
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 2S03
Exercise Sheet 11

SFWR ENG 2S03 — Principles of Programming

24 November 2006

Exercise 11.1 — Queues

’a’

QueueNode

• ’b’

QueueNode

• ’c’

QueueNode

• ’d’

QueueNode

•

•head

Queue

•
tail

tail

Let the queue datatypes of the lecture be given:

typedef struct QueueNodeStruct {
char data;
struct QueueNodeStruct * nextPtr ; /* struct label necessary! */

} QueueNode;

typedef struct {
QueueNode * head , * tail;

} Queue;

ImplementO(1)concatenation of queues.

Exercise 11.2 — Doubly-Linked Lists

(a) Provide type definitions for doubly-linked lists with tail pointers. (These are essentially like
queues, except that there are also backward-links between the list nodes.)

(b) ImplementO(1)adding of a single element at the head.

(c) ImplementO(1)adding of a single element at the tail.

(d) ImplementO(1)deletion of the first element.

(e) ImplementO(1)deletion of the last element.

(f) ImplementO(1)concatenation.

(g) Implement ordered insertion, i.e., insertion into an ordered list such that the ordering is
preserved.

(h) Write amain functionin a separate moduleto test all the above.

A binary tree with int data is
– either the empty tree (NULL)
– or (pointer to) a node with anint data field and two successor trees.

typedef struct TreeNodeStruct {
struct TreeNodeStruct *leftPtr ; // (pointer to) left subtree
int data; // node value
struct TreeNodeStruct *rightPtr ; // (pointer to) right subtree

} TreeNode;

typedef TreeNode * Tree;

Exercise 11.3 — Printing of Binary Trees

Write a recursive functionprintTree to print a binary tree to the screen. The function should print the
tree row by row with the top of the tree at the left of the screen, and each level of the tree indented 5
spaces. Since turning your head to the left by 90 degrees should give you the “normal” picture of the
tree, for each node, the right subtree has to be printed first, then the node itself, then the left subtree.

(For more explanation, see Exercise 12.25 in the textbook.Note: The algorithm proposed there is not
purely recursive!)

Exercise 11.4 — Searching in Binary Trees

Write a function treeSearchNode that takes a tree and a value as arguments and returns NULL if the
value is not in the tree, and otherwise returns a pointer to the node containing the value.

(Exercise 12.23 from the textbook)

Exercise 11.5 — Deleting from Binary Trees

Use the functioncutOffLargestNode from the lecture to implement a function for deleting a value from
an ordered binary tree such that the result ot the deletion is again an ordered binary tree.

(For more explanation, see Exercise 12.22 in the textbook.

Exercise 11.6 — Breadth-First Traversal of Binary Trees

Do exercise 12.24 from the textbook.

Then,make asecondversion of thisprogram and, in that second version, replace the queue with a stack:
replaceenqueue with push anddequeue with pop. What does the program do now?

Exercise 11.7 — Test for Ordered Trees

A binary tree isordered if and only if for every noden,
– every value in the left subtree ofn is not greater than the value inn, and
– every value in the right subtree ofn is not less than the value inn.

Design and implementa C function bool isOrdered(Tree t)
that returnstrue if its argument tree is ordered, andfalse otherwise.

