
Beyond Pretty-Printing:
Galley Concepts in Document Formatting Combinators

Wolfram Kahl

Institut für Softwaretechnologie, Fakultät für Informatik
Universität der Bundeswehr München, D-85577 Neubiberg, Germany

E-Mail: kahl@informatik.unibw-muenchen.de

Abstract. Galleys have been introduced by Jeff Kingston as one of the key
concepts underlying his advanced document formatting system Lout. Although
Lout is built on a lazy functional programming language, galley concepts are
implemented as part of that language and defined only informally.

In this paper we present a first formalisation of document formatting
combinators using galley concepts in the purely functional programming lan-
guage Haskell.

1 Introduction and Related Work
Pretty printing is an established topic in the functional programming community; it is
targeted towards appropriate layout of data structures,with one of the main applications
being user-friendly display of internal data structures of compilers, for example for
the creation of error messages. Hughes has turned the development of pretty-printing
combinators into a fine art in [2,3]. His combinators have subsequently been improved
upon by Peyton Jones [10]. Wadler [11] has presented a simpler design; yet another set
of “optimal pretty printers” has come forth in [1].

However,document formattingwith problemssuch as the placement of footnotes is
simply outside the scope of pretty printing as discussed in the papers mentioned so far.

The best-known document formatting system in the scientific community is
probably TEX [9]. TEX is built on a rather large number of primitives that incorporate
many fine points of the art of typesetting. TEX offers access to these primitives through
an imperativeprogramming language with dynamic binding and rather weak structuring
capabilities — in short, TEX considered as a programming language is about as impure
as possible.

Another document formattingsystem recentlygainingacceptanceand popularity is
Jeff Kingston’s Lout [6,7,8]. Lout had twenty-three primitives in the version presented
in [6] — this number has grown in the meantime, but is still small. The programming
language available for programming document format definitions is a small lazy
functional programming language with an innovative definition and name visibility
mechanism, flexible composition of aligned objects, a versatile cross reference concept
and, most important for this paper, thegalleyconcept.

The galley abstraction allows to direct part of the document to places somewhere
else in the document, for example footnotes are implemented as galleys directed to
targetsat thebottom of thepage. The generalityof thegalleyabstractionasconceived by

G. Gupta (Ed.): PADL’99, LNCS 1551, pp. 76-90, 1998.
 Springer-Verlag Berlin Heidelberg 1998

Kingston allowsessentiallyall problemsof text flow, tablesof contents,and even indices
and lists of references to be defined via galleys, so that Lout is a document formatting
system that does not even need a built-in concept of pages — pages are defined in the
programming language as objects of a certain size and containing certain targets.

However, the galley concept itself is defined outside the functional programming
language of Lout, described only informally in [6] (and even more informally in the
“Expert’s Guide” [7]), and implemented in C.

In this paper we give a completely formal definition of galley movement in the
pure functional programming language Haskell. By disregarding all aspects unrelated
to galley flushing we are able to present a small set of basic document combinators
that satisfactorily capture the essential behaviour of galleys in Lout and still can be
implemented with relative ease.

2 Overview of Document Formatting Combinators
We start with giving a brief overview of how to reflect the central features of Lout’s
galleys in document formatting combinators.

The exposition of this paper is centred aroundobjects, the datatype for which we
shall present in detail in the next section:
> data Object

A very important object is thenull object which never leaves a trace1:
> null :: Object

For being able to build up more interesting documents, we have to decide on their basic
constituents. Adhering to Lout nomenclature we call thesecomponents. For this paper,
we consider listsof linesascomponents— this is more general than just linesand allows
us to experiment with unbreakable components of different heights:
> type Component = [String]

We want to be able to turn components into objects, and to prefix objects with com-
ponents:
> singleton :: Component -> Object
> prefix :: Component -> Object -> Object

Obviously we can definesingleton via prefix :
> singleton c = prefix c null

A more general means to compose objects isconcatenation:
> (#) :: Object -> Object -> Object

In the expert’s guide to Lout [7], Kingston defines: “A galley is an object plus a cross
reference which points to where the object is to appear.” However, cross references
occurring in galleys are limited to those referring to a name together with a direction2:
> type Galley = (String, Direction, Object)
> data Direction = Preceding | Following

Such a cross reference is taken to mean the list of all targets of the same name, starting
with the next occurence in the respective direction and always continuing forward.

1 Since we have a name clash here, we have to remember to “> import Prelude hiding (null) ”!
2 In Lout, a third mode is possible which is only used for bibliographic reference list entries.

77Beyond Pretty-Printing

A galley considered as an object sends itself as the first outgoing galley and
otherwise behaves likenull — in Lout, such a galley is built by defining a symbol with
the galley object as the body of the definition and a special “@Target” parameter (or the
“ into” abbreviations).
> galley :: Galley -> Object

In Lout, a target that is receptive to galleys is built using the “@Galley” symbol, which
therefore does not represent a galley, but a possibletargetfor galleys. Our combinator
for introducing targets is the following:
> target :: String -> Object

These combinators are not yet sufficient for the definition of pages. Obviously a page
should contain targets for text and footnotes, but the essential feature of a page is that it
restricts the size of what can be received into these targets. Size restriction is achieved
by using the following combinator:
> high :: Int -> Object -> Object

The footnote section, when it appears, will start with some space and a
horizontal line followed by a list of footnotes — we can achieve this by
“prefix ["", "-----"] footList ”.

However, when there is no footnote, then the whole footnote section should
disappear — Lout has the concept ofreceptive symbolsfor this: A receptive symbol is
any symbol defined to directly or indirectly contain a target, and receptive symbols are
replaced bynull if no contained target ever receives a galley.

Our framework lacks the concepts of symbols and definitions, therefore we make
the effect of receptive symbols explicit as a combinator that lets its argument object
appear only if it receives a galley:
> delay :: Object -> Object

Lout relies on recursive definitions for implementing e.g. lists of pages or footnotes;
however Lout uses a special semantics of recursion that includes recursive objects
being delayed and not expanding unless space is sufficient. Since we cannot change the
semantics of recursion in Haskell, we have to provide our own combinator for building
recursive objects and abstain from using Haskell recursion in object definitions:
> recurse :: (Object -> Object) -> Object

Finally we need a function that actually formats a document; its result is a list of
components, which usually shall stand for pages:
> force :: Object -> [Component]

3 A Simple Document Format
These combinators are sufficient to build document formats analogous to those used to
explain galley concepts in [6,7].

A list of pages to hold the whole document is a simple recursion over of a page
concatenated with the recursive call, and every page is a restricted-height object
containing a target for text concatenated with a footnote section:
> pageList = recurse (page #)
> page = high 12 (target "TextPlace" # footSect)

78 Wolfram Kahl

The footnote section is delayed, and contains a recursive list of footnote targets (in
Haskell, the infix operator “$” is low-priority, right-associative function application):

> footSect = delay $ prefix ["", "-----"] footList
> footList = recurse (target "FootPlace" #)

Now we have two kinds of targets; in the simple documents we are considering, corres-
pondingly two kinds of galleys occur, the main text of the document and footnotes:
> text t = galley ("TextPlace",Preceding,t)
> footNote f = galley ("FootPlace",Following,f)

A sample document is constructed with ease:
> purcell = prefix ["PURCELL(1)"] (footNote fn) # body
> fn = singleton ["(1) Blom, Eric. Some", "Great Composers.", "Oxford, 1944."]
> body = foldr prefix null [...]

So now we can format the running example of [6,7] by evaluating the expression:
force (pageList # text purcell) , and displaying the result in a pleasing manner:
--
PURCELL(1)	that is regarded	of the world’s musical
	elsewhere as perfectly	classics, as here, we find
In the world of music	normal and natural; but	that we cannot omit this
England is supposed to be	if foreign students of	English master.
a mere province. If she	musical history have to	
produces an indifferent	acknowledge a British	
composer or performer,	musical genius, he is	
	considered a freak.	

(1) Blom, Eric. Some	Such a freak is	
Great Composers.	Henry Purcell. Yet if we	
Oxford, 1944.	make a choice of fifteen	
--

4 Implementation
Objects are modeled as entities that essentially are prepared to react to two kinds
of stimuli:
– anevaluation requesttries to extract a component into available space,
– areception requestasks the object to receivea galleydirected at some target contained

in the object — we consider it to be an error to send a galley to an object that does
not contain a target for it.

The reactions to both of these have to take into account the available space, which is
expressed as aConstraint , and a booleanforcingparameter which influences the eager-
ness of the object’s behaviour and depends on the object’s position inside concatena-
tion chains.

Furthermore we need to know which receiving targets an object contains, both
open and within delayed or recursive subobjects, and its minimum height as a whole.
Therefore we define:
> data Object = Object
> {eval :: Bool -> Constraint -> EvalResult
> ,receive :: Bool -> Constraint -> Galley -> RcvResult
> ,openTargets :: [String]
> ,delayedTargets :: [String]
> ,height :: Int
> }

79Beyond Pretty-Printing

> type RcvResult = (Bool, [Galley], Object)
> targets o = openTargets o ++ delayedTargets o

The result of evaluating can be:
– Disappearing : The object disappears without trace, which is whatnull always does.
– Suspended : The object cannot yet say what it is going to be, as for example targets

that have not yet been attached to, or recursive or delayed objects. Ifforcing is set
to True in the call toeval , an object must not suspend — it will then usually choose
to disappear.

– NoSpace: The object wants to yield a first component which is too large for the
current constraints.

– Sending : A list of galleys is dispatched.
– Yielding : A non-empty component fitting into the current space constraints is

yielded.
ExceptDisappearing , all results carry a continuation object since the evaluation attempt
always might change the object:
> data EvalResult = Disappearing
> | Suspended { obj :: Object}
> | NoSpace { obj :: Object}
> | Sending {gall :: [Galley], obj :: Object}
> | Yielding {comp :: Component, obj :: Object}

The only measure to be constrained in our current setting is the height of objects;
and there is also the possibility that an object is evaluated without any constraints, so
we define:
> type Constraint = Maybe Int

For modelling more of Lout, the constraint datatype should not only contain informa-
tion about the allowed height and width, but also other settings such as font and spacing
information.

With this we can already define the global document formatting function which
forces evaluation and does not impose any constraints — we decide to simple discard
any stray galleys:
> force :: Object -> [Component]
> force o = case eval o True Nothing of
> Disappearing -> []
> Yielding c o’ -> c : force o’
> Sending gs o’ -> force o’

The possible results ofreceive have the following semantics:
– “(True,gs,o) ” means that the galley was received, triggered further galleysgs , and

that the resulting object is “o”.
– “(False,gs,o) ” means that the galley wasnotreceived,usually because of insufficient

space,but that the object has triggered the galleysgs and may have undergone changes
(such as deciding never to receive anymore); therefore one now has to refer to “o”
instead. Although the argument galley has not been received, it may have been
modified or discarded, so if it is to be sent on, it will always be found ings .

The null object is always ready to disappear immediately without leaving any trace
(rcverror documents an error that should not occur since objects should only be sent
galleys they can receive):

80 Wolfram Kahl

> null :: Object
> null = Object
> {eval = (\ forcing co -> Disappearing)
> ,receive = (\ forcing co g -> rcverror g "null")
> ,openTargets = []
> ,delayedTargets = []
> ,height = 0
> }

A singleton object yields its component if there is space for it and otherwise signals
NoSpace. For testingwhether somecomponentor object fits intoa constraint,respectively
for decreasing a constraint by the amount indicated by some component or object, we
use an appropriately defined classConstrainer and the following functions:
> (&?) :: Constrainer c => Constraint -> c -> Bool
> (&-) :: Constrainer c => Constraint -> c -> Constraint

We give an explicit definition ofsingleton :
> singleton :: Component -> Object
> singleton c = o where
> o = Object
> {eval = (\ forcing co -> if co &? c then Yielding c null else NoSpace o)
> ,receive = (\ forcing co g -> rcverror g "singleton")
> ,openTargets = [], delayedTargets = []
> ,height = length c
> }

The same space considerations apply toprefix , which otherwise inherits the behaviour
of the prefixed object:
> prefix :: Component -> Object -> Object
> prefix c o = o’ where
> o’ = Object
> {eval = (\ forcing co -> if co &? c then Yielding c o else NoSpace o’)
> ,receive = (\ forcing co g ->
> thrdUpd3 (prefix c) $ receive o forcing (co &- c) g)
> ,openTargets = openTargets o
> ,delayedTargets = delayedTargets o
> ,height = length c + height o
> }

For updating the object within theRcvResult we used the prelude-qualitythrdUpd3 :
> thrdUpd3 :: (c -> d) -> (a, b, c) -> (a, b, d)
> thrdUpd3 f (a, b, c) = (a, b, f c)

It is easy to see that the equationsingleton c = prefix c null does indeed hold.
A galley considered as an object sends itself as the first outgoing galley and

otherwise behaves likenull :
> galley :: Galley -> Object
> galley g = Object
> {eval = (\ forcing co -> Sending [g] null)
> ,receive = (\ forcing co g’ -> rcverror g’ "galley")
> ,openTargets = [], delayedTargets = []
> ,height = 0
> }

Before we start to present the definition of object concatenation, we first introduce an
auxiliary combinator that shall be needed there. Taking a componentc and an objecto,
suffix delivers an object that yieldsc only aftero disappears:

81Beyond Pretty-Printing

> suffix :: Component -> Object -> Object
> suffix c o = o’ where
> o’ = Object
> {eval = (\ forcing co -> case eval o forcing (co &- c) of
> Disappearing -> eval (singleton c) forcing co
> r -> r {obj = suffix c (obj r)})
> ,receive = (\ forcing co g ->
> thrdUpd3 (suffix c) $ receive o forcing (co &- c) g)
> ,openTargets = openTargets o
> ,delayedTargets = delayedTargets o
> ,height = length c + height o
> }

Concatenation of two objects into a single object has two main tasks:
– Communication: Galleys sent off by one object, according to their direction either

have to be sent to the other object or to the context.
– Space negotiation: Two objects placed together within one constraint may only grow

as long as they do not infringe into each others space.
Since the final result of evaluating an object must always either be that the object
disappearsor that it yieldsa componentfrom theobject’sbeginning,a naturalasymmetry
is imposed on both seemingly symmetrical tasks. We resolve this asymmetry using the
forcing parameters toeval andreceive as indicated by the following:
– While galleys are sent between the several objects in a concatenation tree, galleys

arriving at the left-most leaf are not expanded, while all other galleys are expanded as
far as possible (are “forced”) on arrival. This ensures for example that footnotes are
allowed to grow after being sent off before the subsequent main text (which is sent to
the competing"TextPlace" target) is allowed to grow into its space.

– While objects are evaluated,Suspended objects are left waiting everywhere except in
the right-most leaf. There, evaluation is “forced”, and targets or delayed objects are
made to disappear — if no galley has reached them yet, there will also be no such
galley later on. Otherwisewe would never be able to determine the end of a document
in our sample format, since there is always apageList waiting at the right end.

For communication of galleys we first present a few auxiliary definitions. We use a
communication state that contains two objectsand a flag signalling whether some galley
already has been received:
> type OCState = (Bool, Object, Object)

This is then used as the state for a simple state monad:
> type STfun s x = s -> (s,x)
> type SToc = STfun OCState [Galley]

We provide a function to combine results ofSToc transformers intoRcvResult s:
> ocMkResult :: (OCState,[Galley]) -> RcvResult
> ocMkResult ((rcv, o1, o2), gs) = (rcv, gs, o1 # o2)

Communication between two adjacent objects has to respect the direction of the galleys
sent off by either. Furthermore we take care that only the very first object of a longer
concatenation receives in a delayed manner, while all later objects receive withforcing

set. The definitions ofocGalleyFrom1 and ocGalleyFrom2 are therefore symmetric
except for theforcing parameter passed to thereceive calls: The second object of a
concatenation always receives withforcing = True , while the first inherits from above:

82 Wolfram Kahl

> ocGalleyFrom1, ocGalleyFrom2 :: Bool -> Constraint -> Galley -> SToc
> ocGalleyFrom1 forcing co g @ (name,Preceding,_) s = (s, [g])
> ocGalleyFrom1 forcing co g @ (name,Following,_) s @ (rcv, o1, o2) =
> if name ‘notElem‘ targets o2 then (s,[g])
> else let (rcv’, gs2, o2’) = receive o2 True (co &- o1) g
> in ocGalleysFrom2 forcing co gs2 (rcv || rcv’, o1, o2’)
> ocGalleyFrom2 forcing co g @ (name,Following,_) s = (s, [g])
> ocGalleyFrom2 forcing co g @ (name,Preceding,_) s @ (rcv, o1, o2) =
> if name ‘notElem‘ targets o1 then (s,[g])
> else let (rcv’, gs1, o1’) = receive o1 forcing (co &- o2) g
> in ocGalleysFrom1 forcing co gs1 (rcv || rcv’, o1’, o2)

Iterated communication is achieved via a simple fold function in the state monad:
> stfold :: (a -> STfun b [c]) -> [a] -> STfun b [c]
> stfold f [] s = (s,[])
> stfold f (g:gs) s = let (s’ , gs’) = f g s
> (s’’, gs’’) = stfold f gs s’
> in (s’’, gs’ ++ gs’’)
> ocGalleysFrom1, ocGalleysFrom2 :: Bool -> Constraint -> [Galley] -> SToc
> ocGalleysFrom1 forcing co = stfold (ocGalleyFrom1 forcing co)
> ocGalleysFrom2 forcing co = stfold (ocGalleyFrom2 forcing co)

In the definition ofreceive , the concatenation looks at the open and delayed receptors
of both components and decides accordingly to which the galley is going to be sent.
> (#) :: Object -> Object -> Object
> o1 # o2 = o where
> o = Object
> {eval = ocEval o1 o2
> ,receive = (\ forcing co g @ (name,d,o’) -> let
> send1 = let (r,gs,o1’) = receive o1 forcing (co &- o2) g
> in ocMkResult $ ocGalleysFrom1 forcing co gs (r, o1’, o2)
> send2 = let (r,gs,o2’) = receive o2 True (co &- o1) g
> in ocMkResult $ ocGalleysFrom2 forcing co gs (r, o1, o2’)
> sendO1 x = if name ‘elem‘ openTargets o1 then send1 else x
> sendO2 x = if name ‘elem‘ openTargets o2 then send2 else x
> sendD1 x = if name ‘elem‘ delayedTargets o1 then send1 else x
> sendD2 x = if name ‘elem‘ delayedTargets o2 then send2 else x
> in case d of
> Following -> sendO1 $ sendO2 $ sendD1 $ sendD2 $ rcverror g "(#)"
> Preceding -> sendO2 $ sendO1 $ sendD2 $ sendD1 $ rcverror g "(#)")
> ,openTargets = openTargets o1 ++ openTargets o2
> ,delayedTargets = delayedTargets o1 ++ delayedTargets o2
> ,height = height o1 + height o2
> }

When evaluating the concatenation of two objects, we first evaluate the first (never for-
cing) and then perform any communication that might result from the galleys sent by
that evaluation. Only the case that the first object suspends is not straight-forward. In
that case, we always evaluate the second object, too, in the hope that the resulting com-
munication relieves the suspension. Therefore we resume evaluation of the combined
object if the concatenated object is forced or if either communicationsucceeded or if the
evaluation of the second object yielded a component — in order to enable more of the
second object to be evaluated if necessary we have to usesuffix to stick that component
onto the end of the first object in the recombination.

83Beyond Pretty-Printing

> ocEval :: Object -> Object -> Bool -> Constraint -> EvalResult
> ocEval o1 o2 forcing co = case eval o1 False (co &- o2) of
> Disappearing -> eval o2 forcing co
> NoSpace o1’ -> NoSpace (o1’ # o2)
> Yielding c o1’ -> Yielding c (o1’ # o2)
> Sending gs o1’ ->
> case ocMkResult $ ocGalleysFrom1 False co gs (False, o1’, o2) of
> (rcv,[],o’) -> eval o’ forcing co
> (rcv,gs,o’) -> Sending gs o’
> Suspended o1’ -> case eval o2 forcing (co &- o1’) of
> Disappearing -> if forcing then eval o1’ forcing co else Suspended o1’
> Suspended o2’-> Suspended (o1’ # o2’)
> NoSpace o2’ -> if forcing then NoSpace o2’ else Suspended (o1’ # o2’)
> Yielding c o2’ -> eval (suffix c o1’ # o2’) forcing co
> Sending gs o2’ ->
> case ocMkResult $ ocGalleysFrom2 False co gs (False, o1’, o2’) of
> (True, [], o’) -> eval o’ forcing co
> (False, [], o’) -> error ("empty Sending???")
> (_, gs, o’) -> Sending gs o’

The functionhigh constrains the height of its object argument to the amount indicated
by the integer argument. If the object argument does not fit in the indicated height, the
remainder object is discarded and a placeholder of the appropriate height is substituted.
Otherwise, the result is filled to the specified height.

Filling up to the specified height involves recursively evaluating the remaining
objectsafterYielding and concatenating the components into a single component — this
task is delegated to the auxiliary functionprefixConc . Besides we also use the following
small functions:
> strut h = replicate h ""
> fill h c = take h (c ++ repeat "")

If the resulting object itself is placed in a too tightly constrained environment, then it
does not fit and remains as the continuation object ofNoSpace.
> high :: Int -> Object -> Object
> high h o = o’ where
> eval’ forcing = case eval o forcing (Just h) of
> NoSpace o1 -> Yielding (fill h ["@High: Object too large"]) null
> Disappearing -> Yielding (strut h) null
> Suspended o1 -> Suspended (high h o1)
> Sending gs o1 -> Sending gs (high h o1)
> Yielding c o1 -> let h’ = h - length c in
> if h’ < 0 then error "@High: yielded component too high!"
> else case eval (high h’ o1) forcing Nothing of
> Yielding c’ o2 -> Yielding (c ++ c’) o2
> Sending gs o2 -> Sending gs (prefixConc c o2)
> Suspended o2 -> Suspended (prefixConc c o2)
> NoSpace o2 -> error "@High: NoSpace in recursive call!"
> Disappearing -> Yielding (fill h c) null
> o’= Object
> {eval = (\ forcing co -> case co of
> Nothing -> eval’ forcing
> Just h’ -> if h’ < h then NoSpace o’ else eval’ forcing)
> ,receive = (\ forcing co g ->
> thrdUpd3 (high h) $ receive o forcing (Just h) g)

84 Wolfram Kahl

> ,openTargets = openTargets o
> ,delayedTargets = delayedTargets o
> ,height = h
> }

The auxiliary functionprefixConc used above is the tool that allowshigh to assemble
components of exactly the right height from objects that yield small irregular compon-
ents by modifying its argument object toconcatenatethe argument component before
its first yielded component:
> prefixConc :: Component -> Object -> Object
> prefixConc c o = o’ where
> o’ = Object
> {eval = (\ forcing co -> case eval o forcing (co &- c) of
> Disappearing -> Yielding c null
> Yielding c’ o2 -> Yielding (c ++ c’) o2
> r -> r {obj = prefixConc c (obj r)})
> ,receive = (\ forcing co g -> if co &? c
> then thrdUpd3 (prefixConc c) $ receive o forcing (co &- c) g
> else (False, [forward g], o’))
> ,openTargets = openTargets o, delayedTargets = delayedTargets o
> ,height = length c + height o
> }

If a galley cannot be received because of lack of space, it has to be sent on looking for its
next target; but it always has to be turned forward for this purpose (imagine overflowing
text in the example presented in Sect. 3; although it finds its first page initially as the
Preceding target, the next target to be unveiled bypagelist is theFollowing):
> forward :: Galley -> Galley
> forward (name,d,o) = (name,Following,o)

A galley that has reached its target transforms this target into a concatenation consisting
of the object carried by the galley and the target itself which has to be ready to receive
more galleys directed at it. However, if the galley object does not fit into the space at
the target — a fact that cannot be excluded at reception time — it has to be sent on to
the next target with the same name, and the original target disappears.

For this purpose we provide the following auxiliary combinator that shall be used
in the definition oftarget and thatattachesa received object to a target name.

An important case to consider is that the attached object might be a concatenation,
since concatenation takes into account the heights ofbothits components before decid-
ing to yield a component. However, if the attached object is too large for the space where
it currently resides, it will send itself to the next target — therefore we have to evaluate
the attached object with no size constraint so that it may yield itsfirst component without
internal size considerations (isEmpty determines whether a constraint isJust 0):
> attach :: String -> Object -> Object
> attach name = attach’ where
> attach’ o = o’ where
> o’= Object
> {eval = (\ forcing co -> case eval o forcing Nothing of
> Disappearing -> Disappearing
> NoSpace o1 -> error "attach: NoSpace without constraints!"
> Suspended o1 -> if isEmpty co
> then Sending [(name,Following,attach’ o1)] null
> else Suspended (attach’ o1)

85Beyond Pretty-Printing

> Sending gs o1 -> Sending gs (attach’ o1)
> Yielding c o1 -> if co &? c then Yielding c (attach’ o1)
> else Sending [(name,Following,attach’ (prefix c o1))] null)
> ,receive = (\ forcing co g -> thrdUpd3 attach’ $ receive o forcing co g)
> ,openTargets = openTargets o
> ,delayedTargets = delayedTargets o
> ,height = 0
> }

Thetarget function is used to build the basic receptive objects. It therefore disappears
when evaluation is forced on it, and suspends otherwise.

When receiving, we have to distinguish whether reception is forced or not — re-
member that all but the first object of a concatenation have to perform forced reception.
The motivation behind this is that, for example, the size of a footnote needs to be known
before the text canbeallowed tofill the remainderof thepage. Thereforethe footnotehas
to expand as far as possible once its galley has reached its target. Again, this expansion
involves evaluation without constraints since the part that does not fit into the current
target will be sent on to the next target.
> target :: String -> Object
> target name = o where
> o = Object
> {eval = (\ forcing co -> if forcing then Disappearing
> else case co of Just 0 -> Disappearing
> _ -> Suspended o)
> ,receive = (\ forcing co g @ (name’,d’,o’) -> case co of
> _ -> if name /= name’ then rcverror g "target"
> else if not forcing then (True, [], (attach name o’ # o))
> else case eval o’ False Nothing of
> Disappearing -> (True, [], o)
> Suspended o’’ -> (True, [], (attach name o’’ # o))
> NoSpace o’’ -> error "target: NoSpace without constraint!"
> Sending gs1 o’’ -> (True, gs1, (attach name o’’ # o))
> Yielding c o’’ -> if co &? c then
> let g’ = (name’,Following,o’’)
> (rcv, gs1, o1) = receive (prefix c o) forcing co g’
> in (True, gs1, o1)
> else (False, [(name,Following,prefix c o’’)], null))
> ,openTargets = [name]
> ,delayedTargets = []
> ,height = 0
> }

The last line of the definition ofreceive reflects the fact that when there is not enough
space for the first component of the galley arriving at its target, then the galley is sent
on to the next target in forward direction, and the original target disappears.

Objects built withrecurse anddelay are both delayed objects1 and expand only
if some contained target receives a galley. Therefore both disappear when forced and
suspend on normal evaluation.

As a small concession to the forcing galleys of Lout (which are not directly

1 In this paper we only considerreceptiverecursive objects. The behaviour of other recursive objects in Lout
apparently cannot be integrated easily into the forcing strategy of the current paper.

86 Wolfram Kahl

connected with our forcing parameters)we allow them to disappear, too, when it is clear
that there is not enough space for expansion. Since eventually these objects would be
forced away in the end, this is not strictly necessary, but in the effect it allows pages to
be flushed earlier.

When a recursive object is asked to receive a galley, it first checks whether a single
instance of the body of the recursion, withnull substituted for the recursive call, can
receive thegalleyunder thepresent sizeconstraints. Only if this ispossible,the recursion
is unfolded one level and the galley sent to the result — note that this tentative evaluation
is possible without problems since it cannot provoke any side effects. If reception is
impossible, then the galley is sent on and the recursive object disappears — otherwise
footnotes might appear out of order.
> recurse :: (Object -> Object) -> Object
> recurse ff = o
> where
> ffo = ff o
> ff0 = ff null
> targs = targets ff0
> o = Object
> {eval = (\ forcing co -> if forcing || isEmpty co || not (co &? ffo)
> then Disappearing else Suspended o)
> ,receive = (\ forcing co g @ (name,d,o’) -> case co of
> Just 0 -> (False, [forward g], null)
> _ -> if name ‘elem‘ targs
> then case receive ff0 forcing co g of
> (False, gs, o1) -> (False, [forward g], null)
> r -> receive ffo forcing co g
> else rcverror g "recurse")
> ,openTargets = []
> ,delayedTargets = targs
> ,height = 0
> }

Since it only receives after expansion, a recursive object contains no open targets, and
all targets of the body are delayed targets of the recursion.

For objects built withdelay , the same considerations apply:
> delay :: Object -> Object
> delay o = o’ where
> o’ = Object
> {eval = (\ forcing co -> if forcing || isEmpty co || not (co &? o)
> then Disappearing else Suspended o’)
> ,receive = (\ forcing co g @ (name,d,o’) -> case co of
> Just 0 -> (False, [forward g], null)
> _ -> if name ‘elem‘ targs
> then case receive o forcing co g of
> (False, gs, o1) -> (False, [forward g], null)
> r -> r
> else rcverror g "delay")
> ,openTargets = []
> ,delayedTargets = targs
> ,height = 0
> }
> targs = targets o

87Beyond Pretty-Printing

5 Extensions
If in our example document format there is a footnote on a page with only little other
material, then this footnote will be appended immediately below that material instead of
being pushed to the bottom of the page. Since we do not have anything corresponding
to the gap modes of lout, which influence the space behaviour of concatenation and can
be used for such purposes, we might instead want to define
> vfill = recurse (prefix [""])

and insert this on top offootSect for pushing the footnote sections to the bottom of
the page.

However,as mentioned before, this un-receptive recursion does not work well with
our present evaluation strategy. Nevertheless we can introduce a combinator roughly
corresponding to the Lout symbol@VExpand that makes an object take up all space
available for it (as long as that space is finite):
> vExpand :: Object -> Object
> vExpand o = o’ where
> o’ = Object
> {eval = (\ forcing co -> case co of
> Nothing -> eval o forcing co
> Just 0 -> eval o forcing co
> Just h -> case eval o forcing co of
> Disappearing -> Yielding (strut h) null
> NoSpace o1 -> NoSpace o1
> Sending gs o1 -> Sending gs (vExpand o1)
> Suspended o1 -> Suspended (vExpand o1)
> Yielding c o1 -> Yielding c (if length c < h then vExpand o1 else o1))
> ,receive = (\ frc co g -> thrdUpd3 vExpand (receive o frc co g))
> ,openTargets = openTargets o
> ,delayedTargets = delayedTargets o
> ,height = height o
> }

If we now modify the definition ofpage accordingly, then footnotes are always pushed
to the bottom of the page:
> page = high 12 (vExpand (target "TextPlace") # footSect)

Another extension that we would like to present will allow us to number our pages.
We give a variant of therecurse combinator that uses functions from arbitrary

domains toObject s instead of justObject s. The definition is unchanged except for the
framework needed to set up the two expanded objects:
> recurseF :: ((a -> Object) -> (a -> Object)) -> (a -> Object)
> recurseF ff = f
> where
> f’ = ff f
> f a = o where
> ffo = f’ a
> ff0 = ff (const null) a
> targs = targets ff0
> o = Object -- { as before }

The modificationsnecessary to obtain numbered pages are now very easy:the numbered
page itself is obtained via a Haskell function taking the page number and delivering
a numbered page (including thevExpand from above), and the list of numbered pages

88 Wolfram Kahl

is a recursion over a function that maps a page-list generatormkpl to another page-list
generator that generates a numbered page concatenated with a recursive call using an
incremented page number:
> npage :: Int -> Object
> npage n = high 14 $ prefix [" - " ++ show n ++ "-",""]
> (vExpand (target "TextPlace") # footSect)

> npageList :: Object
> npageList = let f mkpl n = npage n # mkpl (n+1)
> in recurseF f 1

6 Concluding Remarks
Motivated by the galley concept implemented in Lout, we have presented Haskell
definitions of eight elementary and two advanced document formatting combinators.
Thesecombinatorsallow toput together document formatsthat includepage numbering,
footnotes and tables of contents in a simple, declarative and intuitive way. We have not
strived to mimick exactly the behaviour of Lout, but have instead tried to construct a
self-contained, intuitively motivated and explainable implementation of the document
formatting combinators. The definitions of those combinators, although they are not
trivial and may not yet be the most elegant, still fitted into the space constraints set for
this paper and show the elegance of Kingston’s galley abstraction and how this may be
reflected in a purely functional formalisation.

Especially the extension to recurse over object-yielding functions also shows how
document formatting can profit from being embedded into a full-fledged functional
programming language, just as with many other domain-specific languages.

Although much still needs to be done to be able to reflect also the other abstractions
underlying Lout in a Haskell setting, these combinators perhaps may serve to illuminate
a little bit the path towards Jeff Kingston’s “vapourware successor to Lout”:
– A Haskell implementation of Lout or its successor would allow compiled document

formats, so that only the document itself needed to be interpreted.
– Furthermore, document format authors could be given the choice whether to

program in Lout or directly in Haskell, where the full power of Haskell would be at
their fingertips.

– The concise functional specificationcould also serve asa more rigorousyet accessible
documentation — the Lout mailing list abounds of postings by users baffled by the
intricacies of the galley flushing algorithm.

An interesting application of the galley concept could also be found in literate program-
ming: Therevariantsof the same document partsare directed at different targets,namely
program code files and documentation, very much like section headings are directed to
their place above the section and to the table of contents.

Such an extension will be much easier to explore from within a Haskell setting
than from the C implementation — one point to take care of is that we relied on the
absence of side-effects in the definition ofrecurse , so that output to files either should
not happen duringreceive s, or the defintion ofrecurse (and the forcing strategy) would
have to be adapted.

89Beyond Pretty-Printing

Since the document formatting combinators presented in this paper are purely
functional, and since their interaction is rather complicated, it is not easy to find the
reasons for unexpected behaviour during development, especially since the relation
between cause and effect may be very indirect and obscure. Since the author does not
have access to any usable Haskell debugger or tracer, the Haskell definitions of this
paper have been translated into term graph rewriting rules for the graphically interactive
strongly typed second-order term graph transformationsystemHOPS [4,5]. Being able
to watchthings go wrong was invaluable for tracking down subtle design errors.

This paper has been typeset using the Lout document formatting system. Lout
definitions and an auxiliary Haskell program provided by the author turn this paper into
a literate program; the Haskell code generated from this paper with the use of Lout and
FunnelWeb [12] is available on the WWW at

URL: http://diogenes.informatik.unibw-muenchen.de/kahl/Haskell/VGalleys.html.

References
1. Pablo R. Azero, S. Doaitse Swierstra. Optimal Pretty-Printing Combinators, 1998. URL

http://www.cs.ruu.nl/groups/ST/Software/PP/.

2. John Hughes. Pretty-printing: An Exercise in Functional Programming. In R. S. Bird, C.
C. Morgan, J. C. P. Woodcock (eds.),Mathematics of Program Construction, pages 11–13.
LNCS 669. Springer-Verlag, 1992.

3. John Hughes. The Design of a Pretty-printing Library. In J. Jeuring, E. Meijer (eds.),
Advanced Functional Programming, pages 53–96. LNCS. Springer-Verlag, 1995.

4. Wolfram Kahl. TheHigher Object ProgrammingSystem — User Manual forHOPS,
Fakultät für Informatik, Universität der Bundeswehr München, February 1998. URL http://
diogenes.informatik.unibw-muenchen.de:8080/kahl/HOPS/.

5. Wolfram Kahl. Internally Typed Second-Order Term Graphs. In J. Hromkovic, O. Sýkora
(eds.),Graph Theoretic Concepts in Computer Science, WG ’98, pages 149–163. LNCS
1517. Springer-Verlag, 1998.

6. Jeffrey H. Kingston. The design and implementation of the Lout document formatting
language.Software — Practice and Experience23, 1001–1041 (1993).

7. Jeffrey H. Kingston.An Expert’s Guide to the Lout Document Formatting System (Version
3). Basser Department of Computer Science, University of Sydney, 1995.

8. JeffreyH.Kingston.AUser’sGuide to the Lout Document FormattingSystem (Version3.12).
Basser Department of Computer Science, University of Sydney. ISBN 0 86758 951 5,
1998. URL ftp://ftp.cs.su.oz.au/jeff/lout.

9. Donald E. Knuth.The TEXBook. Addison-Wesley, 1984.

10. Simon Peyton Jones. A Pretty Printer Library in Haskell, Version 3.0, 1997. URL http://
www.dcs.gla.ac.uk/~simonpj/pretty.html.

11. Philip Wadler. A Prettier Printer, 1998. URL http://cm.bell-labs.com/cm/cs/who/wadler/
papers/prettier/. Draft paper

12. Ross N. Williams. FunnelWeb User’s Manual, May 1992. URL http://www.ross.net/
funnelweb/introduction.html. Part of the FunnelWeb distribution

90 Wolfram Kahl

