McMaster University SFWR ENG 2503
Department of Computing and Software Exercise Sheet 6
Dr. W. Kahl

SFWR ENG 2503 — Principles of Programming

18 October 2006

Exercise 6.1 — Calendar (22% of Final 2003)
For a calendar application, a year will be represented $ingle contiguous arrayof days, called
a‘“year array” .

For making access easier;rmonth start array” will be calculated, containing for each month
indexi the index that the first day of montfnas in year arrays.

Example: In a normal (i.e., non-leap) year, the first four elements (at indices 0, 1, 2, 3) of the month
start array will be 0, 31, 59, 90.

Note: The items (a) and (b) are completely independent of each other.

(a) Implement the C function

int = startDays(int monthsNum , constint monthLen[], int = yearLen)
that
— returns a pointer to the beginning of a newly allocated month start array which should have
monthsNum elements,
— initialises this new month start array according to the month lengths found in the
monthsNum-element arraynonthLen, and

— writes the number of days the whole year has in this calendar into the reference parameter
yearLen.

(b) Implement the iterative C function
void printDate(int monthsNum , int monthStart[], int index)

that, given a number of months and a month start array,hisasy searchto find the month
containing the day with indexdex in a year array; it should then print (to standard output) a
message containing the day in that month and the number of the month as user-level day and
month numbers.

Example:For index 0 it should printBay 1 nont h 1", and for index 33 (using the standard
calendar) it should printCay 3 nonth 2.
Let the following enumeration type definition be given:

typedef enum {SUN, MON, TUE, WED, THU, FRI, SAT } Weekday;

(c) Write a C functionweekday that, given a month start arrayonthStart, the weekday
wd1 of the first day of the year (for 2003 this would ®¢ED), and twoint valuesmonth and
a day, returns the weekday of the day indicatedriynth and aday, which are supplied as
user-level numbers: For the 21st October, these arguments wounlontie=10 andday=21

Exercise 6.2 — Calendar (modified 23% of Final 2003)
For the calendar application of Exercise 6.1:

(a) Write and documerappropriate type definitions for the calendar data — of typay — to be
stored in year arrays.

For each day, there should be the times of sunrise and sunset, and up to 10 appointments.

An appointment — of type\ppointment — has begin and end times, a title string, and a
comment string.
(b) Design and implementa C functionfind that accepts the following parameters:

— the number of months and a month start array,

— the number of days in the year and a year array contaaygelements,

— afunction check that takes am\ppointment— see (c) — as argument and returns either
NULL to signal that the argumeAppointments irrelevant, or a pointer to a string containing
a message to be printed.

The functionfind should applycheck to all appointments in the year array, and for each
appointment for which a message is returned, it should print the message apdntDate
from (b) above to print the date at which the appointment was found.

(c) Implement argument functions fiawd from (b), e.g.:

— checkWhite finds appointments where the comment string contains only white-space
characters, and returns a message transscribing the comment into a C string literal.

So if the comment consisted of an empty line, and a line containing a space and a tab
character, the returned message, when printed to the screen, would contain the nine-character
string"\n \t\n".

(For manually generating this, you would writéf\n \\t\n\"".)

— checkBirthday finds birthdays: If the comment of an appointment does not contain (case
insensitive) the sub-strintpirthday", it returnsNULL. If a birthday comment starts with
"Birthday: ", then checkBirthday only returns the suffix after that prefix, otherwise the whole
comment.

(d) Write amain program to test everything!

Exercise 6.3 — Typing (22% of Midterm 2, 2005)

Give variable declarations (and only varialdeclarationg to preceed the following statements
so that the resulting code is valid ANSI C. In each case, you must pradwedenost appropriate

type.

(@) d =0.5; () array = malloc(10 = sizeof (double));

(b) p=q+05: array[6] = 2.73e5;

(c) p=q++q @) matrix = malloc(5 = sizeof (double %));
’ matrix[2] = malloc(8 = sizeof (double));

(d) array[3] = 3.14; matrix[2][4] = 0.0;

(e) xanswer =42;

