
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 5

Design and Selection of Programming Languages

11 October 2006

Exercise 5.1 — Haskell Evaluation (36%of Midterm 1, 2004)

Assume the following Haskell definitions to be given:

succ n = n+1 − − reduce in one step, e.g.:succ 5 → 6

take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

feed h q y = q : feed h (q + y) (h y)

Simulate Haskell evaluation for the following expression (write down the sequence of intermediate
expressions):

take 3 (feed succ 0 1)

Note: You may introduceabbreviations for repeated subexpressions, or userepetition marks for
material that is unchanged from the previous line. In particular,write “ s” instead of“ succ”!

Exercise 5.2 — Finite-State Machines (25%of Midterm 1, 2004)

Let the following type synonyms be given, as in the presentation in the first lecture:

type State = Int
type Symbol = Char
type TransRel = [(State , Symbol , State)]
type FSM = (State , TransRel , [State])

2

a

b

0

c a

1

3

b

a

(a) Define fsm1 : : FSM such that it represents the finite-state machine drawn above (with start state
circled and end states in boxes):

(b) Define the Haskell function isDet : : FSM → Bool such thatisDet fsm evaluates to the
Boolean value indicating whether the finite-state machinefsm is deterministic or not.

For example, isDet fsm1 = False since there are twob-edges from state 1 to different nodes.

Hint: Define auxiliary functions! For example:
– Calculate all start nodes of transitions in aTransRel.
– Given a state, calculate all edges leaving that state in aTransRel.

– Given aSymbol and aTransRel, find all target nodes of edges with that symbol.

– Given aState and aTransRel, find out whether any edges from that state violate determinacy.

Other functions may be useful, too.Document your functions!

Exercise 5.3 — Haskell Typing (19%of Midterm 1, 2004)

Providedetailed derivationsof the Haskell types of the following functions:

swibble x y = [(x , y) , (x ++ "’", y + 1)]

swoon g h = [g ((1 +) . h)]

Exercise 5.4 (Skeleton file is on the course page)

We define a type of transition functions that define state transitions triggered byinputs and also
producingoutputs:

type Transition state input output = (state , input) → (state , output)

(a) Define a Haskell function

process : : Transition state input output → state → [input] → [output]

that calculates the list of outputs produced by a transition function given a starting state and a list
of inputs.

Usingprocess from (b) and prelude functions, the definition

runprocess : : Transition state String String → state → IO ()
runprocess tr s = do

hSetBuffering stdout LineBuffering −− requires: “import System.IO” at beginning of module
interact (unlines ° process tr s ° lines)

allows runprocess to turn a transition withString inputs and outputs into a runnable program.

Try: runprocess id 0

(b) Define a transition function

countEcho : : Transition Integer String String

that keeps a counter as its state and otherwise just reproduces the input prefixed withline numbers
as output.

Try: runprocess countEcho 0

(c) Define a transition function

trAdd : : Transition Integer String String

that uses the prelude functionsread and show to add theInteger reading of the input to the
accumulating state, and outputs that state as a string.

Try: runprocess trAdd 0

(d) Define a transition function

polish : : Transition [Integer] String String

that implementsa reverse Polish notation calculator by pushing number inputson the stack,always
outputing the top of the stack (if present), and interpreting+ , − , ∗ , / as taking their arguments
from the stack and pushing the result back onto the stack.

Try: runprocess polish []

