
HsDep: Dependency Graph Generator for Haskell

Wolfram Kahl

Software Quality Research Laboratory, McMaster University

2004-06-21

This is a wrapper around the dependency generation facilities of GHC that produce a dot graph
for module dependencies.
Usage:

HsDep [--excludes="modules ..."] graphname GHCoptions ... files ...

This calculates a dependency graph among the Haskell modules contained in files (assuming
usual Haskell file naming conventions), except that dependencies to any of the modules listed
in the “--excludes” argument are omitted (quotes are necessary only for protecting space-
separated multiple modules against interference from the shell). The dot representation of the
resulting dependency graph is saved as graphname.dot, and dot is invoked to convert it into
the PostScript file graphname.ps All the GHCoptions ... and files ... are passed unchanged
to the dependency generation invokation of GHC.
The remainder of this document is the literate Haskell implementation code.

import System -- Haskell 98 imports
import IO
import List (partition, isPrefixOf)
import Dot -- companion module

Since full-fledged command-line parsing would require careful distinction of HsDep options from
GHC options, we only extract the --excludes option in a simple way.

exclopt = "--excludes="

After that, we assume that the first remaining argument is the dot graph name.
The implementation is presented top-down:

main = do
(excl ,name : args)← fmap (partition (exclopt ‘isPrefixOf ‘)) getArgs
let dotfile = name ++ ".dot"

psfile = name ++ ".ps"
depfile = name ++ ".depend"
excludes = concatMap (words ◦ drop (length exclopt)) excl

putStrLn ◦ unwords $ excludes

Since it seems to be impossible to have “ghc -M” output the generated dependencies to stdout ,
we need to save them to a file; we use graphname.depend for this purpose and do not to remove
it after processing it, in case it may be needed also for other purpses.
Then we write the dependencies into that temporary file, and parse the file contents into depen-
dency pairs:

system $ unwords (mkdepCommand depfile excludes : args)
deps ← fmap parseDepFile $ readFile depfile

The dependencies are then output as dot graph, and dot is invoked to convert to PostScript.
writeFile dotfile ◦ show ◦ dotOfDeps name $ deps
system $ unwords ["dot -Tps ", dotfile, ">", psfile]

This finishes the definition of main.
For writing dependencies into a given file path, currently the following invocation is necessary:

mkdepCommand depfile excludes =
unwords ◦ ("ghc -M":) ◦map ("-optdep"++) ◦

("-f":) ◦ (depfile:) ◦map ("--exclude-module="++) $ excludes

We represent a module dependency as a pair of module names, encoded as strings:
type ModDep = (String ,String)

For parsing dependency files, we filter out comments first, expect all remaining lines to be file
dependencies, which are converted into module dependencies by depFromLine. We are only
interested in the irreflexive part of this relation, and therefore filter out dependencies arising
from “modname.o : modname.lhs” lines.

parseDepFile :: String → [ModDep]
parseDepFile = filter (uncurry (6≡)) ◦map depFromLine ◦ filter noComment ◦ lines

Comments begin with the hash character, we also consider empty lines as comments.
noComment [] = False
noComment (c : cs) = c 6≡ ’#’

For obtaining module dependencies from file dependencies, we need to drop the suffixes (here
.lhs, .hs, .hi, .o) from both elements. Furthermore, GHC in many cases lists dependencies
from the current directory prefixed with “./”, as well as dependancies from relative directories
prefixed with “.../directory/to/file/”, so we use dropPrefix to eliminate those, too:

depFromLine l = case words l of
[ofile, ":", depfile]→ ((dropSuffix ◦ dropPrefix) ofile, dropPrefix $ dropSuffix depfile)
→ error ("unexpected dependency line ‘‘" ++ l ++ "’’")

This implementation of depFromLine is based on the assumption that “ghc -M” only generates
single-dependency lines and surrounds the colon with spaces; if other output is encountered, this
will be flagged as a run-time error.
The two auxiliary functions used here are straightforward:

dropSuffix = reverse ◦ tail ◦ dropWhile (’.’ 6≡) ◦ reverse
dropPrefix = reverse ◦ takeWhile (’/’ 6≡) ◦ reverse

For the generation of dot graphs, we just turn each dependency into an edge and insert some
useful default settings:

dotOfDeps :: String → [ModDep]→ DotGraph
dotOfDeps name = DotGraph name ◦ (settings++) ◦map (λ(x , y)→ Edge x y [])
settings =

NodeSettings
[("shape", "plaintext"), ("height", "0"), ("width", "0")
, ("fontsize", "20")
]

: map Setting [("nodesep", "0.1")
, ("nslimit", "100"), ("mclimit", "100")] -- make dot work harder

The first three attributes produce outline-free nodes with as little free space around them as
possible. The choice of font size, with otherwise standard settings, makes arrows reasonably
thin and short (relative to the nodes).
Since the generated dot file can be edited and dot run again, and dot settings can also be
supplied on the dot command-line, the lack of possibility to influence the settings chosen here
should not be a big problem.

