McMaster University

Department of Computing and Software

Dr. W. Kahl

SFWR ENG 2S03
Exercise Sheet 4
Solution Hints

SFWR ENG 2S03 — Principles of Programming

4 QOctober 2006

Exercise 4.1 — Fibonacci Instrumentation

Modify the programfibl.c shown in the lecture so that your modified program produces the following

output:
fib(5) start

fib(4) start

fib(3) start

fib(3)
fib(2)
fib(2)
fib(4) = 3
fib(3) start
fib(2)
fib(2)
fib(1)
fib(1)
fib(3) =2
fib(5) =5
5 5

Solution Hints

#include <stdio.h>
#include <stdlib.h>
void space(int k);

int fib(int indent, int n) {
int result;

fib(2)

—h —h —h

—h —h —h —h
|| == ==0n | -

—h —h —h —h

noiin-—-=--n

eedey
LY
N N N

[olieoNeoNoing
R Y N

OQORrERLT
NN
1
=

start
=1
start

—+ DOooTUTO™
RO R~~~
OORrRREL~
N

=

/*fiblinstr.c */

space(indent); printf ("fib(%d) start\n”, n);

if(n==0]|n==1)
result = n;
else

{int f1, f2, newindent = indent + 6;
f1 =fib(newindent, n — 1);
f2 =fib(newindent,n — 2);

result =f1 +f2;
}

start

space(indent); printf (“fib(%d) = %d\n", n, result);

return result;

}

int main(int argc, char = argv(]) {
ints =0,i =atoi(argv[1]);
s =fib(0, i);
printf("%d %d\n", i, s);
return O;

}

void space(int k) {

inti;

for (i=0;i<k;i++) printf("");
}

Exercise 4.2 — Simulation of C Program Execution (30% of Midterm 3, 2003)

Simulate execution of the followingprrect ANSI C program:
» Show all calls to the functiohand their arguments and local variables

« Document intermediate states of the amagnd indicate where changes are produced

» Show which output is produced, and when

#include <stdio.h>
#define SIZE 2
char q[SIZE+2] = "ae";

int main() {
f(0);
returnO;

}

Solution Hints
Output:

f(0) <-- ae
f(l) <-- ee
f(2) <-- e
f(l) --> e
f(0) --> ebf

©O© 0N OB~ WNPE

=
o

Printing also the numerical values of the four array elements:

f(0) <-- 97 101 0
f(1) <-- 101 101 O
f(2) <-- 101 0 0
f(1) --> 101 0 102
f(0) --> 101 98 102

void f(int m); // forward declaration

ae
ee
e

e
ebf

11
12
13
14
15
16
17
18
19
20

void f(int m) {
char h;
printf ("f(%d) <-- %s\n", m, q);
if (m >= SIZE) return;
h =q[m];
q[m] = q[m+1];
f(m+21);
g[m+1] = h+1;
printf ("f(%d) --> %s\n", m, q);

Exercise 4.3 — Histograms (75% of Midterm 1, 2005)

Assume a sensor that produdgsvalued readings in the range framo MAX_READING.

Throughout this question, we will deal with arrays

long int readings[MAX_READING + 1]

that contain information about the sensor readings in a certain time interval in the following way:

Fork 00, ..., MAX_READING}, the array elementadings[k] contains theaumber of times
the sensor reading produced vakue

Note: The solutions of the items ahnedependent of each other.

Solution Hints

#include <stdio.h>
#include <unistd .h>

#define MAX_READING 7
#define SIZE (MAX_READING + 1)

int getSensorReading();

// Just for testing:
/[a pseudo-random number generator without consideration to quality
1l
int getSensorReading() {
static int seed =1234567;
seed = 456789 » seed + 1001;
intm = seed % SIZE;
returnm <0 ?-m:m;

}

(a) Assume that the function
int getSensorReading();
(which you do not have to implement) obtains an individual reading from the sensor in question.
Design and implementthe function
void collect(long int readings[], long int number_of_samples);

which collectsnumber_of_samples sensor readings into the arragadings such that after the call,
readings[k] contains thenumber of timesthe sensor reading produced vakuduring this call tacollect.

Implementcollect in such a way that it waits 0.2 milliseconds between readings; for these delays, use the
following library function:

#include <unistd .h>

void usleep(unsigned long usec);
The usleep() function suspends execution of the calling process for (at least) mi-
croseconds.

Solution Hints

Design:
» “duringthiscall” O initialisation neccessary.
» After that: repeabumber_of _samples time:

— obtain sensor readingading
— incrementeadings[reading]
— wait 0.2 milliseconds
» (Last wait was not demanded, but also not forbidden...)

void collect(long int readings|[], long int number_of_samples) {
longinti;
int reading;
for (i =0;i < MAX_READING; i++) {// initialisation necessary!
readingsli] = 0;
}
for (i =0;i <number_of samples;i++){
reading = getSensorReading();
readings[reading]++;
usleep(200);
}
}

(b) Assume that the sensor vendor provided the funagim8ensorReading() as a library function without
providing source code for it.

What do you have to do to make programs thatge8ensorReading() compile and execute properly?
Explain!
Solution Hints

* Instruct the preprocessor to find the header file containing the prototygetf#nsorReading() (or,
less recommended, include the prototype in your file).

This is necessary to make the functlomown to the compiler, so that the compiler can properly set up
argument and result passing in calls to to the function.

* Instruct the linker which library to link in (and where to find it).

Only this makes thactual implementation of the function a part of your program — otherwise
no relation between the nangetSensorReading and the machine code the vendor shipped as its
implementation is established.

(c) Design and implementthe function
double mean(long int readingsl[])
to calculatewith minimal loss of precision the mean of all sensor readings collected in the array
readings.
Solution Hints
Design:
 “with minimal loss of precision” 0 add intolong long int, be careful with division
» Adding: For each array element:

— the index is the reading value

— the contents is the number of readings it represents: accumutainin

— index multiplied with contents is the contribution of these readings: accumulsdenin
* Integer division is safe for integral part of average
» Before dividing remainder byount, need to convert tdouble

double mean(long int readings|]) {
double sum =0, count = 0; /I non-portable alternativs (GNU C): long long int
inti;
for (i =0;i <SIZE;i++){
count +=readings]i];
sum +=(double)(readings[i]) * i; /Il cast avoids overflow

}
return sum / count; /I division at type double!

}

(d) Design and implementthe function
void display(long int readings[], long int step, int height)

to print a histogram representing the contentseafiings to the screen. The histogram is truncated (or

padded) to heighteight.

In this histogram, each elementretdings is turned into one column; eath character
s representstep sensor readings, and on the top of a columt; @haracter represents
rrxooA less tharstep sensor readings (but at least one).
ffffﬁf R Theexamplehistogram to the left should be produced e.g. by calling

display (readings, 10, 10) with MAX_READING = 7 andreadings containing the values

55,60, 69, 23,17, 45,0, 5.

Solution Hints
Design:
» |dea: same as for zig-zag: at each screen position, find out what to print: $pame?”’

» For each row, the bounds fegadings[j] to produce one of these three characters are the same: pre-

calculate.

void display (long int readings[], long int step, int height) {
longinti;
intj;
for (i = height-1;i =0;i--){ /I row index
long int hat = step =i, stars = hat + step;
for (j =0;j <SIZE;j ++){
printf ("%c",
readings[j] = stars ? '*' :
readings[j]> hat ?'V :'');
}
printf("\n");
}
}

Solution Hints
Main function for testing:

int main() {
long int readings[SIZE] = {55, 60, 69, 23,17, 45, 0, 5};

/I collect(readings, 100);
display (readings, 10, 10);
printf("\n");
printf ("%f\n", mean(readings));
printf("\n");
intj;
for (j =0;] <SIZE;| ++) printf ("%2d %5Id\n"j readingslj]);
return O;

