
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3BB4
Exercise Sheet 3

SFWR ENG 3BB4 — Software Design III — Concurrent System Design

27 February 2007

Exercise 3.1: Labelled Transition Systems — Elevator (extended from Midterm 2, 2004)

Let the following two labelled transition systems be given:

User =

3 2

0 1
open

open

enter

enter

e

exit

stair

stair

stair

stair

Elevator =

u

c o
open

open

close closeup

up

do

down

enter

enter

e

exit

(a) Draw the reachable part of the composed LTSElevator || User.

Solution Hints

Elevator = (open -> Open1 | up -> Up),

Open1 = (enter -> Open1 | close -> Elevator),

Up = (exit -> Up | down -> Elevator).

User = (open -> enter -> In | stair -> Out2),

In = (exit -> Out2),

Out2 = (stair -> User).

(b) In the systemElevator || User, what “goes wrong” relative to common sense?
Clearly define the property you findviolated as a property of traces. Is this asafety property
or a liveness property? Justify!

Solution Hints

Common sense description:

– Expected: If the User does notenter quick enough, they keep standing outside theclosed
Elevator, and although theElevator can still go up and down, the User cannot ever do
anything anymore.

Violated property as trace predicate:

• Each trace contains infinitely many events in the label set ofUser.

• Equivalently: For each tracet and each positionm : IN there is a positionn : IN with n
≥ msuch thatt.n ∈ LUser.

This is aliveness property.

(c) For each of the following questions, if the answer is yes,supply a trace; if no,explain. Does the
statement reflect asafety propertyor aliveness property? Reformulate the property involved
as a statement about traces.

– Is it possible that after anenter event happend in the systemElevator || User, noexit will
happen anymore?

Solution Hints

Yes: open enter close (up down ∞)

The statement reflects violation of aliveness property.

In each trace, after eachenter event there is eventually anexit event.

Equivalently: For each tracet and each positionm : IN with t.m = enter there is a position
n : IN with n > msuch thatt.n = exit.

– Is it possible that after anenter event happend in the systemElevator || Useranup or adown
event happens before the nextclose event?

Solution Hints

No: enter is shared, and the user can only engage inexit, another shared event, afterenter,
so only the elevator can act, but the only possible action of the elevator afterenter is already
close.

Trace property: For a given trace, is there anenter event followed (not necessarily directly)
by anup or down event before the nextclose event?

This is a safety property violation.

The corresponding safety property is that for every trace, and for everyenter event in that
trace, there are noup or down events in that trace before the next (if any)close event.

Intuitively: If the elevator started moving before the door closes, somebody might get
squished — a safety concern.

Exercise 3.2: Modelling Car Keys (Adapted from Midterm 1, 2002)

You are to model certain aspects of locking a car that, for the sake of simplicity, is assumed to
have onlyone door andone key, andno other parts (e.g. windows or roofs) that might be open
or opened.

It is possible tolock andunlock thedoor no matter whether it is open or closed, but the door can
only beopened while it is unlocked.

The key can beinserted into the ignition andremoved from it, and while the key isnot in the
ignition, it canlock andunlock the door.

Thedriver can use the door to get into and out of the car. If the driver is outside the car and the door
is closed, then the driver can use the key to lock and unlock the door; otherwise it is only possible to
use abutton to lock and unlock the door. If the driver is inside the car and the door is closed, then
the driver caninsert the key into the ignition andremove it.

(a) Draw an LTS for the behaviour of thedoor, starting in a closed and locked state.

Solution Hints

DOOR = (unlock -> CU),
CU = (lock -> DOOR | open -> OU),
OU = (lock -> OL | close -> CU),
OL = (unlock -> OU | close -> DOOR).

Refined for two locking agents:

DOOR = (key.unlock -> CU | butten.unlock -> CU),
CU = (key.lock -> DOOR | button.lock -> DOOR | open -> OU),
OU = (key.lock -> OL | button.lock -> OL | close -> CU),
OL = (key.unlock -> OU | button.unlock -> OU | close -> DOOR).

(b) Draw an LTS for the behaviour of thekey, starting outside the ignition.

Solution Hints

KEY = ({key.lock, key.unlock} -> KEY | insert -> remove -> KEY).

(c) Draw an LTS for the behaviour of thedriver , starting outside the closed car.

Solution Hints

DRIVER = ({key.lock, key.unlock} -> DRIVER
 |open -> X
),
X = (close -> DRIVER
 |{button.lock, button.unlock} -> X
 |close -> INSIDE

),
INSIDE = (open -> X
 |{button.lock, button.unlock} -> INSIDE
 |{insert, remove} -> INSIDE
).

(d) Use parallel composition to assemble the three components together into a single LTS process
CARKEY.

(e) We call a statedesperateif the driver is outside the vehicle, the door is closed and locked, and
the key inside the ignition. Is it possible that the processCARKEYreaches a desperate state?
If yes, exhibit a trace; if no, explain.

Solution Hints

key.unlock
open
close
insert
open
button.lock
close

(f) Are desparate states deadlock states? Explain!

Solution Hints

Yes:The driver outside the closed and locked door can only dokey.unlock, but the key is inside
the ignition and can only doremove, and the door has only shared actions: No actions are
possible from such a state.

(g) Is the absence of desparate states a safety condition or a liveness condition? Explain!

Solution Hints

If “desperate state” as such is considered “something bad”, then this is a safety property.

But the state is “desperate” because no actions (leading to eventual driving) are possible, and
this latter property is the most basic liveness property.

(h) Infinitely many usesof the car are documented by traces in which both unlocking by key and
insertion of the key into the ignition have infinitely many occurrences.

Are infinitely many uses of the car still possible if the locking button breaks? Explain in terms
of traces! What kind of property is this?

Solution Hints

This is a liveness property.

There are traces documenting infinitely many uses of the car with only finitely many occor-
rences ofbutton.lock and ofbutton.unlock.

This is the case since

– it is possible to get fromkey.unlock to insert without using the button, and

– it is possible to get frominsert to key.unlock without using the button, cycling as
follows:key.unlock

open
close
insert
remove
open
close
key.lock
key.unlock

