
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 2S03
Exercise Sheet 4
Solution Hints

SFWR ENG 2S03 — Principles of Programming

4 October 2006

Exercise 4.1 — Fibonacci Instrumentation

Modify the programfib1.c shown in the lecture so that your modified program produces the following
output:

fib(5) start
 fib(4) start
 fib(3) start
 fib(2) start
 fib(1) start
 fib(1) = 1
 fib(0) start
 fib(0) = 0
 fib(2) = 1
 fib(1) start
 fib(1) = 1
 fib(3) = 2
 fib(2) start
 fib(1) start
 fib(1) = 1
 fib(0) start
 fib(0) = 0
 fib(2) = 1
 fib(4) = 3
 fib(3) start
 fib(2) start
 fib(1) start
 fib(1) = 1
 fib(0) start
 fib(0) = 0
 fib(2) = 1
 fib(1) start
 fib(1) = 1
 fib(3) = 2
fib(5) = 5
5 5

Solution Hints

#include <stdio.h> /* fib1instr.c */
#include <stdlib.h>
void space(int k);

int fib(int indent, int n) {
int result;
space(indent); printf ("fib(%d) start\n", n);
if (n == 0 || n == 1)
result = n;

else
{ int f1, f2, newindent = indent + 6;
f1 = fib(newindent, n − 1);
f2 = fib(newindent, n − 2);
result = f1 + f2;

}
space(indent); printf ("fib(%d) = %d\n", n, result);
return result;

}

int main(int argc, char * argv []) {
int s = 0, i = atoi(argv [1]);
s = fib(0, i);
printf ("%d %d\n", i, s);
return 0;

}

void space(int k) {
int i;
for (i=0; i<k ; i++) printf (" ");

}

Exercise 4.2 — Simulation of C Program Execution (30%of Midterm 3, 2003)

Simulate execution of the followingcorrect ANSI C program:
• Show all calls to the functionf and their arguments and local variables
• Document intermediate states of the arrayq and indicate where changes are produced
• Show which output is produced, and when

1 #include <stdio.h>
2 #define SIZE 2
3 char q[SIZE+2] = "ae";
4
5 void f (int m); // forward declaration
6
7 int main() {
8 f (0);
9 return 0;
10 }

11 void f (int m) {
12 char h;
13 printf ("f(%d) <-- %s\n", m, q);
14 if (m >= SIZE) return;
15 h = q[m];
16 q[m] = q[m+1];
17 f (m+1);
18 q[m+1] = h+1;
19 printf ("f(%d) --> %s\n", m, q);
20 }

Solution Hints

Output:

f(0) <-- ae

f(1) <-- ee

f(2) <-- e

f(1) --> e

f(0) --> ebf

Printing also the numerical values of the four array elements:

f(0) <-- 97 101 0 0 --- ae

f(1) <-- 101 101 0 0 --- ee

f(2) <-- 101 0 0 0 --- e

f(1) --> 101 0 102 0 --- e

f(0) --> 101 98 102 0 --- ebf

Exercise 4.3 — Histograms (75%of Midterm 1, 2005)

Assume a sensor that producesint-valued readings in the range from0 to MAX_READING.

Throughout this question, we will deal with arrays

long int readings[MAX_READING + 1]

that contain information about the sensor readings in a certain time interval in the following way:

For k ∈ {0, …, MAX_READING} , the array elementreadings[k] contains thenumber of times
the sensor reading produced valuek .

Note: The solutions of the items areindependent of each other.

Solution Hints

#include <stdio.h>
#include <unistd.h>

#define MAX_READING 7
#define SIZE (MAX_READING + 1)

int getSensorReading();

// Just for testing:
// a pseudo-random number generator without consideration to quality
//
int getSensorReading() {
static int seed = 1234567;
seed = 456789 * seed + 1001;
int m = seed % SIZE;
return m < 0 ? −m : m;

}

(a) Assume that the function

int getSensorReading();

(which you do not have to implement) obtains an individual reading from the sensor in question.

Design and implementthe function

void collect(long int readings[], long int number_of_samples);

which collectsnumber_of_samples sensor readings into the arrayreadings such that after the call,
readings[k] contains thenumber of times the sensor reading produced valuek during this call tocollect.

Implementcollect in such a way that it waits 0.2 milliseconds between readings; for these delays, use the
following library function:

#include <unistd.h>
void usleep(unsigned long usec);

The usleep() function suspends execution of the calling process for (at least)usec mi-
croseconds.

Solution Hints

Design:

• “during this call” ⇒ initialisation neccessary.

• After that: repeatnumber_of_samples time:

– obtain sensor readingreading
– incrementreadings[reading]
– wait 0.2 milliseconds

• (Last wait was not demanded, but also not forbidden…)

void collect(long int readings[], long int number_of_samples) {
long int i;
int reading;
for (i = 0; i ≤ MAX_READING; i++) { // initialisation necessary!
readings[i] = 0;

}
for (i = 0; i < number_of_samples; i++) {
reading = getSensorReading();
readings[reading]++;
usleep(200);

}
}

(b) Assume that the sensor vendor provided the functiongetSensorReading() as a library function without
providing source code for it.

What do you have to do to make programs that usegetSensorReading() compile and execute properly?
Explain!

Solution Hints

• Instruct the preprocessor to find the header file containing the prototype forgetSensorReading() (or,
less recommended, include the prototype in your file).

This is necessary to make the functionknown to the compiler, so that the compiler can properly set up
argument and result passing in calls to to the function.

• Instruct the linker which library to link in (and where to find it).

Only this makes theactual implementation of the function a part of your program — otherwise
no relation between the namegetSensorReading and the machine code the vendor shipped as its
implementation is established.

(c) Design and implementthe function

double mean(long int readings[])

to calculatewith minimal loss of precision the mean of all sensor readings collected in the array
readings.

Solution Hints

Design:

• “with minimal loss of precision” ⇒ add intolong long int, be careful with division

• Adding: For each array element:

– the index is the reading value

– the contents is the number of readings it represents: accumulate incount

– index multiplied with contents is the contribution of these readings: accumulate insum

• Integer division is safe for integral part of average

• Before dividing remainder bycount, need to convert todouble

double mean(long int readings[]) {
double sum = 0, count = 0; // non-portable alternativs (GNU C): long long int
int i;
for (i = 0; i < SIZE; i++) {
count += readings[i];
sum += (double)(readings[i]) * i; // cast avoids overflow

}
return sum / count; // division at type double!

}

(d) Design and implementthe function

void display(long int readings[], long int step, int height)

to print a histogram representing the contents ofreadings to the screen. The histogram is truncated (or
padded) to heightheight.

 ^
^**
*** ^
*** *
***^ *
****^*
****** ^

In this histogram, each element ofreadings is turned into one column; each’*’ character
representsstep sensor readings, and on the top of a column, a’^’ character represents
less thanstep sensor readings (but at least one).

Theexamplehistogram to the left should be produced e.g. by calling
display(readings, 10, 10) with MAX_READING = 7 andreadings containing the values
55, 60, 69, 23, 17, 45, 0, 5.

Solution Hints

Design:

• Idea: same as for zig-zag: at each screen position, find out what to print: space,’*’ , or ’^’

• For each row, the bounds forreadings[j] to produce one of these three characters are the same: pre-
calculate.

void display(long int readings[], long int step, int height) {
long int i;
int j;
for (i = height−1; i ≥ 0; i−−) { // row index
long int hat = step * i, stars = hat + step;
for (j = 0; j < SIZE; j ++) {
printf ("%c",
readings[j] ≥ stars ? ’*’ :
readings[j] > hat ? ’^’ : ’ ’);

}
printf ("\n");

}
}

Solution Hints

Main function for testing:

int main() {
long int readings[SIZE] = {55, 60, 69, 23, 17, 45, 0, 5};

// collect(readings, 100);
display(readings, 10, 10);
printf ("\n");
printf ("%f\n", mean(readings));
printf ("\n");
int j;
for (j = 0; j < SIZE; j ++) printf ("%2d %5ld\n",j,readings[j]);
return 0;

}

