^{-} p\right)\right) \quad \text { Exercise! }
\]

\section*{Safety Examples}
- Partial correctness wrt. precondition \(\varphi\) and postcondition \(\psi\) :

If a program (with start label \(l_{0}\) and halting label \(l_{h}\) ) starts executing in a state satisfying the precondition \(\varphi\) and terminates, the the terminating state satisfies the postcondition \(\psi\) :
\[
\operatorname{att}_{0} \wedge \varphi \Rightarrow G\left(\operatorname{atl}_{h} \Rightarrow \psi\right)
\]

This is initially equivalent to:
\[
G\left(F^{-}\left(\neg\left(\operatorname{att}_{0} \wedge \varphi\right) \wedge X_{w}^{-} \text {false }\right) \vee G\left(\operatorname{att}_{h} \Rightarrow \psi\right)\right)
\]
and therefore a safety property.
- Mutual Exclusion: \(G\left(\neg\left(\operatorname{atCS}_{1} \wedge \mathrm{atCS}_{2}\right)\right)\)
- Deadlock-freeness: \(G\left(\right.\) enabled \(_{1} \vee \ldots \vee\) enabled \(\left._{m}\right)\)

\section*{Liveness}
- Liveness: "Something good will still happen (often enough)"
- \(p\) is an "invincible" past formula iff every finite sequence \(x\) has a finite extension \(x^{\prime}\) such that \(p\) holds in the last state of \(x^{\prime}\) :
\[
\llbracket p \rrbracket x^{\prime}\left(\text { length } x^{\prime}\right) \equiv \text { true }
\]
- A pure liveness property is a PLTLB formula that is initially equivalent to a formula \(F p, G F p\) or \(F G p\), where \(p\) is an invincible past formula
- If \(p\) is a pure liveness property, then every finite sequence \(x\) can be extended to a finite or infinite sequence \(x^{\prime}\) such that \(\left(x^{\prime}, 0\right) \vDash p\)
- Temporal implication \(G(p \Rightarrow F q)\) (where \(p\) and \(q\) are past formulae) is a generic liveness property
- The "Computational Tree Logic" CTL, and its generalisation \(\mathrm{CTL}^{*}\)
- Low complexity of CTL
- CTL model checking (SMV)

\section*{Time Structures for Branching Time}

Definition: A time structure \(M=(S, R, L)\) consists of
- a state set \(S\),
- a total time step relation \(R: S \leftrightarrow S\)
(for every time point there is at least one successor)
- a marking \(L: S \rightarrow \mathbb{P} A P\), mapping each state \(s\) to the set of atomic propositions true in \(s\).
Therefore \(M\) is a node-labelled directed graph. \(M\) is
- acyclic iff \(R^{+} \cap \mathbb{I}=\{ \}\),
- tree-like iff \(M\) is acyclic and \(R\) is injective (every state has at most one predecessor)
- a tree iff \(M\) is tree-like and there is a root node
(a node without predecessors from which all nodes are reachable).
Tree property is not essential! Cyclic graphs can be "unravelled" to infinite trees.

\section*{Syntax of the "Computational Tree Logic" CTL}

State formulae are generated by the following rules:
(S1) Every atomic proposition \(P\) is a state formula.
(S2) If \(p\) and \(q\) are state formulae, then so are \(p \wedge q\) and \(\neg p\).
(S3a) If \(p\) is a state formula, then \(\mathrm{E} X p\) and \(\mathrm{A} X p\) are state formulae.
\(\mathrm{E} X p \quad\) - in some possible future, \(\mathrm{X} p\)
A \(X p \quad\) - in all possible futures, \(X p\)
(S3b) If \(p\) and \(q\) are state formulae, then \(\mathrm{E}(p U q)\) and \(\mathrm{A}(p U q)\) are state formulae.
\(\mathrm{E}(p \cup q) \quad\) - in some possible future, \((p \cup q)\)
\(\mathrm{A}(p \cup q) \quad\) - in all possible futures, \((p \cup q)\)
Abbreviations in CTL: E Fp:三E(true \(U p) \quad\) A \(G p: \equiv \neg \mathrm{E} F \neg p\)
\[
\mathrm{A} F p: \equiv \mathrm{A}(\text { true } U p) \quad \mathrm{E} G p: \equiv \neg \mathrm{A} F \neg p
\]

CTL: Strict alternation between \(\mathrm{E} / \mathrm{A}\) and \(X, U, F, G\)
CTL*: Direct nesting of \(X, U, F, G\) allowed
- E F (started \(\wedge\)-ready \()\)
- \(A\) G (requested \(\Rightarrow A F\) acknowledged)
- A G (A F enabled)
- A F (A G deadlock)
- A G (E F restart)
- \(A G(\) floor \(=2 \wedge\) direction \(=u p \wedge\) ButtonPressed5 \(\Rightarrow A[\) direction \(=\) up U floor \(=5])\)
- \(A G(\) floor \(=3 \wedge\) idle \(\wedge\) door \(=\) closed \(\Rightarrow E G(\) floor \(=3 \wedge\) idle \(\wedge\) door \(=\) closed \())\)

\section*{Small Models Theorem for CTL}

Theorem: Let \(p_{0}\) be a CTL formula of length \(n\). Then the following statements are equivalent:
- \(p_{0}\) is satisfiable.
- \(p_{0}\) has an infinite tree model with finite branching degree in \(\mathcal{O}(n)\).
- \(p_{0}\) has a finite model of size \(\leq n \cdot 2^{n}\).

Theorem: The satisfiability test for CTL is DEXPTIME complete.

Why is this useful?

> Synthesis of correct-by-construction automata!
(For satisfiable specifications...)

\section*{Model Checking}

\section*{The Model Checking Problem:}
\[
M \stackrel{?}{=} p
\]
I.e., is a given finite structure \(M\) a model for a given temporal logic formula \(p\) ?
- The model checking problem for propositional temporal logics is decidable.
- The model checking problem for \(\operatorname{PLTL}(\mathrm{F}, \mathrm{X})\) is PSPACE-complete.
- The model checking problem for PLTL(F) ist NP-complete.
- The model checking problem for CTL* is PSPACE-complete.
- The model checking problem for CTL is solvable in deterministic polynomial time.
- Developed since 1992 at Carnegie Mellon University
- OBDD-based symbolic model checking for CTL
- Finite datatypes: Booleans, enumeration types, finite arrays
- Model description: Arbitrary propositional-logic formulae allowed
- Safe model description: Parallel assignments
- Original motivation: hardware description
```

MODULE main
VAR
request: boolean;
status : {ready, busy};
ASSIGN
init(status) := ready;
next(status) :=
case
request : busy;
1: {ready, busy};
esac;
SPEC
AG(request }->\mathrm{ AF status=busy)

```

\section*{SMV Example from [Huth, Ryan]: Mutual Exclusion}

Two processes, each with three states: " \(n\) ": non-critical, " \(t\) ": trying, " \(c\) ": critical. First protocol:


Safety
Liveness
\[
\Phi_{1}: \equiv A G \neg\left(c_{1} \wedge c_{2}\right)
\]

Non-blocking
\(\Phi_{3}:=A G\left(n_{1} \Rightarrow E X t_{1}\right)\)
No strict sequencing \(\Phi_{4}: \equiv E F\left(c_{1} \wedge E\left[c_{1} U\left(\neg \mathcal{C}_{1} \wedge E\left[\neg \mathcal{C}_{2} U c_{1}\right]\right)\right]\right)\)

First Translation into SMV Input Language
```

MODULE main
VAR
p1: {n,t,c};
p2:{n,t,c};
ASSIGN
init (p1):= n;
init(p2):= n;
TRANS
(next(p2) = p2 \& ((p1=n n next(p1)=t) \&
(p1=t-> next(p1)=c) \&
(p1=c-> next(p1)=n))) |
(next(p1) = p1\& ((p2=n 证t(p2)=t) \&
(p2=t-> next(p2)=c) \&
(p2=c }->\mathrm{ next(p2)=n)))
TRANS next(p1) =c (next(p2) \# c
SPEC AG!(p1=c \& p2=c)
SPEC AG (p1=t -> AF p1=c)
SPEC AG (p1=n ->EX p1=t)
SPEC EF (p1=c \& E[p1=c U(p1\not=c \& E[p2 % c U p1=c])])

```

\section*{SMV Output}
```

-- specification AG (!(p1=c\&p2=c)) is true
-- specification AG (p1=t->AFp1=c) is false
-- as demonstrated by the following execution sequence
state 1.1:
p1=n, p2 = n
-- loop starts here --
state 1.2
p1 = t
state 1.3:
p2 = t
state 1.4:
p2 = c
state 1.5:
p2 = n

```
-- specification \(A G(p 1=n \rightarrow E X p 1=t)\) is true
-- specification \(E F(p 1=c \& E(p 1=c U(p 1 \neq c \& E(p 2 \ldots\) is true

\section*{Mutual Exclusion - continued}
\begin{tabular}{ll} 
Safety & \(\Phi_{1}: \equiv A G \neg\left(c_{1} \wedge c_{2}\right)\) \\
Liveness & \(\Phi_{2}: \equiv A G\left(t_{1} \Rightarrow A F c_{1}\right)\) \\
Non-blocking & \(\Phi_{3}: \equiv A G\left(n_{1} \Rightarrow E X t_{1}\right)\) \\
No strict sequencing & \(\Phi_{4}: \equiv E F\left(c_{1} \wedge E\left[c_{1} U\left(\neg c_{1} \wedge E\left[\neg c_{2} U c_{1}\right]\right)\right]\right)\)
\end{tabular}


That can even be synthesised from the specification!

\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

Part 1: Graph Homomorphisms, Categories

\section*{Recall: Graphs}

Definition: A graph is a tuple \(\langle V, E, s r c, t r g\rangle\) consisting of
- a set \(V\) of vertices or nodes
- a set \(E\) of edges or arrows
- a mapping src : \(E \rightarrow V\) that assigns each edge its source node
- a mapping trg : \(\quad \rightarrow V\) that assigns each edge its target node

\section*{Example graph:}
\[
\langle\{x, y, z\},\{a, b, c, d\},\{\langle a, x\rangle,\langle b, z\rangle,\langle c, z\rangle,\langle d, x\rangle\},\{\langle a, y\rangle,\langle b, y\rangle,\langle c, z\rangle,\langle d, y\rangle\}\rangle
\]


\section*{Graphs as Structures over Signature sigGraph}

A signature is a tuple \(\Sigma=(\mathcal{S}, \mathcal{F}, \mathcal{R})\) consisting of
- a set \(\mathcal{S}\) of sorts
- a set \(\mathcal{F}\) of function symbols \(f: s_{1} \times \cdots \times s_{n} \rightarrow t\)
- a set \(\mathcal{R}\) of relation symbols \(r: s_{1} \times \cdots \times s_{n} \leftrightarrow t\)

A \(\Sigma\)-structure \(\mathcal{A}\) consists of:
- for every sort \(s: \mathcal{S}\), a carrier \(\mathcal{S}^{\mathcal{A}}\), and
- for every function symbol \(f: s_{1} \times \cdots \times s_{n} \rightarrow t\) a mapping \(f^{\mathcal{A}}: s_{1}^{\mathcal{A}} \times \cdots \times s_{n}^{\mathcal{A}} \rightarrow t^{\mathcal{A}}\).
- for every relation symbol \(r: s_{1} \times \cdots \times s_{n} \leftrightarrow t \quad\) a relation \(r^{\mathcal{A}}: s_{1}^{\mathcal{A}} \times \cdots \times s_{n}^{\mathcal{A}} \leftrightarrow t^{\mathcal{A}}\).
```

sigGraph : \ < sorts: \mathcal{V,E}
ops: src, trg:\mathcal{E}->\mathcal{V}
>

```


The signature graph of sigGraph:
\[
\mathcal{E} \underset{\operatorname{trg}}{\stackrel{S r C}{ }} \mathcal{V}
\]

Signatures, as mathematical objects, are of a similar kind as graphs!

\section*{Recall: Subgraphs}

Definition: Let two graphs \(G_{1}=\left\langle V_{1}, E_{1}, s r C_{1}, \operatorname{trg}_{1}\right\rangle\) and \(G_{2}=\left\langle V_{2}, E_{2}, s r c_{2}, \operatorname{trg} g_{2}\right\rangle\) be given.
- \(G_{1}\) is called a subgraph of \(G_{2}\) iff \(V_{1} \subseteq V_{2}\) and \(E_{1} \subseteq E_{2}\) and \(s r c_{1} \subseteq s r c_{2}\) and \(\operatorname{trg} g_{1} \subseteq t r g_{2}\).
- We write Subgraph \(_{G}\) for the set of all subgraphs of \(G\).
- For a given graph \(G\), we write \(G_{1} \sqsubseteq_{G} G_{2}\) if both \(G_{1}\) and \(G_{2}\) are subgraphs of \(G\), and \(G_{1}\) is a subgraph of \(G_{2}\).

Theorem: \(\sqsubseteq_{G}\) is an ordering on Subgraph \({ }_{G}\).
Theorem: \(\sqsubseteq_{G}\) has greatest element \(G\) and least element \(\langle\},\{ \},\{ \},\{ \}\rangle\).
Theorem: \(\sqsubseteq_{G}\) has binary meets defined by intersection.
Theorem: \(\sqsubseteq_{G}\) has binary joins defined by union.
Theorem: \(\sqsubseteq_{G}\) has pseudo-complements, but not complements.


The subgraph induced by \(\{y, z\}\) has the subgraph induced by \(\{x\}\) as pseudo-complement, but their union is not the whole graph.

\section*{Pseudo- and Semi-Complements of a Subgraph}

Pseudo-complement of \(S: \quad\) The largest \(X\) such that \(X \cap S=\perp\) :


Semi-complement of \(S\) : The smallest \(X\) such that \(X \cup S=T\) :


\section*{Graph Homomorphisms}

Definition: Let two graphs \(G_{1}=\left\langle V_{1}, E_{1}, s r c_{1}, \operatorname{trg} g_{1}\right\rangle\) and \(G_{2}=\left\langle V_{2}, E_{2}, s r C_{2}, \operatorname{trg} g_{2}\right\rangle\) be given.
A pair \(\Phi=\left\langle\Phi_{V}, \Phi_{E}\right\rangle\) is called a graph homomorphism from \(G_{1}\) to \(G_{2}\) iff
- \(\Phi_{V} \in V_{1} \rightarrow V_{2}\) and \(\Phi_{E} \in E_{1} \rightarrow E_{2}\)
- \(\Phi_{E} \varsubsetneqq \operatorname{src}_{2}=\operatorname{src}_{1} \varsubsetneqq \Phi_{V}\) and \(\Phi_{E} \varsubsetneqq \operatorname{trg}_{2}=\operatorname{trg}_{1} \subsetneq \Phi_{V}\)

Homomorphisms are "structure-preserving mappings".
(Mappings; Total and univalent)
Graph homomorphisms can:
- Identify different structure elements
— not injective
- Not cover the target completely
- not surjective


\section*{Graph Homomorphisms Compose}

Definition: Let two graphs \(G_{1}=\left\langle V_{1}, E_{1}, \operatorname{src_{1}}, \operatorname{trg}{ }_{1}\right\rangle\) and \(G_{2}=\left\langle V_{2}, E_{2}, \operatorname{src_{2}}, \operatorname{trg} g_{2}\right\rangle\) be given.
A pair \(\Phi=\left\langle\Phi_{V}, \Phi_{E}\right\rangle\) is called a graph homomorphism from \(G_{1}\) to \(G_{2}\) iff
- \(\Phi_{V} \in V_{1} \rightarrow V_{2}\) and \(\Phi_{E} \in E_{1} \rightarrow E_{2}\)
- \(\Phi_{E}{ }^{\circ} s r C_{2}=\operatorname{src}_{1} \varsubsetneqq \Phi_{V}\) and \(\Phi_{E} \circ \operatorname{trg}_{2}=\operatorname{trg}_{1} 9 \Phi_{V}\)

Definition and theorem: Let three graphs \(G_{0}, G_{1}\), and \(G_{2}\) be given.
Let \(\Phi=\left\langle\Phi_{V}, \Phi_{E}\right\rangle\) be a graph homomorphism from \(G_{0}\) to \(G_{1}\) and \(\Psi=\left\langle\Psi_{V}, \Psi_{E}\right\rangle\) be a graph homomorphism from \(G_{1}\) to \(G_{2}\).
Then their composition \(\Phi \subsetneq \Psi=\left\langle\Phi_{V} \varsubsetneqq \Psi_{V}, \Phi_{E} \varsubsetneqq \Psi_{E}\right\rangle\) is a graph homomorphism from \(G_{0}\) to \(G_{2}\).


Definition and theorem: The identity graph homomorphism \(\mathbb{I}=\langle\mathrm{id} V, \mathrm{id} E\rangle\) is well-defined, and is "the" identity for graph homomorphism composition.

\section*{Graph Homomorphisms Compose - and Form a Category}

Graph homomorphisms have
- source and target graphs,
- associative composition ; of consecutive homomorphisms,
- identity homomorphisms \(\mathbb{I}\) (satisfying the identity laws).

That is, graphs with graph homomorphisms form a category.
In particular:
- \(\Psi\) is an inverse of \(\Phi\) iff \(\Phi \stackrel{\varrho}{ }=\mathbb{I}\) and \(\Psi \varrho \Phi=\mathbb{I}\).
- \(\Phi=\left\langle\Phi_{V}, \Phi_{E}\right\rangle\) has an inverse iff it is bijective, that is, iff both \(\Phi_{V}\) and \(\Phi_{E}\) are bijective.

The inverse of \(\Phi\) is then \(\left\langle\Phi_{V^{\breve{ }}}, \Phi_{E}{ }^{`}\right\rangle\).
(Category theory is the source of the words "functor", "monad", "arrow", etc. in the context of Haskell.)

\section*{Categories}

A category C consists of:
- a collection of objects
- for every two objects \(\mathcal{A}\) and \(\mathcal{B}\) a homset containing morphisms \(f: \mathcal{A} \rightarrow \mathcal{B}\)
- associative composition " \({ }_{9}\) " of morphisms, defined for \(\mathcal{A} \xrightarrow{f} \mathcal{B} \xrightarrow{g} \mathcal{C}\), with \((f ; g): \mathcal{A} \rightarrow \mathcal{C}\)
- for every object \(\mathcal{A}\) an identity morphism \(\mathbb{I}_{\mathcal{A}}\) which is both a right and left unit for composition.

\section*{Categorial Graph Transformation}

Graphs with graph homomorphisms form a category - category theory is re-usable theory!

Using category-theoretical concepts, various graph transformation mechanisms are defined; these are used for system modelling and model transformation.


\section*{Pushouts - A Typical Categorial "Universal Construction"}

Pushouts can be seen as a generalisation of unions/joins:
Recall "Characterisation of \(u\) ": \(\quad\left\langle\xrightarrow{R} \mathcal{D} ⿶^{S}\right\rangle\) is pushout of span " \(\mathcal{B} \leftarrow^{P} \mathcal{A} \xrightarrow{Q} \mathcal{C}\) " iff
\(B \cup C\) is union of sets \(B\) and \(C\) iff \(\forall X \bullet B \subseteq X \wedge C \subseteq X \equiv B \cup C \subseteq X\) \(P ; R=Q ; S \wedge \forall\left\langle\xrightarrow{R^{\prime}} \mathcal{D}^{\prime} \stackrel{S^{\prime}}{\stackrel{ }{\prime}}\right\rangle \mid P ; R^{\prime}=Q ; S^{\prime}\)
- \(\exists Y: D \rightarrow D^{\prime} \bullet R ; Y=R^{\prime} \wedge S ; Y=S^{\prime}\)



Such a pushout can be understood as:
gluing \(\mathcal{B}\) and \(\mathcal{C}\) together "along the interface \(\stackrel{P}{\stackrel{Q}{\longrightarrow}}\) ".

\section*{Double-Pushout Rewriting}


Redex:


Rewriting step:


Example Double-Pushout Rewriting Step: Redex


Example Double-Pushout Rewriting Step: Host



\section*{The Power of Double-Pushout Rewriting}
- easy to understand
- easy to implement
- can \(\left\{\begin{array}{c}\text { delete } \\ \text { identify } \\ \text { add }\end{array}\right\}\) precisely specified items
- cannot duplicate or delete loosely specified items
- no "subgraph variables"

DPO graph rewriting is the most widely used graph transformation formalism.
- Describing evolution/execution of systems modelled as graphs
- Defining model transformations (e.g., of UML diagrams) for system development

\section*{The Power of Gluing}
- Gluing via pushouts (or more general colimits) works in many intersting categories
- A component specifications consists of a signature and axioms
- Such component specifications form a category; specification homomorphism can structure comples specifications:

- Specification homomorphism can also be used for refinement this method is used for correct-by-construction software development


\title{
Logical Reasoning for Computer Science COMPSCI 2LC3
}

McMaster University, Fall 2023

Wolfram Kahl

2023-12-06

\section*{Part 2: Conclusion}

\section*{Organisation}

Extra TA office hours - Details to be announced - current plan:
- Thursday, Dec. 7th, 1:00 to 4:00 p.m. - online only: Course help channel
- Friday, Dec. 8th, 1:00 to 4:00 p.m. - room TBA
- Saturday, Dec. 9th, 1:00 to 4:00 p.m. - room TBA
- Sunday, Dec. 10th, 1:00 to 4:00 p.m. - room TBA (if there is demand)
- Monday, Dec. 11th, 1:00 to 4:00 p.m. - room TBA

The final exam covers the whole course. Expect questions that combine several topics.
- COMPSCI 2LC3 on Avenue and CALCCHECK \({ }_{\text {Web }}\) remains active throughout term 2.
- Collected lecture slides will be posted under "General".
- Please fill in the course experience surveys for all your courses!

Proofs - (Simplified) Inference Rules - See LADM p. 133, "Using Z" ch. 2\&3
"Natural Deduction" - A Presentation of Logic for Mathematical Study of Logic
\[
\begin{aligned}
& \frac{P \wedge Q}{P} \wedge-\operatorname{Elim}_{1} \quad \frac{P \wedge Q}{Q} \wedge-\operatorname{Elim}_{2} \\
& \frac{P}{P \vee Q} \vee-\text { Intro }_{1} \quad \frac{Q}{P \vee Q} \vee-\text { Intro }_{2} \\
& \frac{P \Rightarrow Q \quad P}{Q} \Rightarrow \text {-Elim } \quad \frac{P \quad Q}{P \wedge Q} \wedge \text {-Intro } \\
& \frac{\forall x \bullet P}{P[x:=E]} \text { Instantiation ( } \forall \text {-Elim) } \\
& \frac{P[x:=E]}{\exists x \bullet P} \exists \text {-Intro } \\
& \frac{P}{\forall x \cdot P} \forall \text {-Intro (prov. } x \text { not free } \\
& \text { in assumptions) } \\
& \text { in } R \text {, assumptions) }
\end{aligned}
\]

> About Natural Deduction
> Example proof (using the inference rules as shown in Using Z):
\[
\begin{aligned}
& \overline{(\forall x: a \bullet p) \Rightarrow(\exists x: a \bullet q)} \Rightarrow-\text { intro }^{[2]} \\
& \frac{(\exists x: a \bullet p \Rightarrow q) \quad \Rightarrow((\forall x: a \bullet p) \Rightarrow(\exists x: a \bullet q))}{} \Rightarrow-\text { intro }^{[1]}
\end{aligned}
\]
- Each formula construction \(C\) has:
- Introduction rule(s): How to prove a C-formula?
- Elimination rule(s): How to use a C-formula to prove something else?
- Tactical theorem provers (Coq, Isabelle) provide methods to
(virtually) construct such trees piecewise from all directions
- Several of the Natural Deduction inference rules correspond
- to LADM Metatheorems or proof methods,
- to CALCCHECK proof structures.

\section*{Writing Proofs}
- Natural deduction was designed as a variant of sequent calculus that closely corresponds to the "natural" way of reasoning used in traditional mathematics.
- As such, natural deduction rules constitute building blocks of proof strategies.
- Natural deduction inference trees are not normally used for proof presentation.
- CalcСНеск structured proofs are readable formalisations of conventional informal proof presentation patterns.
- If you wish to write prose proofs, you still need to get the right proof structure first - think СalcСнеск!
- For proofs, informality as such is not a value.

Rigorous (informal) proofs (e.g. in LADM)
strive to "make the eventual formalisation effort minimal".
- There is value to readable proofs, no matter whether formal or informal.
- There is value to formal, machine-checkable proofs, especially in the software context,
where the world of mathematics is not watching.

\section*{Proofs for Software}
- Partial correctness: Verifying essential functionality
- Total correctness: Verifying also termination
- Absence of run-time errors imposes additional preconditions on commands
- Termination is typically dealt with separately requires a well-founded "termination order".

These are supported by tools like Frama-C, VeriFast, Key, ....
- Hoare calculus inference rules are turned into Verification Condition Generation
- Many simple verification conditions can be proved using SMT solvers (Satisfiability Modulo Theories) - Z3, veriT, ...
- More complex properties may need human assitance:

Proof assistants: Isabelle, Coq, PVS, Agda, ...
- Pointer structures require an extension of Hoare logic: Separation Logic

Industry has more and more formal methods jobs!
- Legacy C/C++ code needs to be analysed for issues
- Legacy C/C++ code bases are still growing. . .

\section*{Mathematical Programming Languages}

\section*{- Software is a mathematical artefact}
- Functional programming languages and logic programming languages aim to make expression in mathematical manner easier
- Among reasonably-widespread programming languages.

Haskell is "the most mathematical"
- Dependently-typed logics (e.g., Coq, Lean, PVS, Agda) make it possible to express mathematics in a natural way:
- For a matrix \(M: \mathbb{R}^{3 \times 4}\), the element access \(M_{5,6}\) raises a type error
- A simple graph \((V, E)\) can consist of a type \(V\) and a relation \(E: V \leftrightarrow V\).
- Dependently-typed programming languages (e.g., Agda, Idris)
- contain dependently-typed logics - "proofs are programs, too"
- make it possible to express functional specifications via the type system - "formulae as types": Curry-Howard correspondence
- A program that has not been proven correct wrt. the stated specification does not even compile.

\section*{Continued Use of Logical Reasoning}
- COMPSCI 2AC3 Automata and Computability
- formal languages, grammars, finite automata, transition relations, Kleene algebra! acceptance predicates,...
- COMPSCI 2SD3 Concurrent Systems Design
-correctness of concurrent programs, may use temporal logic
- COMPSCI 2DB3 Databases
- \(n\)-ary relations, relational algebra; functional dependencies
- COMPSCI 3MI3 Principles of Programming Languages
- Programming paradigms, including functional programming;
mathematical understanding of prog. language constructs, semantics
- 3RA3 Software Requirements
- Capturing precisely what the customer wants, formalisation
- COMPSCI 3EA3 Software and System Correctness
- Formal specifications, validation, verification
- COMPSCI 4FP3 Advanced Functional Programming

\section*{Concluding Remarks}
- How do I find proofs? - There is no general recipe
- Proving is somewhat like doing puzzles - practice helps
- Proofs are especially important for software - and much care is needed!
- Be aware of types, both in programming, and in mathematics
- Be aware of variable binding - in quantification, local variables, formal parameters
- Strive to use abstraction to avoid variable binding
- e.g., using relation algebra instead of predicate logic
- When designing data representations, think mathematics: Subsets, relations, functions, injectivity, ...
- Thinking mathematics in programming is easiest in functional languages, e.g., Haskell, OCaml
- Specify formally! - Design for provability!
- When doing software, think logics and discrete mathematics!```

