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Abstract

These notes are a current snapshot of the development of the theory of collagories, which are
defined essentially as “distributive allegories without zero morphisms” and named for their close
relationship with the adhesive categories currently popular as a foundation for the categorical
double-pushout approach to graph transformation.

We argue that, thanks to their relation-algebraic flavour, collagories provide a more acces-
sible and more flexible setting. One contributing factor to this is that the universal characteri-
sations of pushouts and pullbacks in categories can be replaced with the local characterisations
of tabulations and co-tabulations in collagories.

We document accessibility by showing ways to construct collagories of semi-unary algebras,
which allow natural representations in particular of graph structures, also with fixed label sets.

Via the local ordering on homsets, collagories have a simple 2-categorical structure, and we
use this to show that co-tabulations are equivalent to lax colimits of difunctional morphisms,
and co-tabulations arising from spans of mappings are equivalent to bipushouts, which satisfy
stronger conditions than just pushouts of mappings.

Finally, we consider Van-Kampen squares, the central ingredient of the definition of adhesive
categories, and obtain an interesting characterisation of Van-Kampen squares in collagories.
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Chapter 1

Introduction and Basic Definitions

1.1 Introduction

The co-tabulation characterisation of pushouts, which essentially goes back to Kawahara [Kaw90],
therefore has a precise categorical counterpart in bipushouts, and, even more closely, in lax col-
imits of difunctional morphisms in an allegory context.

One of the hallmarks of the relation-algebraic approach to graph transformation [Kaw90, Kah01,
Kah04] is that it allows an abstract characterisation of the gluing condition for the double
pushout approach. Nevertheless, the categorical approach to graph transformation has contin-
ued to use the node-and-edge-based formulation of the gluing condition even in the handbook
chapter [CMR+97]. Recently, the literature of the categorical approach, starting essentially
with [EPPH06] has adopted the “adhesive categories” of Lack and Sobociński [LS04], where
however the details of the gluing condition are completely sidestepped.

Although the toposes of graph structures that give rise to the relational categories used in
the relational approach are examples of adhesive categories, the latter also include, for example,
categories of pointed sets, which do not give rise to distributive allegories due to the failure of
the zero law.

We introduce collagories by dropping the zero law (and the necessary existence of least
morphisms) from distributive allegories, and show that this still produces a relational formalism
that can accommodate the necessary tools for graph transformation, and furthermore relates
nicely with adhesive categories.

After the basic category, allegory, and collagory definitions in the remaining sections of
this chapter we turn to the definitions and properties of tabulations and co-tabulations in
Chapter 2. In Chapter 3, we then use a simple generalisation of standard Σ-algebra construction
for signatures containing only unary function symbols and constant symbols. This way, we
obtain collagories of “relational Σ-algebra homomorphisms” on top of simpler base collagories,
as for example the collagory Rel of sets and relations. We show when this construction also
preserve bitabularity, and since constant symbols enable for example modelling pointed sets,
we obtain collagories that do not correspond to toposes.

In Chapter 4 we return to study co-tabulations, now in the context of considering collagories
as simple 2-categories via the local homset ordering. Here, we prove that co-tabulations are
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4 CHAPTER 1. INTRODUCTION AND BASIC DEFINITIONS

exactly equivalent to bicolimits of difunctional morphisms, and that furthermore cotabulations
of spans of mappings are equivalent to bipushouts.

Finally, we show in Chapter 5 that mappings in bitabular collagories form an adhesive
category, and produce some novel characterisations of van Kampen squares in this setting.

The central defintions of Sections 1.3, 2.2 and 2.3, the results of Chapter 3, and weaker
versions of the results in Sect. 5.2 have been published as [Kah09a], and in a longer version
as the report [Kah09b], which is essentially superseded by these current notes. The results
of Chapter 4 together with newer results from Chapter 5 are summarised will appear in the
proceedings of GT-VMT 2010.

1.2 Categories, Allegories

This section only serves to fix notation and terminology for standard concepts, see [FS90, SS93,
Kah04]. Like Freyd and Scedrov and an increasing number of categorists, we denote composition
in “diagram order” not only in relation-algebraic contexts, where this is customary, but also
in the context of categories. We will always use the infix operator “.,” to make composition
explicit: R ., S = A R-B S-C.

Definition 1.2.1 A category C is a tuple (ObjC, MorC, src, trg, I, .,) where

• ObjC is a collection of objects.

• MorC is a collection of arrows or morphisms.

• src (resp. trg) maps each morphism to its source (resp. target) object.

Instead of src(f ) = A ∧ trg(f ) = B we write f : A → B.

The collection of all morphisms f with f : A → B is denoted as MorC[A,B] and also called
a homset.

• “.,” is the binary composition operator, and composition of two morphisms f : A → B and
g : B′ → C is defined iff B = B′, and then (f ., g) : A → C; composition is associative.

• I associates with every object A a morphism IA which is both a right and left unit for
composition.

Definition 1.2.2 An ordered category is a category C such that

• for each two objects A and B, the relation ⊑A,B is a partial order on MorC[A,B] (the
indices will usually be omitted), and

• composition is monotonic with respect to ⊑ in both arguments.

Definition 1.2.3 An upper-semilattice category is an ordered category where

• each homset is an upper semilattice with binary join ⊔,

• composition distributes over binary joins from both sides.

For homsets that have least or greatest elements, we introduce corresponding notation:
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Definition 1.2.4 In an ordered category, for each two objects A and B we introduce the
following notions:

• If the homset MorC[A,B] contains a greatest element, this is denoted ⊤⊤A,B.

• If the homset MorC[A,B] contains a least element, this is denoted ⊥⊥A,B.

For these extremal morphisms and for identities we frequently omit indices where these can be
induced from the context.

Definition 1.2.5 An ordered category with converse, or OCC, is an ordered category such that

• each morphism R : A → B has a converse R` : B → A,

• the involution equations hold for all R : A → B and S : B → C:

(R`)` = R I
`

A = IA (R ., S )` = S` ., R`

• conversion is monotonic with respect to ⊑.

Many standard properties of relations can be characterised in the context of OCCs [Kah04]:

Definition 1.2.6 A morphism R : A → B in an OCC is called:

• univalent iff R` ., R ⊑ IB,

• total iff IA ⊑ R ., R`,

• injective iff R ., R` ⊑ IA,

• surjective iff IB ⊑ R` ., R,

• a mapping iff it is univalent and total,

• bijective iff it is injective and surjective,

• difunctional iff R ., R` ., R ⊑ R. (See [SS93, 4.4] for more about difunctionality).

For an OCC C, we write MapC for the sub-category of C that contains only the mappings as
arrows.

The following definition, based on allegories by Freyd and Scedrov, is already applicable in
OCCs.

Definition 1.2.7 [FS90, 2.15] An object U in an OCC is a partial unit if IU = ⊤⊤U ,U . The
object U is a unit if, further, every object is the source of a total morphism targeted at U . An
OCC is said to be unitary if it has a unit.

We use the symbol “1l” for an arbitrary but fixed unit object.

Difunctionality plays an important rôle in our theories; a concrete relation, understood as a
Boolean matrix, is difunctional iff it can be rearranged into “loose block-diagonal form”, with
full rectangular blocks such that there is no overlap between different blocks in either direction.
(See [SS93, 4.4] for more about difunctionality).

Definition 1.2.8 A morphism R : A → B in an OCC is called difunctional iff R .,R` .,R ⊑ R.
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Definition 1.2.9 For a morphism R : A → B in an allegory, we define its difunctional closure
R ∗⊡ : A → B as the least difunctional morphism containing R (if this exists), and we further
define R∗⊲ : A → A and R ∗⊳ : B → B as:

R∗⊲ := I ⊔ R ∗⊡ ., (R ∗⊡)
`

and R ∗⊳ := I ⊔ (R ∗⊡)
` ., R ∗⊡ .

For endomorphisms, there are a few additional properties of interest:

Definition 1.2.10 A morphism R : A → A in an OCC is called:

• reflexive iff I ⊑ R,

• transitive iff R ., R ⊑ R,

• co-reflexive or a sub-identity iff R ⊑ IA,

• symmetric iff R` ⊑ R,

• an equivalence iff it is symmetric, reflexive and transitive.

Lemma 1.2.11 If B P¾ A Q-C is a span and P` ., Q is difunctional, then P ., P` ., Q ., Q` is
idempotent.

If P and Q are moreover total, then P ., P` ., Q ., Q` is an equivalence.

Proof: The first claim is immediate: P ., P` ., Q ., Q` ., P ., P` ., Q ., Q` = P ., P` ., Q ., Q`.

For the second claim, reflexivity is obvious from totality, and the first claim implies transi-
tivity, and, together with totality, also symmetry:

Q ., Q
` ., P ., P

`
= IA

., Q ., Q
` ., P ., P

` ., IA ⊑ P ., P
` ., Q ., Q

` ., P ., P
` ., Q ., Q

`
= P ., P

` ., Q ., Q
`

If, in the second case, P ., P` and Q ., Q` are themselves equivalences, then P ., P` ., Q ., Q` is
therefore their least upper bound among the equivalences on A.

Lemma 1.2.12 If R and S are equivalences on A that commute, that is, where R ., S = S ., R
holds, then R ., S is an equivalence again.

Proof: Reflexivity and symmetry are obvious; for transitivity we use commutation twice:

R ., S ., R ., S = R ., S ., S ., R = R ., S ., R = R ., R ., S = R ., S

While Freyd and Scedrov in their definition of allegories [FS90, 2.11] derive the homset ordering
from the meet operation, we define allegories on top of ordered categories — the composition
operator has higher precedence than all other binary operators.

Definition 1.2.13 An allegory is an OCC such that

• each homset is a lower semilattice with binary meet ⊓.

• for all Q : A → B, R : B → C, and S : A → C, the modal rule holds:

Q ., R ⊓ S ⊑ (Q ⊓ S ., R`) ., R .
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The most well-known allegory is the category Rel of sets with relations and standard relational
operations. Logical theories give rise to allegories of derived predicates [FS90, App. B]. A simpler
case of that are the allegories arising from Σ-algebras (over some signature Σ) as objects, and
with “relational Σ-homomorphisms”, i.e. bisimulations in the sense of [Kah04], as morphisms.

In allegories, one can define domain and range operators:

Definition 1.2.14 For every morphism R : A ↔ B in an allegory, we define domR : A ↔ A
and ranR : B ↔ B as:

domR := IA ⊓ R ., R
`

ranR := IB ⊓ R
` ., R

1.3 Collagories

κóλλα: glue

In Freyd and Scedrov’s treatment, although allegories are not required to have zero-ary meets,
distributive allegories are required to have zero-ary joins (least elements) together with distribu-
tivity of composition over them, that is, the zero law ⊥⊥ ., R = ⊥⊥. We define an intermediate
concept that does not assume anything about zero-ary joins:

Definition 1.3.1 A collagory is an allegory that is also an upper-semilattice category such
that binary meet and join turn each homset into a distributive lattice.

Requiring least morphisms satisfying zero laws turns collagories into distributive allegories,
which still heave a much weaker theory than relations in a topos, so graph structures (unary
algebras) with relational graph homomorphism in particular also form collagories. In Chapter 3
below, we will show how to construct collagories of generalised algebras over signatures with
only unary function symbols and constant symbols.

For adding Kleene star, we use Kozen’s axioms [Koz94]:

Definition 1.3.2 A Kleene collagory is a collagory where, on homsets of endomorphisms, there
is an additional unary operation ∗ which satisfies the following axioms for all R : A → A,
Q : B → A, and S : A → C:

R∗ = IA ⊔ R ⊔ R∗ ., R∗ recursive star definition

Q ., R ⊑ Q ⇒ Q ., R∗ ⊑ Q right induction

R ., S ⊑ S ⇒ R∗ ., S ⊑ S left induction

Proposition 1.3.3 In a Kleene collagory, all difunctional closures exist, and:

R∗⊲ = (R ., R
`
)∗ , R ∗⊳ = (R

` ., R)∗ , R ∗⊡ = R∗⊲ ., R = R ., R ∗⊳ .
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Alternatively, we also can fore-go the Kleene star and directly axiomatise difunctional closure:

Definition 1.3.4 A difunctionally closed collagory is a collagory where, there is an additional
unary operation ∗⊡ which satisfies the following axioms for all R : A → B, Q : C → A, and
S : B → C: Q ′ : C → B, and S ′ : A → C:

R ∗⊡ = R ⊔ R ∗⊡ ., (R ∗⊡)` ., R ∗⊡ recursive definition

Q ., R ⊑ Q ′ ∧ Q ′ ., R` ., R ⊑ Q ′ ⇒ Q ., R ∗⊡ ⊑ Q ′ right induction

R ., S ⊑ S ′ ∧ R ., R` ., S ′ ⊑ S ′ ⇒ R ∗⊡ ., S ⊑ S ′ left induction

Proposition 1.3.5 In a difunctionally closed collagory, the operation ∗⊡ produces difunctional
closures.

Proof: Containment R ⊑ R ∗⊡ and difunctionality R ∗⊡ ., (R ∗⊡)` ., R ∗⊡ ⊑ R ∗⊡ follow directly from
the recursive definition.

For minimality, assume that C is difunctional with R ⊑ C . Then we have I
., R ⊑ C and

C ., R` ., R ⊑ C ., C` ., C ⊑ C and therefore, with the right induction rule, R ∗⊡ = I
., R ∗⊡ ⊑ C .

Proposition 1.3.6 A Kellene collagory is dinfuctionally closed, with R ∗⊡ := (R ., R`)∗ ., R =
R ., (R` ., R)∗.

Proof: Recursive definition:

R ⊔ R ∗⊡ ., (R ∗⊡)` ., R ∗⊡ = R ⊔ (R ., R`)∗ ., R ., R` ., (R ., R`)∗ ., (R ., R`)∗ ., R

= R ⊔ (R ., R`)∗ ., R ., R` ., R

= I
., R ⊔ (R ., R`)+ ., R

= (R ., R`)∗ ., R

= R ∗⊡

For left induction, assume Q ., R ⊑ Q ′ and Q ′ ., R` ., R ⊑ Q ′. Then left induction of Kleene star
gives us

Q ′ ., R
` ., R∗ ⊑ Q ′ ,

and with this we obtain the conclusion of left induction for difunctional closure:

Q ., R ∗⊡ = Q ., R ., (R
` ., R)∗ ⊑ Q ′ ., (R

` ., R)∗ ⊑ Q ′

Right induction can be shown analogously.



Chapter 2

Tabulations and Co-Tabulations

2.1 Introduction

Central to the connection between pullbacks and pushouts in categories of mappings on the
one hand and constructions in relational theories on the other hand is the fact that a square of
mappings commutes iff the “relation” induced by the source span is contained in that induced
by the target co-span.

A
¡

¡
¡¡ª
P

@
@

@@R

Q

B C
@

@
@@R

R
¡

¡
¡¡ª

S

D

Lemma 2.1.1 [FS90, 2.146] Given a square of mappings in an OCC as drawn above, we have
P ., R = Q ., S iff P` ., Q ⊑ R ., S`.

Proof: Freyd and Scedrov formulated this in the allegory context, but their proof needs
neither meet nor the modal rule:

If P ., R = Q ., S , then

P` ., Q ⊑ P` ., Q ., S ., S` S total

= P` ., P ., R ., S` assumption

⊑ R ., S` P univalent

Conversely, if P` ., Q ⊑ R ., S`, then:

P ., R ⊑ Q ., Q` ., P ., R Q total

⊑ Q ., S ., R` ., R assumption

⊑ Q ., S R univalent

Since both sides of this inclusion are mappings, it shows the equality P ., R = Q ., S .

9
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We introduce a name for the case where the inclusion in Lemma 2.1.1 turns into an equality:

Definition 2.1.2 In an OCC, a square of morphisms as drawn above is said to cross-commute,
or to satisfy the property of cross-commutativity, iff P` ., Q = R ., S`.

Lemma 2.1.1 provides a first hint that in the relational setting, the identity of the two
mappings P and Q does not matter when looking for a pushout of the span B P¾ A Q-C —
we only need to consider the diagonal P` .,Q . Dually, when looking for a pullback of the co-span
B R-D S¾ C, only R .,S` needs to be considered. The gap between the two ways of calculating
the horizontal diagonal can be significant since R ., S` is always difunctional.

Producing the result span of a pullback (respectively the result co-span of a pushout) from
the horizontal diagonal alone is, in some sense, a generalisation of Freyd and Scedrov’s splitting
of idempotents; [Kah04] contains more discussion of this aspect.

We now first present tabulations and some of their properties, and then turn to co-tabulations
in Sect. 2.3. In collagories, least morphisms need not exist; if they do exist, they satisfy only
a subset of the properties that zero morphisms satisfy in distributive allegories, and we col-
lect a few of these properties in Sect. 2.4. Since direct sums (Sect. 2.5) are defined via least
morphisms, the detailed porperties of least morphisms are especially important in that context.

2.2 Tabulations

Definition 2.2.1 [FS90, 2.14] In an allegory, let a morphism V : B → C be given. The span

B P¾ A Q-C of mappings P and Q is called a tabulation of V iff the following equations hold:

P
` ., Q = V P ., P

`
⊓ Q ., Q

`
= IA .

A
¡

¡
¡ª
P

@
@

@R

Q

B V - C

The following equivalent characterisation provided by [Kah04] has the advantage that it is
fully equational, without the implicit inclusion conditions in the requirement that P and Q are
mappings. This frequently facilitates calculations. Notice that I ⊓ V ., V ` = domV ; we use the
expanded form to emphasise the duality with Prop. 2.3.3 below.

Proposition 2.2.2 In an allegory, the span B P¾ A Q-C is a tabulation of
V : B → C if and only if the following equations hold:

P
` ., Q = V

P` ., P = I ⊓ V ., V `

Q` ., Q = I ⊓ V ` ., V
P ., P

`
⊓ Q ., Q

`
= IA .

Tabulations in an allegory are unique up to isomorphism (this uses the modal rule), and include
the following special cases:
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• In a tabulation of a sub-identity, both tabulation morphisms are the induced sub-object
injection [FS90, 2.145].

• We can define a direct product of A and B to be a tabulation A π¾ P ρ-B of a ⊤⊤A,B,
provided that greatest morphism exists.
The resulting direct product definition differs from that of [SS93] in extending naturally to
“empty” objects (e.g., empty sets) by not demanding surjectivity of the projections, but only

π
` ., π = dom⊤⊤A,B ρ

` ., ρ = ran⊤⊤A,B .

• If a co-span B R-D S¾ C of mappings is given, then each tabulation of R ., S` (which need
not exist) is a pullback in MapA [FS90, 2.147].
For a tabular allegory A, this implies that each pullback in MapA is isomorphic to a tab-
ulation, and therefore is itself a tabulation. However, if A is not tabular, then a co-span
B R-D S¾ C of mappings for which no tabulation of R ., S` exists may still have a pullback
in MapA, which then cannot be a tabulation.

If an allegory is known to have all direct products and subobjects, then these can be used to
construct a tabulation for each morphism.

The following properties are immediate consequences of Prop. 2.2.2:

Corollary 2.2.3 If B P¾ A Q-C is a tabulation for V : D → E , then the following hold:

1. P ⊑ Q ., V ` and Q ⊑ P ., V

2. ranP = domV and ranQ = ranV .

From Lemma 1.2.11, we immediately have:

Lemma 2.2.4 If B P¾ A Q-C is a tabulation for V : D → E , and V is difunctional, then
P ., P` ., Q ., Q` is an equivalence.

Furthermore, we have the following special cases:

Lemma 2.2.5 If B P¾ A Q-C is a tabulation for V : D → E , then:

• V is univalent iff P ., P` ⊑ Q ., Q`;

• V is univalent iff P is injective;

• V is injective iff Q ., Q` ⊑ P ., P`;

• V is injective iff Q is injective.

Proof: We only show the first two items since the last two follow analogously.

For the first item, we have:

V ` ., V ⊑ I ⇔ Q` ., P ., P` ., Q ⊑ I first tabulation equation

⇔ P ., P` ⊑ Q ., Q` Q mapping

The last inclusion implies, with the second tabulation equation, that P is injective:

P ., P
`

= P ., P
`
⊓ Q ., Q

`
= I

Conversely, if P is injective, then, since Q is univalent, V = P` ., Q is univalent, too.
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Lemma 2.2.6 If a co-span B R-D S¾ C of mappings is given with R injective, and B P¾ A Q-C
is a tabulation for R ., S`, then Q is injective, too.

Proof: R ., S` is injective since R is injective and S is univalent, so, with Lemma 2.2.5, Q is
injective, too.

Lemma 2.2.7 If

• B P1¾ A Q1-C is a tabulation for V1 : B → C,

• C P2¾ E Q2-D is a tabulation for V2 : C → D,

• A P¾ F Q-E is a tabulation for V : D → E with V := Q1
., P`

2 , and

• V `

1
., V1 ⊓ V2

., V `

2 ⊑ IC,

then B P
.,P1¾ F Q

.,Q2-D is a tabulation for V1
., V2.

F
¡

¡
¡ª
P

@
@

@R

Q

A V - E
¡

¡
¡ª
P1

@
@

@R

Q1
¡

¡
¡ª
P2

@
@

@R

Q2

B
V1 - C

V2 - D

Proof: Commutativity follows easily from the assumptions:

P`

1
., P` ., Q ., Q2 = P`

1
., V ., Q2

= P`

1
., Q1

., P`

2
., Q2

= V1
., V2

In preparation for the second equation, we first see:

P ., P1
., P`

1
., P` ⊓ Q ., Q2

., Q`

2
., Q`

⊑ P ., Q1
., V `

1
., V1

., Q`

1
., P` ⊓ Q ., P2

., V2
., V `

2
., P`

2
., Q` Corollary 2.2.3

= P ., Q1
., V `

1
., V1

., Q`

1
., P` ⊓ P ., Q1

., V2
., V `

2
., Q`

1
., P` P ., Q1 = Q ., P2

= P ., Q1
., (V `

1
., V1 ⊓ V2

., V `

2 ) ., Q`

1
., P` P ., Q1 univalent

⊑ P ., Q1
., Q`

1
., P` Assumption

= P ., Q1
., Q`

1
., P` ⊓ Q ., P2

., P`

2
., Q` P ., Q1 = Q ., P2

The resulting inclusion is used in the last step to show the second tabulation equation:

IF = { tabulation for V }

P ., P` ⊓ Q ., Q`

= { tabulations for V1, V2 }

P ., (P1
., P`

1 ⊓ Q1
., Q`

1 ) ., P` ⊓ Q ., (P2
., P`

2 ⊓ Q2
., Q`

2 ) ., Q`

= { P , Q univalent }

P ., P1
., P`

1
., P` ⊓ P ., Q1

., Q`

1
., P` ⊓ Q ., P2

., P`

2
., Q` ⊓ Q ., Q2

., Q`

2
., Q`

= { above }

P ., P1
., P`

1
., P` ⊓ Q ., Q2

., Q`

2
., Q`
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The precondition V `

1
.,V1⊓V2

.,V `

2 ⊑ IC here corresponds to the condition pointed out by Bruni
and Gadducci [BG03] for preservation of composition by the standard conversion of relations
to spans of total functions, namely that for all b ∈ B and d ∈ D there exists at most one c ∈ C
for which bV1c and cV2d .

Note that we also have V `

1
., V1 ⊓ V2

., V `

2 = Q`

1
., Q1 ⊓ P`

2
., P2:

V `

1
., V1 ⊓ V2

., V `

2

= V `

1
., V1 ⊓ V2

., V `

2 ⊓ IC assumption V `

1
., V1 ⊓ V2

., V `

2 ⊑ IC

= Q`

1
., P1

., P`

1
., Q1 ⊓ P`

2
., Q2

., Q`

2
., P2 ⊓ IC tabulation commutativity

= ran (P`

1
., Q1) ⊓ ran (Q`

2
., P2) Def. 1.2.14

= ran (ran (P`

1 ) ., Q1) ⊓ ran (ran (Q`

2 ) ., P2) locality of ran

= ranQ1 ⊓ ranP2 P1 and Q2 total

= Q`

1
., Q1 ⊓ P`

2
., P2 Q1 and P2 univalent

We show the well-known composition property of pullbacks in the tabulation formulation:

Lemma 2.2.8 Let the following commuting diagram of mappings be given:

A
f - B

g - C

a

?
Ta

b1 b

?
Ta

b2 c

?

D m - E n - F

If E b¾ B g-C is a tabulation for n ., c`, then D a¾ A f-B is a tabulation for m ., b` iff

D a¾ A f
.,g-C is a tabulation for m ., n ., b`.

Proof: Assume that E b¾ B g-C is a tabulation for n ., c`, that is,

b
` ., g = n ., c

`
and b ., b

`
⊓ g ., g

`
= IB . (Tab2)

“⇒”: If also D a¾ A f-B is a tabulation for m ., b`, that is,

a
` ., f = m ., b

`
and a ., a

`
⊓ f ., f

`
= IA , (Tab1)

then cross-commutativity composes easily: a` ., f ., g = m ., b` ., g = m ., n ., c`, and we obtain:

a ., a` ⊓ f ., g ., g` ., f `

= a ., a` ⊓ a ., m ., m` ., a` ⊓ f ., g ., g` ., f ` m total

= a ., a` ⊓ f ., b ., b` ., f ` ⊓ f ., g ., g` ., f ` (Tab1) with Lemma 2.1.1

= a ., a` ⊓ f ., (b ., b` ⊓ g ., g`) ., f ` f univalent

= a ., a` ⊓ f ., f ` (Tab2)

= IA (Tab1)

This shows that D a¾ A f
.,g-C is a tabulation for m ., n ., b`.
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“⇐”: Now assume that D a¾ A f
.,g-C is a tabulation for m ., n ., b`:

a
` ., f ., g = m ., b

`
and a ., a

`
⊓ f ., g ., g

` ., f
`

= IA , (Tab)

Then:
a ., a` ⊓ f ., f ` = a ., a` ⊓ f ., (b ., b` ⊓ g ., g`) ., f ` (Tab2)

⊑ a ., a` ⊓ f ., g ., g` ., f `

= IA (Tab)

For cross-commutativity, we need the assumption that the left square commutes:

a` ., f = a` ., f ., (b ., b` ⊓ g ., g`) (Tab2)

= a` ., (f ., b ., b` ⊓ f ., g ., g`) f univalent

= a` ., (a ., m ., b` ⊓ f ., g ., g`) commutativity

= m ., b` ⊓ a` ., f ., g ., g` f univalent

= m ., b` ⊓ m ., n ., c` ., g` (Tab)

= m ., b` ⊓ m ., n ., n` ., b` (Tab2) with Lemma 2.1.1

= m ., (IB ⊓ n ., n` ., b` m, b univalent

= m ., b` n total

2.3 Co-tabulations

While a tabulation can be seen as a certain kind of decomposition of an arbitrary morphism in
an allegory (which are all co-difunctional) into a span, the dual of a tabulation is then a certain
kind of decomposition of a difunctional morphism in a collagory into a co-span.

In this context, a stronger version of Lemma 2.1.1 is worth keeping in mind:

Lemma 2.3.1 Given a square of mappings in an OCC as drawn below, and existence of the
difunctional closure of P` ., Q , we have P ., R = Q ., S iff (P` ., Q) ∗⊡ ⊑ R ., S`.

A
¡

¡
¡ª
P @

@
@R

Q

B C
@

@
@R
R ¡

¡
¡ª
S

D

Proof: The “if” direction follows immediately from P` ., Q ⊑ (P` ., Q) ∗⊡ and the “if” direction
of Lemma 2.1.1.

For “only if”, assume P ., R = Q ., S . Then P` ., Q ⊑ R ., S` by Lemma 2.1.1, and

R ., S` ., Q` ., P ., P` ., Q = R ., R` ., P` ., P ., P` ., Q commutativity

= R ., R` ., P` ., Q P unival.

= R ., S` ., Q` ., Q commutativity

⊑ R ., S` Q unival.
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By left-induction for difunctional closure we therefore have

(P
` ., Q) ∗⊡ ⊑ R ., S

`
.

Although the formal material here is dual to that in Sect. 2.2, we still spell it out in full
detail for reference and better intuition.

Definition 2.3.2 [Kah04] In a collagory, let a morphism W : B → C be given. The co-span

B R-D S¾ C of mappings R and S is called a co-tabulation of W iff the following equations
hold:

R ., S
`

= W R
` ., R ⊔ S

` ., S = ID .

B W - C
@

@
@R

R ¡
¡

¡ª
S

D

The first equation implies W ., W ` ., W = R ., S` ., S ., R` ., R ., S` ⊑ R ., S` = W (using univalence
of R and S ), so if W has a co-tabulation, it has to be difunctional.

Furthermore, from univalence of R and S we also obtain R` ., W = R` ., R ., S` ⊑ S` and
W ., S = R ., S` ., S ⊑ R.

Co-tabulations also have an equivalent characterisation that does not involve the mapping
concept explicitly and is perfectly “bi-dual” to the tabulation characterisation in Prop. 2.2.2:

Proposition 2.3.3 In a collagory, the co-span B R-D S¾ C is a co-tabulation of W : B → C
iff the following equations hold:

R ., S
`

= W
R ., R` = I ⊔ W ., W `

S ., S` = I ⊔ W ` ., W
R

` ., R ⊔ S
` ., S = ID .

In a collagory, we have the following special cases of co-tabulations:

• In a co-tabulation of an equivalence relation, both R and S are the induced quotient projec-
tions.

• We can define a direct sum of A and B to be a co-tabulation of ⊥⊥A,B, if that least morphism
exists.

If direct sums and quotients are available, then a co-tabulation can be constructed for each
difunctional morphism.

To establish the relationship between the relation-algebraic co-tabulation definition and the
universal characterisation of pushouts in categories, we first establish a generalised factorisation
property for co-tabulations:

Lemma 2.3.4 In a collagory C, let W : B ↔ C be a difunctional morphism.

If the cospan B R-D S¾ C is a co-tabulation of W , and if the cospan B R′-D′ S ′¾ C in C

consists of morphisms that satisfy

W ., S ′ ⊑ R′ and W
` ., R′ ⊑ S ′ ,
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then U : D → D′ with U := R` ., R′ ⊔ S` ., S ′ is a morphism in C such that R ., U = R′ and
S ., U = S ′.

If R′ and S ′ are univalent, then so is U .
If R′ and S ′ are total, then so is U .

Proof: Factorisation follows easily from the assumptions:

R ., U = R ., R` ., R′ ⊔ R ., S` ., S ′ = (I ⊔ W ., W `) ., R′ ⊔ W ., S ′ = R′

S ., U = S ., R` ., R′ ⊔ S ., S` ., S ′ = W ` ., R′ ⊔ (I ⊔ W ` ., W ) ., S ′ = S ′

Univalence follows from factorisation and univalence of R′ and S ′:

U
` ., U = (R′` ., R ⊔ S ′` ., S ) ., U = R′` ., R ., U ⊔ S ′` ., S ., U = R′` ., R′ ⊔ S ′` ., S ′ ⊑ I

Totality of U uses totality of R′ and S ′, and the last co-tabulation condition:

U ., U` ⊒ R` ., R′ ., R′` ., R ⊔ S` ., S ′ ., S ′` ., S Definition of U

⊒ R` ., R ⊔ S` ., S Totality of R′ and S ′

⊒ I R, S co-tabulation

This helps to show that co-tabulations are unique up to isomorphism (for the factorisation of
difunctional W = R .,S` into surjective mappings this has already been shown in [SS93, 4.4.10]):

Theorem 2.3.5 In a collagory, let W : B ↔ C be a difunctional morphism.

If the cospans B R-D S¾ C and B R′-D′ S ′¾ C are both co-tabulations for W , then there
is a bijective mapping U : D → D′ such that R′ = R ., U and S ′ = S ., U .

Proof: With the co-tabulation conditions for B R′-D′ S ′¾ C and univalence of R′ and S ′ we
obtain:

W ., S ′ = R′ ., S ′` ., S ′ ⊑ R′ and W
` ., R′ = S ′ ., R′` ., R′ ⊑ S ′ .

With Lemma 2.3.4 we know that U := R` ., R′ ⊔ S` ., S ′ is a mapping that factorises R′ and S ′.

By the same argument for U`, we obtain that U is also bijective.

Although cocone commutativity is weakened in co-tabulations in comparison with that of
OC-colimits, we still obtain the isotony property:

Lemma 2.3.6 In a collagory C, let W : B ↔ C be a difunctional morphism.
If the cospan B R-D S¾ C is a co-tabulation of W , and U ,U ′ : D → D′ are two morphisms

in C with R ., U ⊑ R ., U ′ and S ., U ⊑ S ., U ′, then U ⊑ U ′.

Proof: From the assumptions, we obtain

R
` ., R ., U ⊑ R

` ., R ., U ′ and S
` ., S ., U ⊑ S

` ., S ., U ′ ,

and by combining these and using the last co-tabulation property, we see:

U = (R` ., R ⊔ S` ., S ) ., U

= R` ., R ., U ⊔ S` ., S ., U

⊑ R` ., R ., U ′ ⊔ S` ., S ., U ′

= (R` ., R ⊔ S` ., S ) ., U ′

= U ′
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Lemma 2.3.7 In a collagory C, let W1 : B ↔ C and W2 : C ↔ E be a difunctional morphism.
If the cospan B R1-D S1¾ C is a co-tabulation of W1, the cospan C R2-F S2¾ E is a co-

tabulation of W2, and the cospan D R-G S¾ F is a co-tabulation of W := (S`

1
., R2)

∗⊡, then

the cospan B R1

.,R-G S2

.,S¾ E satisfies

R1
., R ., S

` ., S
`

2 = (W1
., W2)

∗⊡ .

If furthermore

IC ⊑ W
`

1
., W1 ⊔ W2

., W
`

2 , (∗)

then it also satisfies

R
` ., R

`

1
., R1

., R ⊔ S
` ., S

`

2
., S2

., S = IG ,

i.e., it is a co-tabulation of (W1
., W2)

∗⊡.

B
W1 - C

W2 - E
@

@
@R

R1

¡
¡

¡ª
S1

@
@

@R
R2

¡
¡

¡ª
S2

D -
W

F
@

@
@R

R
¡

¡
¡ª

S

G

Proof:

R1
., R ., S` ., S`

2 = R1
., W ., S`

2

= R1
., (S`

1
., R2)

∗⊡ ., S`

2

= W1
., (R2

., R`

2
., S1

., S`

1 )∗ ., W2

= W1
., ((I ⊔ W2

., W `

2 ) ., (I ⊔ W `

1
., W1))

∗ ., W2

= (W1
., W2)

∗⊡ W1, W2 difunctional

IG = R` ., R ⊔ S` ., S

= R` ., (R`

1
., R1 ⊔ S`

1
., S1)

., R ⊔ S` ., (R`

2
., R2 ⊔ S`

2
., S2)

., S

= R` ., R`

1
., R1

., R ⊔ R` ., S`

1
., S1

., R ⊔ S` ., R`

2
., R2

., S ⊔ S` ., S`

2
., S2

., S

= R` ., R`

1
., R1

., R ⊔ R` ., S`

1
., R2

., S ⊔ S` ., S`

2
., S2

., S S1
., R = R2

., S

= R` ., R`

1
., R1

., R ⊔ S` ., S`

2
., S2

., S see below

The last equality relies on the following inclusion:

R` ., S`

1
., R2

., S ⊑ R` ., S`

1
., (W `

1
., W1 ⊔ W2

., W `

2 ) ., R2
., S (∗)

= R` ., S`

1
., W `

1
., W1

., S1
., R ⊔ S` ., R`

2
., W2

., W `

2
., R2

., S S1
., R = R2

., S

⊑ R` ., R`

1
., R1

., R ⊔ S` ., R`

2
., W2

., W `

2
., R2

., S W1
., S1 ⊑ R1

⊑ R` ., R`

1
., R1

., R ⊔ S` ., S`

2
., S2

., S W `

2
., R2 ⊑ S2
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A co-tabulation for a difunctional closure Z ∗⊡ satisfies the following equations:

R ., S
`

= Z ∗⊡ R ., R
`

= Z ∗⊲ S ., S
`

= Z ∗⊳ R
` ., R ⊔ S

` ., S = ID .

This was introduced as a gluing for the morphism Z in [Kah01]. Kawahara is the first to have
characterised pushouts relation-algebraically in essentially this way [Kaw90]; he used relation-
algebraic operations on relations arising in toposes.

In the following, we will relate tabulations and co-tabulations on the one hand with pushouts
and pullbacks on the other hand, and in order to make this discussion less awkward with
repect to formulations, we introduce the following convention that extends the use of the words
“tabulation” and “co-tabulation” from triangle diagrams to encompass also square diagrams:

Convention 2.3.8 For a square of morphisms as drawn to the right, we say that

• it is a tabulation iff B P¾ A Q-C is a tabulation for R ., S`,
• Q- •

P
? ?

S

• R- •• it is a (direct) co-tabulation iff B R-D S¾ C is a co-tabulation for P` ., Q ,

• it is a gluing iff B R-D S¾ C is a gluing for P` ., Q , that is, if it is a co-tabulation for
(P` ., Q) ∗⊡.

Definition 2.3.9 If an allegory has a tabulation for each morphism, we call it tabular.
If a collagory has a co-tabulation for each morphism, we call it co-tabular, and if it is

furthermore tabular, we call it bi-tabular.

2.4 Least Morphisms in Collagories

We collect now a few properties of least morphisms that hold independent of the zero laws.

Lemma 2.4.1 If the least morphism ⊥⊥A,B exists, and F : B ↔ C is univalent, then ⊥⊥A,C exists,
too, and

⊥⊥A,B
., F = ⊥⊥A,C

Proof: For any R : A → C we have ⊥⊥A,B ⊑ R ., F`, and therefore ⊥⊥A,B
., F ⊑ R ., F` ., F ⊑ R

using univalence of F , so ⊥⊥A,B
., F is a least morphism.

2.5 Direct Sums in Collagories

Direct sums can be defined as co-tabulations for least morphisms, but since in collagories, least
morphisms are not assumed to satisfy any zero laws, not all properties one usually expects of
direct sums carry over to the collagory setting.

Definition 2.5.1 For two objects A and B in a collagory for which the least morphism ⊥⊥A,B

exists, a cospan A ι- S κ¾ B is a direct sum iff it is a co-tabulation for ⊥⊥A,B.
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Therefore, if A and B have a direct sum, the least element ⊥⊥A,B needs to exist, and needs
to be difunctional.

We shall frequently use (implicit, partial) choices of direct sums with the following notation:

A
ιA,B- A + B

κA,B¾ B

Furthermore, given two morphisms R : A → C and S : B → D, and the direct sums A+B and
C + D, we define:

XA,B := ι`

A,B
., κB,A ⊔ κ`

A,B
., ιB,A

R + S := ι`

A,B
., R ., ιC,D ⊔ κ`

A,B
., S ., κC,D

When using direct sums, we need to be careful since, although we do have ιA,B
., κ`

A,B = ⊥⊥A,B

from the co-tabulation properties, the least morphism ⊥⊥A,B does not necessarily satisfy any
zero laws.

For example, in general, we only have:

Lemma 2.5.2 For a direct sum A + B and two morphisms R : A → C and S : B → C:

ιA,B
., (ι`

A,B
., R ⊔ κ`

A,B
., S ) = R ⊔ ⊥⊥A,B

., S

κA,B
., (ι`

A,B
., R ⊔ κ`

A,B
., S ) = S ⊔ ⊥⊥B,A

., R

Proof: We only show the first equation:

ιA,B
., (ι`

A,B
., R ⊔ κ`

A,B
., S ) = ιA,B

., ι`

A,B
., R ⊔ ιA,B

., κ`

A,B
., S join distributivity

= R ⊔ ⊥⊥A,B
., S co-tabulation properties

Lemma 2.5.3 For a direct sum A + B and two morphisms R : A → C and S : B → C:

• If S is univalent, then ιA,B
., (ι`

A,B
., R ⊔ κ`

A,B
., S ) = R.

• If R is univalent, then κA,B
., (ι`

A,B
., R ⊔ κ`

A,B
., S ) = S .

Proof: Again, we show only the first item:

ιA,B
., (ι`

A,B
., R ⊔ κ`

A,B
., S ) = R ⊔ ⊥⊥A,B

., S Lemma 2.5.2

= R ⊔ ⊥⊥A,C Lemma 2.4.1

= R join with least morphism

From that, we obtain some useful properties of X and +:

ιA,B
., XA,B = ιA,B

., (ι`

A,B
., κB,A ⊔ κ`

A,B
., ιB,A)

= κB,A Lemma 2.5.3
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and
(R + S ) ., XC,D = (ι`

A,B
., R ., ιC,D ⊔ κ`

A,B
., S ., κC,D) ., XC,D

= ι`

A,B
., R ., κD,C ⊔ κ`

A,B
., S ., ιD,C

= XA,B
., κ`

B,A
., R ., κD,C ⊔ XA,B

., ι`

B,A
., S ., ιD,C

= XA,B
., (κ`

B,A
., R ., κD,C ⊔ ι`

B,A
., S ., ιD,C)

= XA,B
., (S + R)

and
XB,A

., (R + S ) ., XC,D = XB,A
., (ι`

A,B
., R ., κD,C ⊔ κ`

A,B
., S ., ιD,C)

= κ`

B,A
., R ., κD,C ⊔ ι`

B,A
., S ., ιD,C

= S + R

Also:
ιA,B

., (R + S ) = ιA,B
., (ι`

A,B
., R ., ιC,D ⊔ κ`

A,B
., S ., κC,D)

= R ., ιC,D ⊔ ⊥⊥A,B
., S ., κC,D

κA,B
., (R + S ) = κA,B

., (ι`

A,B
., R ., ιC,D ⊔ κ`

A,B
., S ., κC,D)

= S ., κC,D ⊔ ⊥⊥B,A
., R ., ιC,D

and

(P + Q) ., (R + S )

= (ι`

A,B
., P ., ιC,D ⊔ κ`

A,B
., Q ., κC,D) ., (R + S )

= ι`

A,B
., P ., ιC,D

., (R + S ) ⊔ κ`

A,B
., Q ., κC,D

., (R + S )

= ι`

A,B
., P ., (R ., ιE,F ⊔ ⊥⊥C,D

., S ., κE,F) ⊔ κ`

A,B
., Q ., (S ., κE,F ⊔ ⊥⊥D,C

., R ., ιE,F)

= ι`

A,B
., P ., R ., ιE,F ⊔ ι`

A,B
., P ., ⊥⊥C,D

., S ., κE,F ⊔ κ`

A,B
., Q ., S ., κE,F ⊔ κ`

A,B
., Q ., ⊥⊥D,C

., R ., ιE,F

= (P ., R + Q ., S ) ⊔ ι`

A,B
., P ., ⊥⊥C,D

., S ., κE,F ⊔ κ`

A,B
., Q ., ⊥⊥D,C

., R ., ιE,F

Lemma 2.5.4 (inspired by [BG03, Def. 4.1]) Let A ι-S κ¾ B be a direct sum of A and B.

1. If R : S → S is symmetric and transitive, then ι ., R ., κ` is difunctional.

2. If W : A → B is difunctional, then S := ι` ., W ., (W ` ., ι ⊔ κ) ⊔ κ` ., W ` ., (ι ⊔ W ., κ) is
symmetric and transitive, and ι ., S ., κ` = W .

Proof: The first item is shown by direct calculation:

ι ., R ., κ` ., κ ., R` ., ι` ., ι ., R ., κ` ⊑ ι ., R ., R` ., R ., κ` ι, κ univalent

⊑ ι ., R ., R ., R ., κ` R symmetric

⊑ ι ., R ., κ` R transitive

For the second item, S is obviously symmetric. Even if the zero law does not hold, and without
assuming anything about ⊥⊥A,B except that it is a least morphism, we have

ι ., κ` = ⊥⊥A,B ⊑ W

ι ., ι` = I ⊔ ⊥⊥A,B
., ⊥⊥`

A,B ⊑ I ⊔ W ., W `

κ ., κ` = I ⊔ ⊥⊥`

A,B
., ⊥⊥A,B ⊑ I ⊔ W ` ., W .
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Together with difunctionality of W and injectivity and totality of ι and κ, this implies:

(W ` ., ι ⊔ κ) ., ι` = W `

W ., (W ` ., ι ⊔ κ) ., κ` = W

W ` ., (ι ⊔ W ., κ) ., ι` = W `

(ι ⊔ W ., κ) ., κ` = W

These equations, together with difunctionality of W , allow us to derive transitivity of S :

S ., S = ι` ., W ., (W ` ., ι ⊔ κ) ., ι` ., W ., (W ` ., ι ⊔ κ)

⊔ ι` ., W ., (W ` ., ι ⊔ κ) ., κ` ., W ` ., (ι ⊔ W ., κ)

⊔ κ` ., W ` ., (ι ⊔ W ., κ) ., ι` ., W ., (W ` ., ι ⊔ κ)

⊔ κ` ., W ` ., (ι ⊔ W ., κ) ., κ` ., W ` ., (ι ⊔ W ., κ)

= ι` ., W ., W ` ., W ., (W ` ., ι ⊔ κ)

⊔ ι` ., W ., W ` ., (ι ⊔ W ., κ)

⊔ κ` ., W ` ., W ., (W ` ., ι ⊔ κ)

⊔ κ` ., W ` ., W ., W ` ., (ι ⊔ W ., κ)

= ι` ., W ., (W ` ., ι ⊔ κ) ⊔ κ` ., W ` ., (ι ⊔ W ., κ)

= S

The equations above also give us:

ι ., S ., κ` = ι ., ι` ., W ., (W ` ., ι ⊔ κ) ., κ` ⊔ ι ., κ` ., W ` ., (ι ⊔ W ., κ) ., κ`

= ι ., ι` ., W ⊔ ι ., κ` ., W ` ., W

= ι ., (ι` ⊔ κ` ., W `) ., W

= W

The corresponding statements for equivalences easily follow from this.

2.6 The Gluing Condition in Collagories

We can now state a relational variant of the gluing condition, first introduced by Kawahara
[Kaw90]:

Definition 2.6.1 Let two morphisms1 Φ : G → L and X : L → A in a collagory with pseudo-
complements on subidentities be given.2

1Note that “X ” is a capital “χ”.
2Pseudo-complements are residuation of meet in lower semilattice categories; where pseudo-complements

exist, we denote the pseudo-complement or R with respect to S as R → S , and we have:

X ⊓ R ⊑ S ⇔ X ⊑ (R → S )

For example, the pseudo-complement of a subgraph R of a graph G with respect to another subgraph S consists
of all nodes of G that are in S or not in R, and all edges in S or not in R that are also nor incident with nodes
in R. Intuitively, R → S therefore is G with the parts or R outside S removed, and then also all dangling
edges removed.
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• We say that the identification condition holds iff X ., X` ⊑ I ⊔ (ran Φ) ., X ., X` ., ran Φ .

• We say that the dangling condition holds iff ranX ⊔ (ranX → ran (Φ ., X )) = I .

The proofs that the gluing condition is sufficient for the existence
of a pushout complement [Kaw90], and that injectivity of Φ is suf-
ficient for unambiguity of the pushout complement [Kah01] carry
over to the collagory setting, but are outside the scope of this pa-
per.

Another related condition is important in the context of the
single-pushout approach:

L Φ¾ G

X
?

Ξ
p

p

p

p

p

p

p

p

p

p?
A Ψ

pppppppppp¾ H

Definition 2.6.2 In an allegory, we call X conflict-free for Φ iff ran (Φ ., X ., X`) ⊑ ran Φ.

For a node-and-edges-level formulation of conflict-freeness it is well-known that the induced
single-pushout squares have a total embedding of the right-hand side into the application graph
[Löw90, Cor. 3.18.5]. The component-free formulation above was first given in [Kah01], where
it is also shown (Thm. 5.4.11) that a restricting derivation step for a conflict-free redex produces
a pushout of partial functions.



Chapter 3

Algebraic Collagory Constructions

3.1 Collagories of Semi-Unary Algebras and Bisimula-

tions

In [Kah01, Kah04], relational homomorphisms between unary algebras have been shown to
form a distributive allegory. In this section we generalise this result to collagories by allowing
constant symbols and in turn dropping the zero law requirement.

Most of the mathematical content of this section has been presented and proven in more
detail in [Kah01, Kah04]. Besides the proof of Theorem 3.1.6, also the reformulation using the
sort-indexed product category and the forgetful functor UΣ is new.

Definition 3.1.1 A signature is a tuple (S,F , src, trg) consisting of

• a set S of sorts ,

• a set F of function symbols ,

• a mapping src : F → S∗ associating with every function symbol the list of its source sorts,
and

• a mapping trg : F → S associating with every function symbol its target sort.

Such a signature is called semi-unary if length(src(f )) ≤ 1 for each f : F , and unary if
length(src(f )) = 1 for each f : F .

For a function symbol f : F , we usually employ the shorthand “f : s1×· · ·×sn → t” instead
of the rather verbose “src(f ) = 〈s1, . . . , sn〉 and trg(f ) = t”. For a zero-ary function symbol,
also called constant symbol, we write “f : 1l → t”.

The following example signatures will be used for discussion and results in sections 3.2 and 3.3:

sigGraph := 〈 sorts: V, E

ops: Ds ,Dt : E → V

〉

sigPointedSet := 〈 sorts: S

ops: Dpoint : 1l → S

〉

23
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sigPoint := 〈 sorts: P

ops:

〉

sigPointed := 〈 sorts: P, O

ops: Dp : P → O

〉

sigType := 〈 sorts: T

ops:

〉

sigTyped := 〈 sorts: O, T

ops: Dt : O → T

〉

sigNELabels := 〈 sorts: NL, EL

ops:

〉

sigLGraph := 〈 sorts: N, E, NL, EL

ops: Ds ,Dt : E → N,

Dn : N → NL,

De : E → EL

〉

Definition 3.1.2 For a set S (of sorts) and a category C, we define CS , the S-indexed product
category of C, as follows:

• an object A of CS consists of C-objects sA for every s : S;

• a morphism Φ : A → B of CS is an S-indexed family of C-morphisms Φ = (Φs)s:S such
that Φs : sA → sB for every sort s : S.

• composition .,S and identities I
S are defined component-wise;

• if C is an allegory, then inclusion ⊑S , meet ⊓S and converse are defined component-wise;

• if C is a collagory, then join ⊔S is defined component-wise.

One easily verifies that the resulting S-indexed product categories, allegories, and collagories
all satisfy the respective axioms.

When defining Σ-algebras in the presence of binary function symbols, we need several techni-
cal conditions on direct products [Kah01, Def. 3.1.12]; for the current study, we can do without
direct products (at the cost of some duplication of formalisation for unary and zero-ary function
symbols), but we still need OCCs for the characterisation of mappings:

Definition 3.1.3 Given a semi-unary signature Σ = (S,F, src, trg) and an OCC C, which has
to have a unit 1l if Σ contains constant symbols, an abstract Σ-algebra over C consists of the
following items:

• an object A of CS ,

• for every function symbol f :F with f : s → t a mapping f A : sA → tA in C.

• for every constant symbol c:F with c : 1l → t a mapping cA : 1l → tA in C.

It is important to note that, where we use sets as carriers, we have no restriction to non-empty
sets — unlike most of the universal algebra literature.

Since we use this definition to construct an allegory with abstract Σ-algebras as objects, the
generality of discussing abstract Σ-algebras over allegories allows us to stack this construction
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at no cost at all, with possibly different signatures at every level, building for example graphs
where the nodes and edges are hypergraphs and hypergraph morphisms.

The morphisms in allegories of Σ-algebras have to behave “essentially like relations”, and
so it is only natural that we consider a relational generalisation of conventional (functional)
Σ-homomorphisms. For arbitrary signatures, this has been presented in [Kah01]. For unary
signatures, one naturally starts with defining L-simulations satisfying Φ`

s
.,f A ⊑ f B .,Φ`

t according
to de Roever and Engelhardt [dRE98], and then proceeds to L-simulations for which their
converse is an L-simulation, too; these are called “bisimulations” in [Kah04].

Definition 3.1.4 Let a signature Σ = (S,F, src, trg), an allegory C, and two abstract Σ-
algebras A and B over C be given.

A Σ-bisimulation from A to B is a CS-morphisms from A to B such that for every function
symbol f ∈ F with f : s → t and every constant symbol c ∈ F with c : 1l → t the following
inclusions hold:

Φs
., f B ⊑ f A ., Φt , and cB ⊑ cA ., Φt .

In the allegory C, this gives rise to the following sub-commuting diagrams (including one for
the n-ary case):

1l cA
- tA

I1l

?
⊑

?

Φt

1l -
cB tB

sA
f A

- tA

Φs

?
⊑

?

Φt

sB -
f B tB

sA1 × · · · × sAn
gA

- tA

Φs1 × · · · × Φsn

?

⊑

?

Φt

sB1 × · · · × sBn
-

gB tB

Using Σ-algebras over C as objects and Σ-bisimulations as morphisms defines a category CΣ

with an obvious “underlying” functor UΣ : CΣ → CS .

This “forgetful” functor UΣ is faithful. If C is an allegory, then UΣ reflects inclusion, meets
and converse in the sense that these can be defined for CΣ via their UΣ images. Therefore, CΣ

is an allegory, too [Kah01, Thm. 3.2.6].

We may observe a few simple facts:

• If C contains an initial object ∅, and Σ contains no constants, then we obtain an initial
object OΣ in CΣ by choosing sOΣ = ∅ for each sort s and f OΣ = I∅ for each function symbol
f .

• If C contains a unit 1l, then we obtain a unit 1lΣ in CΣ by choosing s1lΣ = 1l for each sort s
and f 1lΣ = I1l for each function symbol f .

Conventional Σ-algebra homomorphisms are just mappings in the allegory RelΣ of concrete
Σ-algebras over the allegory Rel of sets and concrete relations.

If Σ contains a constant symbol, then even if the allegory C has least morphisms, then least
homomorphisms in CS are not generally in the range of UΣ, and even if CΣ does have least
morphisms, the zero law will in general not hold for them, no matter whether it holds in C.
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If Σ contains a function symbol of arity at least 2, then even if C is an upper-semilattice
category, then UΣ does not reflect joins, in the sense that UΣ(Φ) ⊔S UΣ(Ψ) is not necessarily in
the range of UΣ. Furthermore, even if CΣ has joins, composition will, in presence of function
symbols of arity at least 2, in general not distribute over these joins (since non-empty joins do
not distribute over the product × occurring in the homomorphism condition) so CΣ will not
be an upper-semilattice category.

For semi-unary signatures, however, UΣ does reflect joins:

Lemma 3.1.5 If C is an upper-semilattice category, Σ is a semi-unary signature, and Φ, Ψ :
A → B are two Σ-bisimulations, then Φ⊔S Ψ is a Σ-bisimulation, too, and is the join in CΣ of
Φ and Ψ, that is, Φ ⊔Σ Ψ = Φ ⊔S Ψ.

Proof: We need to check the bisimulation conditions for unary function symbols f : s → t
and for constant symbols c : 1l → t :

(Φ ⊔S Ψ)s
., f B = (Φs ⊔ Ψs)

., f B = Φs
., f B ⊔ Ψs

., f B

⊑ f A ., Φt ⊔ f A ., Ψt = f A ., (Φt ⊔ Ψt) = f A ., (Φ ⊔S Ψ)t

cB ⊑ cA ., Φt ⊔ cA ., Ψt = cA ., (Φt ⊔ Ψt) = cA ., (Φ ⊔S Ψ)t

The equation Φ ⊔Σ Ψ = Φ ⊔S Ψ follows from the reflection of inclusion by UΣ.

Given the closure of Σ-bisimulations under the converse, meet, and join operations in CS ,
properties of C-morphisms for these operations are inherited by Σ-bisimulations because of the
component-wise definitions, and we obtain:

Theorem 3.1.6 If Σ is a semi-unary signature and C is a collagory, then CΣ is a collagory,
too.

If C has tabulations (respectively co-tabulations), the sort-indexed product category CS ob-
viously has tabulations (respectively co-tabulations), too, and they can be calculated component-
wise. Perhaps surprisingly, these can be extended to the collagory CΣ of bisimulations between
Σ-algebras without problems; we just need to provide definitions for the function symbols of
the “new” objects, and verify all relevant conditions:

Theorem 3.1.7 If Σ = (S,F, src, trg) is a semi-unary signature and C is an allegory, and

B P¾ A Q-C is a tabulation in CS of the Σ-bisimulation V : B → C, i.e., for each sort s : S,
B Ps¾ A Qs-C is a tabulation of Vs : sB → sC, then we define for each function symbol f : s → t
and each constant symbol c : 1l → t in Σ:

f A := Ps
., f B ., P`

t ⊓ Qs
., f C ., Q`

t

cA := cB ., P`

t ⊓ cC ., Q`

t

Then A turns into a Σ-algebra and P and Q are Σ-bisimulations, too, so B P¾ A Q-C is a
tabulation in CΣ.
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Proof: We first show the bisimulation conditions for P ; those for Q follow analogously:

Ps
., f B = (Ps ⊓ Qs

., Q`

s
., Ps)

., f B Qs total

= (Ps ⊓ Qs
., V `

s ) ., f B tabulation of Vs

⊑ Ps
., f B ⊓ Qs

., V `

s
., f B meet-subdistributivity

⊑ Ps
., f B ⊓ Qs

., f C ., V `

t V ` bisimulation

= Ps
., f B ⊓ Qs

., f C ., Q`

t
., Pt tabulation of Vt

= (Ps
., f B ., P`

t ⊓ Qs
., f C ., Q`

t ) ., Pt Pt univalent

= f A ., Pt Def. f A

cB = cB ⊓ cC ., V `

t V ` bisimulation

= cB ⊓ cC ., Q`

t
., Pt tabulation of Vt

= (cB ., P`

t ⊓ cC ., Q`

t ) ., Pt Pt univalent

= cA ., Pt Def. cA

Next we show that f A and cA are univalent:

(f A)` ., f A = (Pt
., (f B)` ., P`

s ⊓ Qt
., (f C)` ., Q`

s )
., (Ps

., f B ., P`

t ⊓ Qs
., f C ., Q`

t )

⊑ Pt
., (f B)` ., P`

s
., Ps

., f B ., P`

t ⊓

Qt
., (f C)` ., Q`

s
., Qs

., f C ., Q`

t

⊑ Pt
., (f B)` ., f B ., P`

t ⊓ Qt
., (f C)` ., f C ., Q`

t Ps , Qs univalent

⊑ Pt
., P`

t ⊓ Qt
., Q`

t f B, f C univalent

= ItA tabulation of Vt

(cA)` ., cA = (Pt
., (cB)` ⊓ Qt

., (cC)`) ., (cB ., P`

t ⊓ cC ., Q`

t )

⊑ Pt
., (cB)` ., cB ., P`

t ⊓ Qt
., (cC)` ., cC ., Q`

t )

⊑ Pt
., P`

t ⊓ Qt
., Q`

t cB, cC univalent

= ItA tabulation of Vt

For showing totality of f A and cA, we use all the above:

f A ., (f A)` = f A ., (Pt
., (f B)` ., P`

s ⊓ Qt
., (f C)` ., Q`

s )

= f A ., Pt
., (f B)` ., P`

s ⊓ f A ., Qt
., (f C)` ., Q`

s f A univalent

⊒ Ps
., f B ., (f B)` ., P`

s ⊓ Qs
., f C ., (f C)` ., Q`

s P , Q bisim.

⊒ Ps
., P`

s ⊓ Qs
., Q`

s f B, f C total

= IsA tabulation of Vs

cA ., (cA)` = cA ., (Pt
., (cB)` ⊓ Qt

., (cC)`)

= cA ., Pt
., (cB)` ⊓ cA ., Qt

., (cC)` cA univalent

= cB ., (cB)` ⊓ cC ., (cC)` P , Q bisim.

⊒ I1l cB, cC total
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Theorem 3.1.8 If Σ = (S,F, src, trg) is a semi-unary signature and C is a collagory, and

B R-D S¾ C is a co-tabulation in CS of the Σ-bisimulation W : B → C, i.e., for each sort
s : S, B Rs-D Ss¾ C is a tabulation of Ws : sB → sC, then we define for each function symbol
f : s → t and each constant symbol c : 1l → t in Σ:

f D := R`

s
., f B ., Rt ⊔ S`

s
., f C ., St

cD := cB ., Rt ⊔ cC ., St

Then D turns into a Σ-algebra and R and S are Σ-bisimulations, too, so B R-D S¾ C is a
co-tabulation in CΣ.

Proof: We first show the bisimulation conditions for R; those for S follow analogously:

Rs
., f D = Rs

., (R`

s
., f B ., Rt ⊔ S`

s
., f C ., St) Def. f A

= Rs
., R`

s
., f B ., Rt ⊔ Rs

., S`

s
., f C ., St join distr.

= (IsB ⊔ Ws
., W `

s ) ., f B ., Rt ⊔ Ws
., f C ., St co-tabulation of Ws

= f B ., Rt ⊔ Ws
., W `

s ) ., f B ., Rt ⊔ Ws
., f C ., St join distr.

⊑ f B ., Rt ⊔ Ws
., f C ., W `

t
., Rt ⊔ Ws

., f C ., St W ` bisimulation

⊑ f B ., Rt ⊔ Ws
., f C ., St co-tabulation of Wt

⊑ f B ., Rt ⊔ f B ., Wt
., St W bisimulation

⊑ f B ., Rt co-tabulation of Wt

cD = cB ., Rt ⊔ cC ., St Def. cD

= cB ., Rt ⊔ cB ., W `

t
., St W ` bisimulation

= cB ., Rt co-tabulation of Wt

Totality and univalence of cD follows immediately from cD = cB ., Rt shown above; for f D, we
easily obtain totality:

f D ., (f D)` = (R`

s
., f B ., Rt ⊔ S`

s
., f C ., St)

., (R`

t
., (f B)` ., Rs ⊔ S`

t
., (f C)` ., Ss)

⊒ R`

s
., f B ., Rt

., R`

t
., (f B)` ., Rs

., S`

s
., f C ., St

., S`

t
., (f C)` ., Ss

⊒ R`

s
., f B ., (f B)` ., Rs

., S`

s
., f C ., (f C)` ., Ss Rt , St total

⊒ R`

s
., Rs

., S`

s
., Ss f B, f C total

= IsD co-tabulation of Ws

Univalence of f D:

(f D)` ., f D = (R`

t
., (f B)` ., Rs ⊔ S`

t
., (f C)` ., Ss)

., f D

= R`

t
., (f B)` ., Rs

., f D ⊔ S`

t
., (f C)` ., Ss

., f D join distr.

⊑ R`

t
., (f B)` ., f B ., Rt ⊔ S`

t
., (f C)` ., f C ., St R, S bisimul.

⊑ R`

t
., Rt ⊔ S`

t
., .,St f B, f C univalent

= ItD co-tabulation of Wt
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3.2 Reducts Along Signature Homomorphisms

While the concept of Σ-algebra is sufficient to capture, for example, unlabelled graphs as
sigGraph-algebras, categories of labelled graphs are frequently considered as having fixed label
sets, which means that only certain sub-categories of Set sigLGraph are considered.

We use the concept of reducts to formalise this in a general way. In the example, we
consider the reduct of Set sigLGraph to the sub-signature sigNELabels. The fixed label sets under
consideration form a one-object sub-category K of Set sigNELabels, and in order to obtain graphs
labelled over these label sets, we restrict attention to objects in Set sigLGraph for which the reduct
lies in that sub-category K.

The current section introduces and studies the reduct relator. This is employed in Sect. 3.3
to implement the restriction of Σ-algebra collagories via reduct-side sub-categories. This single
construction principle for generating concrete bi-tabular collagories corresponds, as shown in
Corollary 3.3.7, to several categorical constructions that are known for adhesive categories.

Definition 3.2.1 Let Σ = (S,F , src, trg) and ΣR = (SR,FR, srcR, trgR) be two signatures, and
let σ : ΣR → Σ be a signature homomorphism.

For any Σ-algebra A, such a signature homomorphism σ : ΣR → Σ induces a ΣR-algebra
A⇂σ, the σ-reduct of A, in the following way:

• For every sort r : SR, its carrier is rA⇂σ = (σ r)A;

• for every function symbol f ∈ FR, its interpretation is f A⇂σ = (σ f )A.

It is easy to verify that A⇂σ is indeed a ΣR-algebra.

If σ : ΣR → Σ is a sub-signature embedding, then we also call A⇂σ the ΣR-reduct of A and
write also A⇂ΣR.

Since our signatures are a special case of sketches [BW99, Chapters 4,7,8,10], ⇂σ is a special
case of what Barr and Wells call “model category functor”. We complete the definition and
show that is is a relator:

Definition 3.2.2 For a signature homomorphism σ : ΣR → Σ, the σ-reduct of a CS-morphism
Φ = (Φs)s:S is the CSR-morphism Φ⇂σ = ((Φ⇂σ)r)r :SR

with (Φ⇂σ)r := Φσ r for every r : SR.

Proposition 3.2.3 For a signature homomorphism σ : ΣR → Σ, the σ-reduct of a Σ-bisimulation
is a ΣR-bisimulation.

Furthermore, the reduct operation ⇂σ is an allegory relator from CΣ to CΣR and therefore
also a functor from Map (CΣ) to Map (CΣR).

Proof: Bisimulation property: For any n-ary function symbol (we do not need the restriction
to semi-unary signatures here) f : r1 × · · · × rn → q in FR:

((Φ⇂σ)r1 × · · · × (Φ⇂σ)rn )
., f B⇂σ

= (Φσ r1 × · · · × Φσ rn ) ., (σ f )B ⊑ (σ f )A ., Φσ q = f A⇂σ ., (Φ⇂σ)q

Preservation of identities:

IA⇂σ = ((IsA)s∈S)⇂σ = ((I(σ r)A)r∈SR
= ((IrA⇂σ )r∈SR

= IA⇂σ
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Preservation of composition:

(Φ .,Σ Ψ)⇂σ = ((Φ ., Ψ)σ r)r∈SR
= (Φσ r

., Ψσ r)r∈SR

= (Φσ r)r∈SR

., (Ψσ r)r∈SR
= (Φ⇂σ) .,ΣR (Ψ⇂σ)

Preservation of converse:

Φ
`
⇂σ = ((Φ

`
)σ r)r∈SR

= ((Φσ r)r∈SR
)

`
= (Φ⇂σ)

`

Preservation of meet:

(Φ ⊓Σ Ψ)⇂σ = ((Φ ⊓ Ψ)σ r)r∈SR
= (Φσ r ⊓ Ψσ r)r∈SR

= (Φσ r)r∈SR
⊓ (Ψσ r)r∈SR

= (Φ⇂σ) ⊓ΣR (Ψ⇂σ)

Joins that are defined component-wise are preserved in the same way.

Obviously, the reduct relator is in general not full if σ is not injective on sorts.

If σ is injective, we can “replace in A its reduct part along a morphism to A⇂σ”, which will
be useful in the next section:

Theorem 3.2.4 If σ : ΣR → Σ is an injective signature homomorphism, then the reduct
functor ⇂σ is a fibration [BW99, 12.1].

Proof: If A is an object in CΣ, R is an object in CΣR , and φ : R → A⇂σ is a morphism in
CΣR , then we construct an object B in CΣ and a morphism ψ : B → A as follows:

• For every s : S outside the range of σ, we let sB := sA and ψs := IsA .

• For every r : SR, we let (σ r)B := rR and ψσ r := φr .

• For every f : F outside the range of σ, we let f B := ψ
srcf

., f A ., ψ`

trgf
.

• For every g : FR, we let (σ g)B := φ`

srcg

., gR ., φ
trgg

.

Well-definedness is easily verified. We can now show that ψ is cartesian for φ and A:

If v : Z → A in CΣ and h : Z⇂σ → R such that h ., φ = v⇂σ, then w : Z → B defined by

• for every s : S outside the range of σ, let ws := vs ,

• for every r : SR, let wσ r := hr ,

obviously satisfies w ., ψ = v and w⇂σ = h, and obviously is the unique such arrow.

3.3 Reduct-Restricted Σ-Algebra Categories

In the following, let σ : ΣR → Σ be an arbitrary but fixed signature homomorphism, and K a
sub-category of CΣR . We will further assume that K is contained in the image of ⇂σ — this
restriction is not essential, but frequently allows more concise formulations.

Definition 3.3.1 The σ,K-restriction of CΣ contains exactly those objects and morphisms for
which the image under ⇂σ is in K.

We denote this restriction as Cσ|
K .
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Because relators preserve identities and composition, and K is a category, the restriction Cσ|
K

is a category again.

The technical importance of the assumption on K is that it provides surjectivity on homsets
for the reduct relator:

Proposition 3.3.2 If K is contained in the image of ⇂σ, then the restriction of ⇂σ to Cσ|
K is

a full relator.

If σ is a sub-signature embedding, we also write CΣ|
K instead of Cσ|

K . If, in addition, the
restriction category K contains only one object L and its identity, we also write CΣ|L .

This latter case covers in particular the situation where ΣR contains only label sorts and L
fixes the label interpretations, producing for example a category of labelled graphs with fixed
label sets.

Note that every one-object-one-morphism category has all limits and colimits and is not
only an allegory, but even a (trivial) relation algebra, and also a bi-tabular collagory. This
therefore provides an important special case for many of the properties in the remainder of this
paper.

Proposition 3.3.3 If K is a sub-allegory of CΣR , then Cσ|
K is an allegory.

Proof: Assume that Φ⇂σ and Ψ⇂σ are in K. Since K is closed under converse and meets,
Φ`

⇂σ = (Φ⇂σ)` and (Φ ⊓ Ψ)⇂σ = (Φ⇂σ) ⊓ (Ψ⇂σ) are in K, too.

Therefore, Cσ|
K is closed under converse and meets, too, and therefore is a sub-allegory of

CΣ.

Proposition 3.3.4 For semi-unary Σ, if K is a sub-collagory of CΣR , then Cσ|
K is a collagory.

Proof: Assume that Φ⇂σ and Ψ⇂σ are in K. With Lemma 3.1.5 and since K is closed under
joins, the join (Φ ⊔Σ Ψ)⇂σ = (Φ⇂σ) ⊔ΣR (Ψ⇂σ) is in K, too.

So Cσ|
K is closed under joins, too, and therefore is a sub-collagory of CΣ.

This join preservation works in particular in the case where K is a one-object-one-morphism
category, since in that case, non-empty joins in K are still inherited (trivially) from CΣR .

Empty joins, i.e., least morphisms, however, are generally not inherited in the one-object-
one-morphism category, since identity morphisms are rarely least morphisms in CΣR . Therefore
the zero law does in general not hold in Cσ|

K . A simple example for this arises in Set sigPointed|{•} ,
i.e., the allegory of relational homomorphisms between pointed sets: The presence of the point
induces exactly the same counterexamples as the presence of a zero-ary function symbol, for
example if OA = {0, 1}, and the point (respectively the value of the constant) in A is 1, then
⊥⊥OA,OA = {(1, 1)} is a non-trivial closure of the non-inherited least element of K, and with
R := {(0, 1), (1, 1)} we have R ., ⊥⊥ = R 6= ⊥⊥.

Since the reduct relator ⇂σ distributes over all relevant operations, it also preserves tabula-
tions and co-tabulations, i.e.:

• If the span B P¾ A Q-C is a tabulation for the morphism V : B → C in CΣ, then the span
B⇂σ P⇂σ¾ A⇂σ Q⇂σ-C⇂σ is a tabulation for (V ⇂σ) : B⇂σ → C⇂σ in CΣR .
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• If the co-span B R-D S¾ C is a co-tabulation for the difunctional morphism W : B → C
in CΣ, then the co-span B⇂σ R⇂σ-D⇂σ S⇂σ¾ C⇂σ is a co-tabulation for (W ⇂σ) : B⇂σ → C⇂σ in
CΣR .

Theorem 3.3.5 For semi-unary Σ, if σ : ΣR → Σ is injective, K is a sub-collagory of CΣR ,
the morphism V : B → C has a tabulation B P¾ A Q-C in CΣ, and V ⇂σ has a tabulation
B⇂σ P0¾ A0

Q0-C⇂σ in K, then V also has a tabulation in Cσ|
K .

Proof: Since tabulations in CΣR are unique up to isomorphism, there must be an isomorphism
φ : A0 → A⇂σ. According to Theorem 3.2.4, we obtain a cartesian morphism ψ : A1 → A for

φ and A, and since this is also an isomorphism, B ψ
.,P¾ A1

ψ
.,Q-C is a tabulation for V in Cσ|

K .

The corresponding statement for co-tabulations is shown in the same way, so we obtain as
result:

Theorem 3.3.6 For semi-unary Σ and an injective signature homomorphism σ : ΣR → Σ, if C

is a bi-tabular collagory and if K is a bi-tabular sub-collagory of CΣR , then Cσ|
K is a bi-tabular

collagory, too.

This includes all the systematically constructed examples for adhesive categories provided
by Lack and Sobociński [LS04], in particular the following uses of a one-object-one-morphism
collagory K:

Corollary 3.3.7 If C is a bi-tabular collagory, then the following are bi-tabular collagories,
too:

• CsigPointed|C for any object C (conflating C in C with the sigPoint-algebra that assigns C to
the sort P) — this is equivalent to the co-slice category C/C,

• CsigTyped|C for any object — this is equivalent to the slice category C/C,

• node- and edge-labelled graphs considered as sigLGraph-algebras with fixed node and edge
label sets.



Chapter 4

Co-Tabulations as Bicolimits and Lax

Colimits

4.1 OC-Colimits: Bicolimits in Ordered Categories

Ordered categories are a simple example of 2-categories and bicategories: between two mor-
phisms there is at most one two-cell, and there is a two-cell between two morphisms R, S : A → B
iff R ⊑ S .

Therefore, there is an invertible two-cell between R and S if and only if R = S .

The general notion of bicolimits takes as its point of departure a diagram defined via a
functor from a category. We introduce a specialised variant of the definition used in [HS09] by
restricting our attention to ordered categories.

Definition 4.1.1 Given a category C, an (index) category J, a functor D : J → C defining a
diagram, and an object D, a cocone η from D to D consists of a morphism ηA : DA → D in
C for each object A of J, satisfying the following cocone commutativity condition:

DF ., ηB = ηA for each morphism F : A → B in J.

Definition 4.1.2 Given an ordered category C, an (index) category J, and a functor D : J →
C, an OC-colimit of D is given by

• an object D of C, and

• a cocone η from D to D

satisfying the following conditions

1. factorisation: for any other object D′ of C with cocone κ from D to D′, there is a morphism
h : D → D′ in C with

ηA
., h = κA for each object A in J.

2. isotony: for any other object D′ of C and any two morphisms h, h ′ : D → D′, if ηA
., h ⊑

ηA
., h ′ for all objects A in J, then h ⊑ h ′.

33
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Lemma 4.1.3 If the cocones η from D to D and κ from D to D′ are both OC-colimits of D,
then there is an isomorphism U : D → D′ such that

ηA
., U = κA for each object A in J.

Proof: Because of the factorisation property (in Def. 4.1.2) of η, we only need to show that
U is an isomorphism.

From the factorisation property of κ, we obtain a morphism V : D′ → D with, for each
object A in J:

ηA = κA
., V = ηA

., U ., V

Using isotony of η with h = ID and h ′ = U ., V , we obtain I ⊑ U ., V ; by swapping h and h ′

we obtain the converse inclusion, and therefore equality U ., V = ID. In the same way, we also
obtain V ., U = ID′ , so U must be an isomorphism (and V its inverse).

Note that in an allegory, R is an isomorphism iff R is a bijective mapping [FS90, 2.135].

It is instructive to investigate OC-colimits for one-object one-morphism diagrams:

Lemma 4.1.4 Let J = •, and let the diagram functor D be defined by D • = A. Then
R : A → D is an OC-colimit for D iff R is an isomorphism.

Proof: Any R : A → D is trivially a cocone from D to D, and we have:

1. For any other object D′ of C with R′ : A → D′, we can choose h := S ., R′ to obtain
factorisiation if S is a right-inverse of R, that is, R ., S = IA:

R ., h = R ., S ., R′ = IA
., R′ = R′

2. For any other object D′ of C and any two morphisms h, h ′ : D → D′, if R ., h ⊑ R ., h ′, then
we obtain isotony if Q is a left-inverse of R, that is, Q ., R = ID:

h = ID
., h = Q ., R ., h ⊑ Q ., R ., h ′ = ID

., h = h ′

This shows that if R is iso, then it is an OC-colimit for D.

Therefore, IA is an OC-colimit for D.

Since OC-colimits are unique up to isomorphism by Lemma 4.1.3, for any given OC-colimit
R′ for D there is an isomorphism U factoring it over IA and we have R′ = IA

., U = U .

4.2 Co-Tabulations Produce OC-Pushouts

A co-tabulation for a difunctional closure Z ∗⊡ satisfies the following equations:

R ., S
`

= Z ∗⊡ R ., R
`

= Z ∗⊲ S ., S
`

= Z ∗⊳ R
` ., R ⊔ S

` ., S = ID .

This was introduced as a gluing for Z in [Kah01]. Kawahara is the first to have characterised
pushouts relation-algebraically in essentially this way [Kaw90]; he used relation-algebraic op-
erations on relations arising in toposes.
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Lemma 4.2.1 Let C be a collagory, and let B P¾ A Q-C be a span in MapC, that is, P and
Q are mappings.

If the cospan B R-D S¾ C in the collagory C is a co-tabulation for W := (P` ., Q) ∗⊡, then

it is a cocone for B P¾ A Q-C in MapC.

Proof: The co-tabulation properties imply that R and S are mappings. For commutativity,
we first show one inclusion:

P ., R ⊒ P ., R ., ran S = P ., R ., S
` ., S = P ., (P

` ., Q) ∗⊡ ., S ⊒ P ., P
` ., Q ., S ⊒ Q ., S

The opposite inclusion is derived in the same way, so we have equality.

Lemma 4.2.2 Let C be a collagory, and let B P¾ A Q-C be a span in MapC, that is, P and
Q are mappings.

If the cospan B R-D S¾ C in the collagory C is a co-tabulation for W := (P` ., Q) ∗⊡, and

B R′-D′ S ′¾ C is a cospan in C with P .,R′ = Q .,S ′, then U : D → D′ with U := R` .,R′⊔S` .,S ′

satisfies the factorisation property, i.e., R ., U = R′ and S ., U = S ′, and U is a mapping if both
R′ and S ′ are.

Proof: Commutativity P ., R′ = Q ., S ′ together with univalence of P and Q implies

P
` ., Q ., S ′ = P

` ., P ., R′ ⊑ R′ and Q
` ., P ., R′ = Q

` ., Q ., S ′ ⊑ S ′ .

Using left induction for difunctional closure, this gives us:

W ., S ′ = (P
` ., Q) ∗⊡ ., S ′ ⊑ R′ and W

` ., R′ = (Q
` ., P) ∗⊡ ., R′ ⊑ S ′ .

With Lemma 2.3.4 we then know that U := R` ., R′ ⊔ S` ., S ′ is a morphism with R ., U = R′

and S ., U = S ′, and a mapping if R′ and S ′ are mappings.
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Theorem 4.2.3 Let C be a collagory, and let B P¾ A Q-C be a span in MapC, that is, P
and Q are mappings.

If the cospan B R-D S¾ C in C is a co-tabulation for W := (P` ., Q) ∗⊡, then that cospan is

an OC-pushout for B P¾ A Q-C.

Proof: Factorisation has been shown in Lemma 4.2.2, and isotony follows from Lemma 2.3.6.

The path to obtain this was in fact only a slight adaptation of the following fact which was
shown directly in [Kah09b, Thm. 4.9] by adapting the argument of [Kah01, Thm. 5.3.5], and
which now easily follows:
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Corollary 4.2.4 Let C be a collagory, and let B P¾ A Q-C be a span in MapC, that is, P
and Q are mappings.

If the cospan B R-D S¾ C in the collagory C is a co-tabulation for W := (P` ., Q) ∗⊡, then

it is a pushout for B P¾ A Q-C in MapC.

For pushouts along injective mappings, the difunctional closure becomes trivial:

Lemma 4.2.5 If a span B P¾ A Q-C of mappings is given with Q injective, then P` ., Q is
difunctional (and therefore (P` ., Q) ∗⊡ = P` ., Q).

Proof: Since P , as a mapping, is difunctional, we have

P
` ., Q ., Q

` ., P ., P
` ., Q = P

` ., P ., P
` ., Q = P

` ., Q .

Furthermore, co-tabulations preserve injectivity:

Lemma 4.2.6 If a span B P¾ A Q-C of mappings is given with Q injective, and B R-D S¾ C
is a co-tabulation for P` ., Q , then R is injective, too.

Proof: Using injectivity of Q and univalence of P in one of the equations from Prop. 2.3.3
gives us injectivity of R:

R ., R
`

= I ⊔ P
` ., Q ., (P

` ., Q)
`

= I ⊔ P
` ., Q ., Q

` ., P = I ⊔ P
` ., P = I .

With that, we can show that, essentially, a pushout over an injective mapping is also a pullback:

Lemma 4.2.7 If a span B P¾ A Q-C of mappings is given with Q injective, and B R-D S¾ C
is a co-tabulation for P` ., Q , then B P¾ A Q-C is also a tabulation for R ., S`.

Proof: Cross-commutativity R ., S` = P` ., Q is already contained in the co-tabulation condi-
tions. Since Q is injective and P is total, we also obtain

P ., P
`
⊓ Q ., Q

`
= P ., P

`
⊓ IA = IA .

4.3 Lax Colimits in OCCs

For lax cocones, we only need the concept of lax functor, which differs from the functor concept
in that a lax functor D only needs to satisfy IDA ⊑ D IA and (D f ) ., (D g) ⊑ D(f ., g), see, e.g.,
[Stu05, Sect. 8, p. 37ff].

Again, we provide specialised definition of lax cocones and lax colimits for the ordered
category case:

Definition 4.3.1 Given an ordered category C, an (index) category J, a lax functor D : J → C

defining a diagram, and an object D, a lax cocone η from D to D consists of a morphism
ηA : DA → D in C for each object A of J, satisfying the following cocone subcommutativity
condition:

DF ., ηB ⊑ ηA for each morphism F : A → B in J.
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Definition 4.3.2 Given an ordered category C, an (index) category J, and a lax functor D :
J → C, a lax colimit of D is given by

• an object D of C, and

• a lax cocone η from D to D

satisfying the following conditions

1. factorisation: for any object D′ of C with lax cocone κ from D to D′, there is a morphism
U : D → D′ in C with

ηA
., U = κA for each object A in J,

2. isotony: for any object D′ of C and any two morphisms U ,U ′ : D → D′, if ηA
.,U ⊑ ηA

.,U ′

for each object A in J, then U ⊑ U ′.

Proposition 4.3.3 If the lax cocones η from D to D and κ from D to D′ both are lax colimits
of D, then they mutually factor over isomorphisms.

Proof: Let U : D → D′ and V : D′ → D be the two factorisation morphisms, i.e., with

ηA
., U = κA and κA

., V = ηA for each object A in J.

Then we also have, for each object A in J,

ηA
., U ., V = κA

., V = ηA = ηA
., ID ,

κA
., V ., U = ηA

., U = κA = κA
., ID′ ,

and we obtain, from isotony, U ., V = ID and V ., U = ID′ , that is, U and V are inverse
isomorphisms.

Instead of considering lax colimits in general ordered categories, we consider a specialised
variant for diagrams in OCCs. We want to make sure that for each morphism in the index
category, its converse is in the index category too, and we currently see no harm in demanding
not only that, but even that the index category is an OCC.

We consider “• → •” to denote an OCC with the homset from the first object A to the
second, different object B containing exactly one morphism, say F , from A to B. As an OCC,
it needs to also have F`, which will be the only morphism from B to A. Since in this OCC, also
F ., F` ., F needs to exist as a morphism from A to B, it has to be equal to F , which therefore
is difunctional.

A lax functor D mapping F : A → B to W : A′ → B′ has to satisfy

W ., W
` ., W = DF ., (DF )

` ., DF ⊑ D (F ., F
` ., F ) = DF = W ,

so it can map F only to difunctional morphisms.

Furthermore, if, for a lax cocone, its source J is considered as an OCC, this implies that for
each morphism F : A → B in J, also the converse morphism F` : B → A needs to be considered.
Such a lax cocone therefore automatically has to satisfy both the following conditions:

DF ., ηB ⊑ ηA

(DF )` ., ηA ⊑ ηB

}

for each morphism F : A → B in J.
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Convention 4.3.4 Given a morphism W : B → C in the OCC C, we will frequently identify
W with the functor D mapping the single morphism explicitly mentioned in the OCC • → •
to W .

(Since we are dealing with an OCC, that morphism also has a converse, which then must
be mapped to W `.)

A lax cocone from W to D therefore is a cospan B R-D S¾ C satisfying W ., S ⊑ R and
W ` ., R ⊑ S .
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We explicitly state the definition of resulting special case of lax colimits:

Definition 4.3.5 An OCC-colimit of W : B → C in the OCC C is a lax cocone B R-D S¾ C
from W to D satisfying the following conditions:

1. factorisation: for any object D′ of C with lax cocone B R′-D′ S ′¾ C from W to D′, there
is a morphism U : D → D′ in C with R ., U = R′ and S ., U = S ′ ;

2. isotony: for any object D′ of C and any two morphisms U ,U ′ : D → D′, if R ., U ⊑ R ., U ′

and S ., U ⊑ S ., U ′, then U ⊑ U ′.

Lemma 4.3.6 Let B P¾ A Q-C be a span in MapC, that is, P and Q are mappings.
If the cospan B R-D S¾ C in the OCC C is a cocone for B P¾ A Q-C, then it is also a

lax cocone from P` ., Q to D.
If, furthermore, W := (P` ., Q) ∗⊡ exists, then that cospan is also a lax cocone from W to D.

Proof: Commutativity P ., R = Q ., S together with univalence of P and Q implies the lax
cocone properties from P` ., Q :

P
` ., Q ., S = P

` ., P ., R ⊑ R and Q
` ., P ., R = Q

` ., Q ., S ⊑ S .

Using left induction for ∗⊡, this shows that B R-D S¾ C is also a lax cocone from W to D:

W ., S = (P
` ., Q) ∗⊡ ., S ⊑ R and W

` ., R = (Q
` ., P) ∗⊡ ., R ⊑ S .

Lemma 4.3.7 Let B P¾ A Q-C be a span in MapC, that is, P and Q are mappings.
If the cospan B R-D S¾ C in the OCC C is an OCC-colimit for W := (P` ., Q) ∗⊡, and

B R′-D′ S ′¾ C is a cocone for B P¾ A Q-C, that is, a cospan in C with P ., R′ = Q ., S ′, then
there is a morphism U : D → D′ that satisfies the factorisation property of OC-pushouts, i.e.,
R ., U = R′ and S ., U = S ′.
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Proof: From Lemma 4.3.6 we know that B R′-D′ S ′¾ C is also a lax cocone from W to
D′. From the factorisation property of OCC-colimits we then know that there is a morphism
U : D → D′ with R ., U = R′ and S ., U = S ′.

This, together with the fact that the isotony properties of OC-colimits and OCC-colimits
coincide, immediately implies:

Theorem 4.3.8 If a cospan B R-D S¾ C is an OCC-colimit for (P` ., Q) ∗⊡, then it is also an

OC-pushout for B P¾ A Q-C.

Lemma 4.3.9 If, in an OCC, a cospan B R-D S¾ C is a lax cocone from W := (P` ., Q) ∗⊡ to

D, then it is also a cocone for B P¾ A Q-C.

Proof: The lax cocone property here means that we have:

(P` ., Q) ∗⊡ ., S ⊑ R

(Q` ., P) ∗⊡ ., R ⊑ S

This implies in particular:

P` ., Q ., S ⊑ R

Q` ., P ., R ⊑ S

and, with totality of P and Q ,

Q ., S ⊑ P ., P` ., Q ., S ⊑ P ., R

P ., R ⊑ Q ., Q` ., P ., R ⊑ Q ., S ,

so we have equality P ., R = Q ., S and therefore a cone for B P¾ A Q-C.

From this, we now easily obtain also the converse implication to Theorem 4.3.8:

Theorem 4.3.10 If, in an OCC, a cospan B R-D S¾ C is an OC-pushout for B P¾ A Q-C,
then it is also an OCC-colimit for W := (P` ., Q) ∗⊡.

Proof: From Lemma 4.3.6 we know that B R-D S¾ C is also a lax cocone from W to D.

If B R′-D′ S ′¾ C is a lax cocone from W to D′, then we know from Lemma 4.3.9 that it is
also a cocone for B P¾ A Q-C.

The theorem then follows since the appropriately instantiated factorisation and isotony
properties of OCC-colimits for W then coincide with those for OC-colimits for B P¾ A Q-C.
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4.4 OCC-Colimits are Co-Tabulations

Theorem 4.4.1 If a cospan B R-D S¾ C in a collagory is a co-tabulation of W : B → C, then
it is also an OCC-colimit for W .

Proof: Immediate from Lemma 2.3.4 (factorisation) and Lemma 2.3.6 (isotony).

Lemma 4.4.2 If, in an allegory, B R-D S¾ C is an OCC-colimit for W , then

W ` ., R = S ., ranR W ` ., R ., R` = S ., R`

W ., S = R ., ran S W ., S ., S` = R ., S`

Proof: Let R0 = W ., S and S0 = S . This defines a lax cocone B R0-D S0¾ C from W to D,
since:

W ` ., R0 = W ` ., W ., S ⊑ W ` ., R ⊑ S = S0 ;

W ., S0 = W ., S = R0 .

Then factorisation gives us a U0 : D → D such that R0 = W ., S = R ., U0 and S0 = S = S ., U0.
Since R ., U0 = W ., S ⊑ R = R ., ID and S ., U0 = S ⊑ S ., ID, isotony gives us U0 ⊑ ID.

So U0 is a sub-identity, and S = S .,U0 implies ran S ⊑ U0. Since composition of sub-identities
is meet, we obtain the following (which implies U0 = ran S ):

W ., S = W ., S ., ran S = R ., U0
., ran S = R ., ran S

Analogously, W ` ., R = S ., ranR also holds, and these further imply

W
` ., R ., R

`
= S ., R

`
and W ., S ., S

`
= R ., S

`
.

Lemma 4.4.2 does not use difunctionality of W , and implies:

W ` ., W ., W ` ., R = W ` ., W ., S ., ranR = W ` ., R ., ran S ., ranR

= W ` ., R ., ran S = S ., ranR ., ran S = S ., ranR = W ` ., R

and, analogously, W .,W `.,W .,S = W .,S . Therefore, even with a weaker concept of OCC-colimit,
we would still have, in some sense, “almost-difunctionality” of W .

Lemma 4.4.2 did use allegory properties (for sub-identities); for showing the converse im-
plication to Theorem 4.4.1 we need full collagories:

Theorem 4.4.3 If, in a collagory, W : B → C is a difunctional morphism and B R-D S¾ C
is an OCC-colimit for W , then it is also a co-tabulation for W .

Proof: Let R1 = W and S1 = IC ⊔ W ` ., W . This defines a lax cocone B R1-C S1¾ C from W
to C, since (using difunctionality of W ):

W ` ., R1 = W ` ., W ⊑ S1

W ., S1 = W ., (IC ⊔ W ` ., W ) = W ⊔ W ., W ` ., W = W = R1
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Then factorisation gives us a U1 : D → C such that R1 = W = R ., U1 and S1 = IC ⊔W ` ., W =
S .,U1. This immediately implies that S is total and U1 is surjective, and with the same argument
we also obtain that R is total.

We further have

R ., S` = W ., S ., S` Lemma 4.4.2

⊒ W S total

= R ., U1

S ., S` ⊒ IC ⊔ W ` ., R ., R` ., W S total, W ` ., R ⊑ S

⊒ IC ⊔ W ` ., W R total

= S ., U1

With isotony, this implies S` ⊒ U1, which produces W = R ., U1 ⊑ R ., S`.

Now:
R ., domU1 ⊑ R ., U1

., U`

1

= W ., U`

1

= W ., U`

1
., domU1

⊑ R ., domU1

which implies equality:

R ., domU1 = R ., U1
., U

`

1 = W ., U
`

1 .

Similarly:

S ., domU1 ⊑ S ., U1
., U`

1

= (IC ⊔ W ` ., W ) ., U`

1

= U`

1 ⊔ W ` ., W ., U`

1

= U`

1 ⊔ W ` ., R ., domU1

⊑ U`

1 ⊔ S ., domU1

= S ., domU1

which implies equality:

S ., domU1 = S ., U1
., U

`

1

From these two equalities together, isotony produces:

domU1 = U1
., U

`

1 ,

so U1 is also injective.

Furthermore, we have (using difunctionality of W ):

R ., domU1
., S` = W ., U`

1
., S` = W ., (IC ⊔ W ` ., W ) = W = R ., U1

S ., domU1
., S` = S ., U1

., U`

1
., S`

= (IC ⊔ W ` ., W ) ., (IC ⊔ W ` ., W ) = IC ⊔ W ` ., W = S ., U1 .
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With isotony this produces domU1
., S` = U1, which we use to define S ′ : C → D as:

S ′ := S ., domU1 = U
`

1

From the above, we know that S ′ is a mapping, and that:

R ., S ′̀ = R ., U1 = W

S ′ ., S ′̀ = S ., domU1
., U1 = S ., U1 = IC ⊔ W ` ., W

For easier reference, we explicitly present the results of mirroring the starting configuration
made up by R1 and S1 above. Therefore, we obtain U2 : D → B via factorisation of the lax
cocone B R2-B S2¾ C formed by of R2 = I⊔W .,W ` and S2 = W `, with R2 = I⊔W .,W ` = R .,U2

and S2 = W ` = S ., U2, and we obtain first R` ⊒ U2, and then

R ., domU2 = R ., U2
., U`

2

S ., domU2 = S ., U2
., U`

2 = W ` ., U`

2

implying domU2 = U2
., U`

2 and domU2
., R` = U2, which we use to define

R′ := R ., domU2 .

R′ is a mapping, and we have

R′ ., S` = W

R′ ., R ′̀ = IB ⊔ W ., W `

So far the results of the development of U2 in parallel with the explicit development of U1

above.

Now we relate U2 and U1, i.e., R′ and S ′:

R ., domU1
., R` ⊑ R ., U1

., U`

1
., R`

= W ., W `

⊑ R ., R ′̀

S ., domU1
., R` = S ., U1

., U`

1
., R`

= (IC ⊔ W ` ., W ) ., W `

= W `

= S ., R ′̀

From this and the analogous symmetric development, isotony produces:

R ., domU1 ⊑ R′

S ., domU2 ⊑ S ′

This shows the following cyclic inclusion chain:

W = R ., S ′̀ = R ., domU1
., S ′̀ ⊑ R′ ., S ′̀ ⊑ W ,
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which contains the first co-tabulation condition:

W = R′ ., S ′̀ .

We furthermore have:

R ., (R ′̀ ., R′ ⊔ S ′̀ ., S ′) = R ., R ′̀ ., R′ ⊔ R ., S ′̀ ., S ′ ⊔-distributivity

= (I ⊔ W ., W `) ., R′ ⊔ W ., S ′ R ., S ′̀ = W

= R′ ⊔ W ., W ` ., R′ ⊔ W ., S ′ ⊔-distributivity

= R′ ⊔ W ., S ′ W ` ., R′ ⊑ S ′

= R′ W ., S ′ ⊑ R′

and, analogously, S ., (R ′̀ ., R′ ⊔ S ′̀ ., S ′) = S , which implies, with isotony, the last co-tabulation
condition R ′̀ ., R′ ⊔ S ′̀ ., S ′ = ID.

This shows that R′ and S ′ define a co-tabulation. According to Theorem 4.4.1, co-tabulations
are OCC-colimits, and according to Prop. 4.3.3, OCC-colimits are unique up to isomorphism,
so there must be an isomorphism U : D → D with R′ = R ., U and S ′ = S ., U , and therefore
R = R′ ., U` and S = S ′ ., U`. Then:

R ., S` = R′ ., U` ., U ., S ′̀ = R′ ., S ′̀ = W

R ., R` = R′ ., U` ., U ., R ′̀ = R′ ., R ′̀ = IB ⊔ W ., W `

S ., S` = S ′ ., U` ., U ., S ′̀ = S ′ ., S ′̀ = IC ⊔ W ` ., W

R` ., R ⊔ S` ., S = U ., R ′̀ ., R′ ., U` ⊔ U ., S ′̀ ., S ′ ., U`

= U ., (R ′̀ ., R′ ⊔ S ′̀ ., S ′) ., U` = U ., ID
., U` = ID

Therefore, the original OCC-colimit is a co-tabulation, too.



Chapter 5

Van Kampen Squares and Adhesive

Categories

5.1 Adhesive Categories and Van Kampen Setups

Adhesive categories as a more specific setting for double-pushout graph rewriting have been
introduced by Lack and Sobociński [LS04, LS05]; the following two definitions are taken from
there:

Definition 5.1.1 A van Kampen square (i) is a pushout which satisfies the following condition:
given a commutative cube (ii) of which (i) forms the bottom face and the back faces are pullbacks
(where C is considered to be in the back), the front faces are pullbacks if and only if the top
face is a pushout.
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(ii)

Definition 5.1.2 A category C is said to be adhesive if

1. C has pushouts along monomorphisms;

2. C has pullbacks;

3. pushouts along monomorphisms are van Kampen squares.

For more concise formulations, we define:

Definition 5.1.3 A van Kampen setup in a collagory C for a square as in Def. 5.1.1(i) is a
commuting cube in MapC as in Def. 5.1.1(ii) where the bottom square is a gluing and the two
back squares are tabulations.

44
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For reference, we expand this into the implied equations:

Lemma 5.1.4 In a collagory C, a van Kampen setup in MapC means that the following hold:

Bottom gluing:

G ., N` = (M` ., F ) ∗⊡ G` ., G ⊔ N` ., N = ID G ., G` = (M` ., F )∗⊲

N ., N` = (M` ., F ) ∗⊳

Back tabulations:

c` ., m = M ., a` c ., c` ⊓ m ., m` = IC′ c` ., c = IC ⊓ M ., a` ., a ., M`

m` ., m = IA′ ⊓ a ., M` ., M ., a`

c` ., f = F ., b` c ., c` ⊓ f ., f ` = IC′ c` ., c = IC ⊓ F ., b` ., b ., F`

f ` ., f = IB′ ⊓ b ., F` ., F ., b`

Remaining commutative squares:

m ., g = f ., n g ., d = a ., G n ., d = b ., N

5.2 Maps in Collagories form Adhesive Categories

The equations in Lemma 5.1.4 are now used to prove the following:

Lemma 5.2.1 In a collagory, if the front squares of a van Kampen setup are tabulations, then
the top square is a gluing. If furthermore M` ., F is difunctional, then m` ., f is difunctional,
too.

Proof: Besides the assumptions in Lemma 5.1.4, we also have in particular the following
equations for the two front tabulations:

g` ., g = ID′ ⊓ d ., G` ., G ., d` g ., g` ⊓ a ., a` = IA′

n` ., n = ID′ ⊓ d ., N` ., N ., d`

These front tabulation equations alone are sufficient to propagate sharpness from the bottom
co-tabulation to the top square:

g` ., g ⊔ n` ., n = ID′ ⊓ (d ., G` ., G ., d` ⊔ d ., N` ., N ., d`) front tabulations

= ID′ ⊓ d ., (G` ., G ⊔ N` ., N ) ., d` join-distributivity

= ID′ ⊓ d ., ID
., d` bottom co-tabulation

= ID′ ⊓ d ., d` identity law

= ID′ d total

Lemma 2.3.1 give us the inclusion (m` ., f ) ∗⊡ ⊑ g ., n` for the top square, so for gluing cross-
commutativity we only need to show the opposite inclusion:

g ., n` = g ., n` ⊓ g ., d ., d` ., n` d total

= g ., n` ⊓ a ., G ., N` ., b` front squares commute

= g ., n` ⊓ a ., (M` ., F ) ∗⊡ ., b` bottom co-tabulation

= (m` ., f ) ∗⊡ ∗⊡ induction (see below)
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The last step is based on the equation g ., g`⊓ a ., a` = IA′ arising from the front tabulation, and
the following two inductive inclusions (for arbitrary R : A → A and S : A → B):

g ., n` ⊓ a ., R ., (M` ., F ) ., b` = g ., n` ⊓ a ., R ., M` ., c` ., f back tabulation

= (g ., n` ., f ` ⊓ a ., R ., M` ., c`) ., f f univalent

= (g ., g` ., m` ⊓ a ., R ., a` ., m`) ., f top, left commut.

= (g ., g` ⊓ a ., R ., a`) ., (m` ., f ) m univalent

g ., g` ⊓ a ., S ., (F` ., M ) ., a` = g ., g` ⊓ a ., S ., F` ., c` ., m back tabulation

= g ., g` ⊓ a ., S ., b` ., f ` ., m left commutativity

= (g ., g` ., m` ⊓ a ., S ., b` ., f `) ., m m univalent

= (g ., n` ., f ` ⊓ a ., S ., b` ., f `) ., m top commutativity

= (g ., n` ⊓ a ., S ., b`) ., (f ` ., m) f univalent

For the case where M` ., F is difunctional, the first of these equations implies, with R := I,
direct co-tabulation cross-commutativity g ., n` = m` ., f , and therewith difunctionality of the
latter.

Lemma 5.2.2 In a van Kampen setup where the top square is a gluing, the front squares
cross-commute.

Proof: We only show cross-commutativity of the right front square, d ., N` = n` ., b, since the
situation of the other front square is perfectly symmetric.

d ., N` = (g` ., g ⊔ n` ., n) ., d ., N` top gluing

= g` ., g ., d ., N` ⊔ n` ., n ., d ., N` join distributivity

= g` ., a ., G ., N` ⊔ n` ., b ., N ., N` front squares comm.

= g` ., a ., (M` ., F ) ∗⊡ ⊔ n` ., b ., (M` ., F ) ∗⊳ bottom gluing

= g` ., a ., (M` ., F ) ∗⊡ ⊔ n` ., b ., (IB ⊔ F` ., M ., (M` ., F ) ∗⊡) ∗⊡ properties

= n` ., b ⊔ (g` ., a ⊔ n` ., b ., F` ., M ) ., (M` ., F ) ∗⊡ join distributivity

= n` ., b (see below)

The last step holds by right induction for ∗⊡, since

(g` ., a ⊔ n` ., b ., F` ., M ) ., M` ., F

= (g` ., a ⊔ n` ., f ` ., c ., M ) ., M` ., F back tabulation

= (g` ., a ⊔ n` ., f ` ., m ., a) ., M` ., F left square commutes

= g` ., a ., M` ., F n` ., f ` ., m = g` ., m` ., m ⊑ g`

= g` ., m` ., c ., F left tabulation

= n` ., f ` ., f ., b top, back squares commute

⊑ n` ., b f univalent

and, from that, also

n
` ., b ., F

` ., M ., M
` ., F ⊑ (g

` ., a ⊔ n
` ., b ., F

` ., M ) ., M
` ., F ⊑ n

` ., b .
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Lemma 5.2.3 In a van Kampen setup where the top square is a gluing, the front squares are
tabulations iff the following holds:

m ., (m
` ., f ) ∗⊡ ., f

`
⊓ c ., c

`
⊑ IC′ (∗)

Proof: We only show that the right front square is a tabulation, since the situation of the
other front square is perfectly symmetric. cross-commutativity has been shown separately in
Lemma 5.2.2. For the second tabulation condition, we first show that, for every R : C′ → C′:

f ` ., R ., f ⊓ b ., b` ⊑ b ., (b` ., f ` ., R ., f ., b ⊓ IB) ., b` modal rules

= b ., (F` ., c` ., R ., c ., F ⊓ IB) ., b` back square commutativity

⊑ b ., ranF ., b`
ran properties

= b ., F` ., F ., b` F univalent

This implies f ` ., m ., m` ., f ⊓ b ., b` = f ` ., m ., m` ., f ⊓ b ., F` ., F ., b`, which we use below:

n ., n` ⊓ b ., b` = IB′

⇔ (m` ., f ) ∗⊳ ⊓ b ., b` = IB′ top gluing

⇔ (IB′ ⊔ f ` ., m ., (m` ., f ) ∗⊡) ⊓ b ., b` = IB′ R ∗⊳ = I ⊔ R` ., R ∗⊡

⇔ (IB′ ⊓ b ., b`) ⊔ (f ` ., m ., (m` ., f ) ∗⊡ ⊓ b ., b`) = IB′ lattice distributivity

⇔ IB′ ⊔ (f ` ., m ., (m` ., f ) ∗⊡ ⊓ b ., b`) = IB′ b total

⇔ f ` ., m ., (m` ., f ) ∗⊡ ⊓ b ., b` ⊑ IB′ ordering

⇔ f ` ., m ., (m` ., f ) ∗⊡ ⊓ b ., F` ., F ., b` ⊑ IB′ (above)

⇔ f ` ., m ., (m` ., f ) ∗⊡ ⊓ f ` ., c ., c` ., f ⊑ IB′ back tabulation

⇔ f ` ., (m ., (m` ., f ) ∗⊡ ⊓ f ., f ` ., c ., c` ., f ) ⊑ IB′ f univalent

⇔ m ., (m` ., f ) ∗⊡ ⊓ f ., f ` ., c ., c` ., f ⊑ f f mapping

⇔ m ., (m` ., f ) ∗⊡ ⊓ c ., c` ., f ., f ` ., f ⊑ f Lemma 2.2.4

⇔ m ., (m` ., f ) ∗⊡ ⊓ c ., c` ., f ⊑ f f univalent

⇔ (m ., (m` ., f ) ∗⊡ ., f ` ⊓ c ., c`) ., f ⊑ f f univalent

⇔ m ., (m` ., f ) ∗⊡ ., f ` ⊓ c ., c` ⊑ f ., f ` f mapping

⇔ m ., (m` ., f ) ∗⊡ ., f ` ⊓ c ., c` ⊑ f ., f ` ⊓ c ., c` ordering

⇔ m ., (m` ., f ) ∗⊡ ., f ` ⊓ c ., c` ⊑ IC′ back tabulation

This is exactly the condition (∗).

Let us name the diagonals of the top and bottom squares:

q := m ., g = f ., n

Q := M ., G = F ., N

Now, since m ., (m` ., f ) ∗⊡ ., f = m ., g .,n` ., f = q ., q`, the condition (∗) in Lemma 5.2.3 is equivalent
to one of the conditions stating that C c¾ C′ q-D is a tabulation for Q ., d`:

q ., q
`
⊓ c ., c

`
= IC′
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The other condition for this tabulation, cross-commutativity c` ., q = Q ., d`, follows (to choose
one side) from the assumed cross-commutativity of the back square c` ., f = F ., b` and the
cross-commutativity of the right square b` ., n = N ., d` which follows from the top gluing via
Lemma 5.2.2 without use of (∗). Since these two tabulations together already produce the
diagonal tabulation via Lemma 2.2.8, the “only if” aspect of Lemma 5.2.3 could be considered
as irrelevant.

However, the advantage of the formulation of the condition (∗) in Lemma 5.2.3 lies in
the fact that it is stated in terms of only m, f , and c, thanks to gluing cross-commutativity
g .,n` = (m` ., f ) ∗⊡. With that, it is easy to see that the condition (∗) is equivalent to the following
inclusion (or, equivalently, equation) in the lattice of equivalences on C′:

(m ., m
`
∨ f ., f

`
) ∧ c ., c

`
≤ IC′

Since equivalence lattices are not necessarily distributive, we cannot derive this from the tab-
ulation equations m ., m` ∧ c ., c` = IC′ and f ., f ` ∧ c ., c` = IC′ .

Theorem 5.2.4 In the category MapC of maps over a bi-tabular collagory C, pushouts along
injective maps are van Kampen squares.

Proof: Bi-tabularity guarantees that all pushouts in MapC are gluings and all pullbacks in
MapC are tabulations.

Lemma 5.2.1 therefore shows the “only if” part of the definition of Van Kampen squares.

For the “if” part, assume a van Kampen setup where M is injective and the top square is
a gluing. Lemma 2.2.6 implies that m is injective, too, which in turn implies difunctionality
of m` ., f and the assumption (∗) of Lemma 5.2.3, which then shows that the front squares are
tabulations, and therefore pullbacks.

The main result of this section is now an immediate consequence of this theorem; note that we
do not need difunctional (or transitive) closure for this:

Corollary 5.2.5 For a bi-tabular collagory C where all monos in MapC are injective in C, the
mapping category MapC is adhesive.

(The restriction on monic mappings is necessary since there might, for example, be an object
A in C for which the only mapping with target A is IA; in that case, all mappings f : A → B
would automatically be monos in MapC regardless whether they are injective in C. Note that
f (together with identities) itself forms a tabulation and a co-tabulation for f .)

This result immediately makes the rewriting concepts and results from [LS04], including
the local Church-Rosser theorem and the concurrency theorem, available for DPO rewriting
defined via tabulations and co-tabulations in the context of collagories.

From Lemmas 5.2.1 and 5.2.3, we also directly obtain a characterisation of van Kampen
squares in bitabular collagories:

Theorem 5.2.6 A gluing square (as in Def. 5.1.1(i)) in a bitabular collagory is van Kampen
iff all its van Kampen setups (as in Def. 5.1.3) where the top square is a gluing satisfy the
following:

m ., (m
` ., f ) ∗⊡ ., f

`
⊓ c ., c

`
⊑ IC′
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5.3 Further Investigation of Van Kampen Squares

The following properties will be useful below:

Lemma 5.3.1 In a van Kampen setup where M ., M` ⊓ F ., F` ⊑ IC, the following hold:

1. f ., f ` ⊓ m ., m` ., c ., c` ⊑ IC′

2. c ., c` ⊓ m ., m` ., f ., f ` ⊑ IC′

Proof:

1. f ., f ` ⊓ m ., m` ., c ., c`

= f ., f ` ⊓ m ., a ., M` ., c` left tabulation

= f ., f ` ⊓ c ., M ., M` ., c` left commutativity

= f ., f ` ⊓ c ., (M ., M` ., c` ⊓ c` ., f ., f `) modal rule

⊑ f ., f ` ⊓ c ., (M ., M` ⊓ c` ., f ., f ` ., c) ., c` modal rule

= f ., f ` ⊓ c ., (M ., M` ⊓ F ., b` ., b ., F`) ., c` back tabulation

⊑ f ., f ` ⊓ c ., (M ., M` ⊓ F ., F`) ., c` b univalent

= f ., f ` ⊓ c ., c` assumption

= IC′ back tabulation

2. c ., c` ⊓ m ., m` ., f ., f `

= c ., c` ⊓ m ., m` ., (f ., f ` ⊓ m ., m` ., c ., c`) modal rule

= c ., c` ⊓ m ., m` (i)

= IC′ left tabulation

Injectivity of M makes M` ., F difunctional and also enforces injectivity of m and therewith
difunctionality of m` ., f .

In the general case, however, we have seen above that difunctionality of m` ., f requires not
only difunctionality of M` ., F , but also the front tabulation conditions.

This failure of difunctionality propagation can be understood as coming from the fact that
in the difunctionality inclusion M` ., F ., F` ., M ., M` ., F ⊑ M` ., F , the right-hand side passes
through a “C element” that may be distinct from the three “C elements” of the left-hand side.

This distinct “C element” gives rise to a “C′ element” that is, in the absence of the front
tabulation conditions, determined only up to c ., c`.

One way to avoid this unwanted factor is to specify that in any chain diagram documenting
M ., M` ., F ., F` ., M ., M`, the fourth (i.e., last) C element needs to be one of the previous three
C elements. Referring to so many elements simultaneously in a relation-algebraic way requires
direct products — we use π and ρ as the projections. The following is one formulation of this
condition:

M ., M
` ., (π

`
⊓ F ., F

` ., M ., M
` ., ρ

`
) ⊑ M ., M

` ., (π
`
⊓ (F ., F

`
⊔ M ., M

`
) ., ρ

`
)

However, it is not hard to see that this is equivalent to the following, much simpler condition:

F ., F
` ., M ., M

`
⊑ F ., F

`
⊔ M ., M

`
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This is obviously satisfied if one of M and F is injective. It can also be strengthened to an
equality, since M and F are both total. This implies symmetry:

F ., F
` ., M ., M

`
= F ., F

`
⊔ M ., M

`
= M ., M

` ., F ., F
`

and, furthermore, difunctionality of M` ., F :

M
` ., F ., F

` ., M ., M
` ., F = M

` ., M ., M
` ., F ., F

` ., F = M
` ., F .

Assuming also M ., M` ⊓ F ., F` ⊑ IC, we obtain f ., f ` ., m ., m` = f ., f ` ⊔ m ., m`:

f ., f ` ., m ., m`

= f ., f ` ., m ., m` ⊓ c ., F ., F` ., M ., M` ., c`

⊑ f ., f ` ., m ., m` ⊓ c ., (F ., F` ⊔ M ., M`) ., c` assumption

= f ., f ` ., m ., m` ⊓ (c ., c` ., f ., f ` ⊔ c ., c` ., m ., m`)

= (f ., f ` ., m ., m` ⊓ c ., c` ., f ., f `) ⊔ (f ., f ` ., m ., m` ⊓ c ., c` ., m ., m`)

⊑ f ., f ` ⊔ m ., m` Lemma 5.3.1

Therefore, m` ., f is difunctional, too, and together with Lemma 5.3.1 we obtain

m ., (m
` ., f ) ∗⊡ ., f

`
⊓ c ., c

`
= m ., m

` ., f ., f
`
⊓ c ., c

`
⊑ IC′ .

Altogether we have shown the following:

Theorem 5.3.2 In the category MapC of maps over a bi-tabular collagory C, pushouts satis-
fying also

F ., F
`
⊓ M ., M

`
⊑ IC

and
F ., F

` ., M ., M
`
⊑ F ., F

`
⊔ M ., M

`

are van Kampen squares.

Both inclusions can be strengthened to equalities, and since the second condition implies
difunctionality, both together imply that such pushouts are also pullbacks.



Chapter 6

Conclusion

We have streamlined the axiomatic basis of the relation-algebraic approach to graph structure
transformation by introducing collagories, which, in comparison to earlier approaches, remove
consideration of the zero-law and, to a certain extent, of difunctional closure defined via the
Kleene star.

We showed that the concepts of tabulation and co-tabulation, which are essential for the
relation-algebraic rewriting approach, can be formalised in collagories, and that the category
of mappings in a bi-tabular collagory forms an adhesive category, thus establishing a power-
ful connection to the categorical approach to graph structure transformation. Our proof that
co-tabulation are bicolimits appears to be somewhat related to Milius’ results about colimit
constructions in the 2-category of relations over a category [Mil03], and is a first step towards
establishing connections between our characterisation of van Kampen squares in mapping cat-
egories in collagories with the characterisation as bicolimits in the bicategory of spans given by
Heindel and Sobociński [HS09].

As shown in Chapter 3, all the important examples of adhesive categories can also be ob-
tained as special cases of powerful collagory constructions; future work will investigate whether
(respectively when) the category of relations [FS90, 1.412] in an adhesive category forms a
collagory. Another interesting goal would be to identify a nicer collagory-level formulation of
the van Kampen property, and establish connections with the characterisation as bicolimits in
the bicategory of spans given by Heindel and Sobociński [HS09].

Further investigations will explore different variations of adhesive categories in a collagory
setting, including the quasiadhesive categories of [LS05], and their applications.

51



Bibliography

[BW99] M. Barr, C. Wells. Category Theory for Computing Science. Centre de recherches
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[LS04] S. Lack, P. Sobociński. Adhesive Categories. In I. Walukiewicz, ed., FOSSACS
2004, LNCS 2987, pp. 273–288, 2004.
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Théor. Appl. 39(3) 511–545, 2005.
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