Practical Application of Functional and
Relational Methods for the Specification and
Verification of Safety Critical Software

Mark Lawford!*, Jeff McDougall?, Peter Froebel®, and Greg Moum?

! Computing and Software, McMaster Univ., Hamilton, ON, Canada, L8S 4L7
lawford@mcmaster.ca
2 JKM Software Technologies Inc., 17160 Keele Street, R.R.1, Kettleby, ON, L0G 1J0
jkm@pathcom.com
3 Ontario Power Generation, 700 University Ave., Toronto, ON, Canada M5G 1X6
peter.froebel, g.moumQontariopowergeneration.com

Abstract. In this paper we describe how a functional version of the
4-variable model can be decomposed to improve its practical application
to industrial software verification problems. An example is then used to
illustrate the limitations of the functional model and motivate a mod-
est extension of the 4-variable model to an 8-variable relational model.
The 8-variable model is designed to allow the system requirements to
be specified as functions with input and output tolerance relations, as
is typically done in practice. The goal is to create a relational method
of specification and verification that models engineering intuition and
hence is easy to use and understand.

1 Introduction

The CANDU Computer Systems Engineering Centre of Excellence Standard
for Software Engineering of Safety Critical Software [4] states the following as
its first fundamental principle: “The required behavior of the software shall be
documented using mathematical functions in a notation which has well defined
syntax and semantics.” In order to achieve this, Ontario Power Generation Inc.!
(OPGI) and Atomic Energy of Canada Limited (AECL) have jointly defined a
detailed software development process to govern the specification, design and
verification of safety critical software systems. The software development pro-
cess results in the production of a coherent set of documents that allow for static
analysis of the properties of the design described in the Software Design Descrip-
tion (SDD), comparing them against the requirements described in the Software
Requirements Specification (SRS).

In this work we review how this functional verification has been done in
practice [5]. We first describe how a functional version of the 4-variable model of

* Partially supported by NSERC grant 217249-99.
! OPGI is the electricity generation company created from Ontario Hydro.

[11] can be decomposed to facilitate tool support and to reduce the manual effort
required to perform and document the specification and verification tasks. An
example from [5] is then used to motivate the extension to a relational model.
The relational model is necessary to rigorously account for tolerances that must
normally be considered when trying to implement a system to meet an ideal
system behavior.

We propose the 8-variable model, a modest extension of the 4-variable model
that takes into consideration input and output tolerances while still permitting
the use of functional requirements specification and design descriptions. The
model formalizes the engineering practice of appealing to tolerances when nec-
essary. By attempting to formalize the process, the authors hope to provide a
sound basis for tool support of the entire verification process and provide oppor-
tunities for further applications of fundamental relational algebraic concepts.

Section 2 provides an overview of the basic concepts and notation required
by the paper. Section 3 explains the (functional) Systematic Design Verifica-
tion (SDV) procedure and its limitations regarding tolerances. These limitations
motivate the 8-variable model of Section 4.

2 Preliminaries

Functions and relations are shown in italics (e.g., f, REQ). All sets of time series
vectors from the 4- and 8-variable models are shown bold (e.g., BM). All other
mathematical terms are shown in italics (e.g., bm € BM).

For a set V;, we will denote the identity map on the set V; by idy, (ie.,
idy, : V; = V; such that v; — v;). Given functions f : V3 — Ve and g : Vo — V3,
we will use g o f to denote functional composition (i.e., g o f(vi) = g(f(v1))).
The cross product of functions f : Vi — V3 and f' : V] — V3, defines a function

Fx f Vi x V| = Vi x V§ such that (v,0") 2 (£(0), f'(0")).

It will also be convenient to consider the operation of relational composition.
For FCVixVeand GC Vo x V3, FeG = {(v1,v3) € V1 x V3|(vz € W2) :
(v1,v2) € F A (v2,v3) € G}. Thus for the functions f and g as defined above,
gof = feg. A relation F is said to be total if (Vv € V1)(Fve € V2) : (v1,v2) € F.

Denote the set of all equivalence relations on V by Eq(V). Any function
f : V — R induces an equivalence relation ker(f) € Eq(V), the equivalence
kernel of f, given by (vy,v2) € ker(f) if and only if f(v1) = f(v2). We define
the standard partial order on equivalence relations as follows. Given equivalence
relations 61,62 € Eq(V), we say that 6, is a refinement of 62, written 6; < 6o,
iff each cell (equivalence class) of 6; is a subset of a cell of 65 (i.e., (v,v') € 6,
implies (v,v') € @, for all (v,v") € V x V). We can now formally state a basic
existence claim for functions that will be used later in the paper.

Claim. Given two functions with the same domain, f : V; = Vzand g : V; — V5,
there exists h : Vo — V3 such that f = h o g iff ker(g) < ker(f).

3 Functional Systematic Design Verification

This section provides an overview of the (functional) SDV procedure used in
[5]. We highlight elements of the process, such as the decomposition of proof
obligations, that facilitate tool support and reduce the effort required to perform
and document the SDV procedure. Although the SDV procedure covers other
types of verification problems, we will concentrate on the verification of simple
functional properties that often compose the majority of system requirements.
The reader is referred to [8] for the complete procedure. The section concludes
with an example that illustrates the limitations of the functional approach.

3.1 SDV Procedure Overview

The software engineering process described here is based upon the Standard for
Software Engineering of Safety Critical Software [4] that was jointly developed
by OPGI and AECL. This standard requires that the software development and
verification be broken down into series of tasks that result in the production of
detailed documents at each stage. The software development stages relevant to
this paper are governed by the Software Requirements Specification Procedure
[3] and the Software Design Description Procedure [6]. These procedures re-
spectively produce the Software Requirements Specification (SRS) and Software
Design Description (SDD) documents. In addition to other methods, these doc-
uments make use of a form of Parnas’ tabular representations of mathematical
functions [2, 10] to specify the software’s behavior. Tables provide a mathemati-
cally precise notation (see [1] for the formal semantics) for the SRS and SDD in
a visual format that is easily understood by domain experts, developers, testers,
reviewers and verifiers alike [5].

The underlying models of both the SRS and SDD are based upon Finite
State Machines (FSM). The SDD adds to the SRS functionality the scheduling,
maintainability, resource allocation, error handling, and implementation depen-
dencies. The specification technique for defining the implementation is based on
a virtual machine which will execute the source code which is to be implemented.
The primary difference between this virtual machine and the FSM describing the
SRS is that execution is not instantaneous, but takes a finite amount of time,
and thus the order of execution must be specified to avoid race conditions. The
SRS is produced by software experts with the help of domain experts. It is used
by lead software developers to produce the SDD which is then used by all the
developers to produce the actual source code.

The software engineering standard [4] requires that the SDD be formally
verified against the SRS and then the code formally verified against the SDD
to ensure that the implementation meets the requirements. These formal verifi-
cations are governed by the SDV Procedure and Systematic Code Verification
(SCV) Procedure. For the purposes of this paper we will concentrate on the SDV
process.

REQ

M C
IN our
SOF
I 0)

Fig. 1. Commutative diagram for 4 variable model

The objective of the SDV process is to verify, using mathematical techniques
or rigorous arguments, that the behavior of every output defined in the SDD, is in
compliance with the requirements for the behavior of that output as specified in
the SRS. It is based upon a variation of the four variable model of [11] that verifies
the functional equivalence of the SRS and SDD by comparing their respective
one step transition functions. The resulting proof obligation in this special case:

REQ = OUT 0 SOF o IN (1)

is illustrated in the commutative diagram of Figure 1. Here RE(Q) represents
the SRS state transition function mapping the monitored variables M (includ-
ing the previous pass values of state variables) to the controlled variables and
updated (current) state represented by C. The function SOF represents the
SDD state transition function mapping the behavior of the implementation in-
put variables represented by statespace I to the behavior of the software output
variables represented by the statespace O. The mapping IN relates the speci-
fication’s monitored variables to the implementation’s input variables while the
mapping OUT relates the implementation’s output variables to the specifica-
tion’s controlled variables. The following section briefly outlines the refinement
of the relational methods in [11] to the simple functional case in (1).

3.2 Specialization of the 4-Variable Model

In the 4-variable model of [11], each of the 4 “variable” state spaces M, I, O,
and C is a set of functions of a single real valued argument that return a vector
of values - one value for each of the quantities or “variables” associated with
a particular dimension of the statespace. For instance, assuming that there are
njs monitored quantities, which we represent by the variables my,ma, ... ,my,,,
then, the possible timed behavior of the variable m; can be represented as a
function m! : R — Type(m;), where m!(z) is the value of the quantity m; at
time z. We can then take M to be the set of all functions of the form mf(z) =
(mi(x),m5(x),... ,m} (x)). Thus the relations corresponding to the arrows of
the commutative diagram then relate vectors of functions of a single real valued
argument,.

In order to simplify the 4-variable model to a FSM setting, we restrict our-
selves to the case where each of the 4 “variables” M, I, O, and C is a set of
“time series vectors”. For example, M actually refers to all possible sets of ob-
servations ordered (and equally spaced) in time, each observation being a vector
of nys values. We will use the term monitored variable to refer to quantity m;
which is the ith element in the vector (i € {1,...,na}). Let m € M be a time
series vector of observations of the monitored variables. With a slight abuse of
notation, we will use m;(z) to denote the zth observation of the ith element
(z € {0,1,2,...}) of the monitored variables for the time series vector m. Sim-
ilarly m(z) represents the zth observation of the njps values in the monitored
variable vector for time series m.

For this model, the time increment between each of the observations is defined
to be the positive real value 6 > 0. Thus observation z corresponds to time (z*4).
The increment 4 is taken to be at least an order of magnitude less than any time
measurements of interest. The value of m; at any point between two observations
(i.e., in the range of time [z * §, (2 + 1) * §)) is defined to be equal to m;(z).

Each of the “variables” M, C, I, O in the specialized 4-variable model has the
same frequency of observation, but may have a different number of values in its
vector. The value njs is defined to be the number of elements in M, which are
observed over time, while ny is defined to be the number of elements in I, which
are observed over time. Normally ny = njps. Similarly no is defined to be the
number of elements in O, which are observed over time and n¢ is defined to be
the number of elements in C, which are observed over time. Normally, nc = no.

Requirements (REQ): The required behavior of the subsystem is described
with REQ. At OPGI REQ is modeled as a FSM, defining a relation over M x
C. While, in general, the FSM could be nondeterministic, much of the system
behavior can be modeled by a deterministic FSM with the result that for the
verification of these properties we can assume that RE(Q is a function (i.e.,
REQ :M — C).

In this case a new set of time series vectors, S, is introduced to describe
the state of the FSM. Let c € C, m € M, s € S, and z € {0,1,2,...,}.
The zth value of a controlled variable time series vector ¢(z) depends on both
the values of m(z) and s(z), related by the vector function OUTPUT (i.e.,
¢(z) = OUTPUT(m(z),s(2))). Also, the value s(z + 1) depends on both the
values of m(z) and s(z), related by the vector function NEXTSTATE. (i.e.,
s(z+1) = NEXTSTATE(m(z),s(z)).

The SRS procedure [3] shows how a set of functions fi, fa,...f; can be de-
fined such that when a subset of them are composed, they define the OUTPUT
function. When a different, though not necessarily disjoint, set of them are com-
posed, they define the NEXTSTATE function. We have called the process of
defining these functions the “decomposition of REQ”.

Design (SOF): The implemented behavior of the subsystem is described with
SOF. SOF can be modeled as a directed graph with p + 2 nodes. Within this
graph, each node is either one of p FSM, or I, or O, and each edge represents data

WM A(V
Fr., SO Foput

ZQM

Fig. 2. Vertical decomposition: Isolation of hardware hiding proof obligations

flow between two of these. The node containing I must not be the destination
of any edge. The node containing O must not be the source of any edge. In this
way, SOF defines a relation over I x O. If the design is produced following the
SDD procedure, then each of the FSMs represents a program called from the
mainline in the design. We assume a constant mainline loop structure, with each
program called 1 or more times within the loop. If called more than once, calls
are assumed to be evenly spaced within the loop. The loop is assumed to take a
constant amount of time to execute.

For a large number of the implementation properties, the FSMs composing
SOF can be modeled as deterministic FSM allowing us to consider the special
case when SOF' defines a function. In this case, when both REQ and SOF are
functions, if we are also able to restrict ourselves to functional maps for IN and
OUT, we can verify the commutative diagram of Figure 1 by comparing the one
step transition functions of the FSMs defining REQ and SOF. More detailed
descriptions of the underlying SRS and SDD models can be found in [3] and [6],
respectively, as well as [8].

3.3 Decomposing the Proof Obligations

In Figure 2 we decompose the proof obligation (1) to isolate the verification
of hardware interfaces. The M, and C, state spaces are the software’s inter-
nal representation of the monitored and controlled variables, referred to as the
pseudo-monitored and pseudo-controlled variables, respectively. The proof obli-
gations associated with SDV then become

Abstc o REQ = SOF;¢q 0 Abstyr (2)
Abstyr = SOF;, oIN 3)
idc = OUT o SOF,,; o Abstc (4)

The first of these equations represents a comparison of the functionality of the
system and should contain most of the complexity of the system. The last two
represent comparisons of the hardware hiding software of the system. These
obligations are often fairly straightforward and are discharged manually.

As an example to help the reader interpret the above decomposition, suppose
an actual physical monitored plant parameter belonging to M is the tempera-
ture of the primary heat transport system which might have a current value of
500.3 Kelvin. The hardware corresponding to the temperature sensors and A/D
converters might map this via IN to a value of 3.4 volts in a parameter in I.
A hardware hiding module might then process this input corresponding to map
SOF;,, producing a value of 500 Kelvin in the appropriate temperature variable
belonging to the software state space M,. Further “vertical” decomposition is
performed by isolating outputs and in effect restricting M and projecting C to
the variables relevant to a particular subsystem such as the pressure sensor trip
described in the Section 3.4.

The observant reader may have noted that the controlled variable abstraction
function is defined as Abstc : C — C,, which is seemingly the “wrong” direction.
The proof obligation (4) forces Abstc to be invertible, preventing the possibility
of trivial designs for SOF,., being used to satisfy the main obligation (2). As
we will see below, this allows the verifier to define only one abstraction mapping
for each pair of corresponding SRS and SDD state variables that occur as both
inputs and outputs in the decomposition. The SDV procedure provides recourse
for the case when there is not a 1-1 correspondence between C and C, through
the use of a pseudo-SRS that can be defined to more closely match the SDD.
The interested reader is referred to [7] for further details.

Typically the verification of a subsystem as represented by (2), the inner
part of the commutative diagram, can be decomposed “horizontally” at both the
SRS and SDD level into a sequence of intermediate verification steps, thereby
reducing the larger, more complex proof obligation into a number of smaller,
more manageable verification tasks. This is represented in Figure 3 where each
equality of the form

SOF; o Absty,_, = Absty, o REQ); (5)

becomes a verification block. The price paid for this vertical and horizontal
decomposition is that for each block the verifier must provide a cross reference
between the internal variables making up the V; 1, V; state spaces at the SRS
level and the internal variables making up the V(;_1),, V;, state spaces at SDD
level, as well as defining the abstraction functions, Absty, , and Absty,. Now
the benefits of defining all the abstraction functions, including Abstc, from top
to bottom (SRS to SDD) in Figures 2 and 3 becomes more apparent. The values
of many of the controlled variables from the previous execution pass of the SRS
and SDD often become inputs to the calculation of current internal state and
output variables. Similarly, state variables that are the output of one sequential
block become the input of the following block. Defining all abstraction functions
from top to bottom and then only performing the check for invertibility at the
outputs embodied by (4) allows the verifier to use the same abstraction functions
whether a state variable occurs at the input or output of a block. This technique
reduces the number of abstraction functions required by up to one half.

REQ

N\
RE RE REQ),
9y @y, Vn_1J C
AbStM AbStVl AbStV2 AbStVTﬁl Abstc
SOF; SOF, SOF,
M, Vi, Vo .. Voo = G,
e
SOF¢q

Fig. 3. Horizontal (sequential) decomposition of proof obligations

3.4 Limitations of a Functional Model

The following example uses a simplified sensor trip to demonstrate how the ver-
ification task can be partitioned, and highlights the limitations of the functional
SDV procedure regarding support for tolerances. Currently the verification tool
suite described in [5] only supports functional verification. Work remains to
be done on the incorporation of tolerances on inputs and outputs through the
use of relational methods. Often SRS and SDD behaviors are not functionally
equivalent, but they are within specified tolerances. Currently in these cases,
separate rigorous arguments must be made, appealing to tolerances to explain
any differences in functionality. Ideally, one would like to be able to use formal
mathematical proofs incorporating the tolerances when necessary without an
excessive increase in proof complexity and workload associated with the doc-
umentation. In many cases it should be possible to add existential quantifiers
for variables with tolerances and then make minor modifications to the original
theorem statements.

We now describe the verification of a simplified pressure sensor trip that
monitors a pressure sensor and initiates a reactor shutdown when the sensor
value exceeds a normal operating setpoint. We will use tabular specifications for
their readability. In all of the tables of Figure 4, the functions return the value
in the right column when the condition in the left column is satisfied.

Tables f_PressTrip and PT RIP in Figure 4 give the proposed SRS and SDD
implementations respectively for the sensor trip. The SRS specification of the
pressure sensor trip makes use of deadbands to eliminate sensor chatter. In the
function definitions, f_PressTripS1 and PREYV play corresponding roles as the
arguments for the previous value of the state variable computed by the function.
The verification is performed using SRI’s Prototype Verification System (PVS)
automated proof assistant [9,12] to handle typechecking and proof details.

sentrip : THEORY
BEGIN

k_PressSP : int = 2450

k DeadBand : int = 50

KDB: int = k DeadBand

KPSP: int = k_PressSP

Trip: TYPE = {Tripped, NotTripped}
AI: TYPE = subrange(0,5000)

f PressTrip((Pressure : posreal), (f_PressTripS1: Trip)): Trip = TABLE

Pressure < k_PressSP — k_DeadBand NotTripped
k_ PressSP — k_DeadBand < Pressure A Pressure < k_PressSP||f_PressTripS1
Pressure > k_PressSP Tripped

ENDTABLE

PTRIP((PRES : AI),(PREV : bool)) : bool = TABLE

PRES < KPSP — KDB FALSE
KPSP — KDB < PRES APRES < KPSP||PREV
PRES > KPSP TRUE

ENDTABLE

Trip2bool ((TripVal : Trip)) : bool = TABLE

TripVal = Tripped || TRUE
TripVal = NotTripped ||FALSE
ENDTABLE

posreal2AI((x : posreal)): Al = TABLE

z<0 0
0 < zAz < 5000|/floor(z)
z > 5000 5000
ENDTABLE

Sentripl : THEOREM
(V (Pressure : posreal, f_ PressTripS1 : Trip) :
Trip2bool (f_PressTrip(Pressure, f_PressTripS1)) =
PTRIP(posreal2 AI(Pressure), Trip2bool (f_PressTripS1)))

END sentrip

Fig. 4. Formatted PVS specification for pressure sensor trip example

Figure 4 also contains the supporting type, constant and abstraction function
definitions for the verification block. The abstraction function posreal2ATItype
models the A/D conversion of the sensor values by taking the integer part of its
input using the built in function floor(z) from the PVS prelude file. It is used
to map the real valued SRS input Pressure to the discrete SDD input PRES
which has type AIType. AIType consists of the subrange of integers between 0
and 5000, denoted by subrange(0,5000) in Figure 4.

At the bottom of the specification, the theorem Sentripl is an example of a
block comparison theorem that is used to prove a specific instance of the general
block verification equation (5) that relates the SRS and SDD inputs and outputs.
If Pressure and PRES were both real numbers, related by the identity map,
then the block comparison theorem Sentripl would be easily proved, but in this
case, where PRES is a discrete input, when attempting the block comparison,
PVS reduces the problem to attempting to prove that for all input values the
following equation holds:

—(f_PressTripS1 = Tripped A floor(Pressure) < 2400
2400 < Pressure < 2450)

For any value of Pressure in the open interval (2400,2401) when f_PressTrip
was tripped in the previous pass, the above formula is FALSE. The prob-
lem occurs because whenever 2400 < Pressure < 2401, the abstraction func-
tion posreal2AIType maps Pressure to the same value as 2400, but when
f-PressTripS1 = Tripped, the SRS function f_PressTrip maps Pressure val-
ues greater than 2400 to Tripped while 2400 gets mapped to NotTripped. In
other words, ker(posreal2 AIType x Trip2bool) £ ker(f_PressTrip) so we know
by the claim from Section 2 that there is no SDD design that can satisfy the
block comparison theorem Sentripl. The interested reader is referred to [5] for
further details on the use of PVS in this example and the OPGI systematic
design verification process in general.

This is an example of when functional equality is more strict than practically
necessary. Due to the accuracy of the sensors and A /D hardware in the actual
implementation, all input values have a tolerance of +5 units. In this case, the
SDD function PT RIP actually provides acceptable behavior.

The generalized relational version of the 4-variable model originally put for-
ward in [11] easily handles this case by allowing REQ, IN and OUT from
Figure 1 to be relations between state spaces consisting of sets of vectors of
functions of time. We have found that the majority of system properties making
up REQ are, in practice, easily specified and verified if they are modeled as de-
terministic state machines where the NEXTSTATE and OUTPUT functions
have tolerances associated with their inputs and outputs as outlined below.

4 The 8-Variable Model

When trying to compare the ideal required behavior to a design, allowable tol-
erances must be specified precisely so that it can be determined whether a

IN ouT

OF

Fig. 5. 8-Variable Model

proposed design exhibits acceptable behavior. The 8-variable model shown in
Fig. 5 has been developed to take tolerances into account in such a way that
the ideal required behavior from the functional 4-variable model of Section 3.2
needs no modification. Thus domain experts still specify the behavior function-
ally as REQ, with tolerances embodied by the MTOL and CTOL (i.e., REQ
is a function) while MTOL and CTOL are tolerance relations. To facilitate the
specification of tolerance relations, the monitored and controlled state spaces
M and C of the original 4-variable model are replaced by pairs of state spaces
BM, IM and IC, BC respectively. The additional state spaces FM and FC are
used to model the actual physical quantities “in the field” and, although not
always necessary for the verification task, they can be used to document the
monitored and controlled quantities relation to the physical world to provide
the system engineers with insight into the problem domain.

In this model, FM refers to the Field Monitored Variables. These are math-
ematical variables? which model properties of the environment that are being
measured. For example, the heat transport temperature in degrees C might be
modeled by a field monitored variable.

BM refers to the Boundary Monitored Variables. These are mathematical
variables which model properties being measured at the limits of the subsystem
being described. For example, if the subsystem was a trip computer, a voltage at
the terminal blocks of the computer could be modeled by a boundary monitored
variable. Although the required behavior of the subsystem only needs to describe
behavior relative to boundary monitored variable values, it is convenient for the
specifier writing the requirements to give each boundary monitored variable a
name which reflects the property being modeled by the associated field moni-
tored variable. For example, the SRS may name a boundary monitored variable
m_HT_Temperature, even though it is a voltage value which is being modeled at
the boundary. This allows the requirements specifier to concentrate on the prob-
lem domain when describing the required behavior of the subsystem. Typically
there is a functional relationship MTRAN between FM and BM.

2 As opposed to software variables.

IM refers to the Inner Monitored Variables. Inner monitored variables are
mathematical variables which represent the boundary monitored variables, with
Monitored Variable Accuracy taken into account.

Monitored variable accuracy describes a range of values, such that the subsys-
tem is required to respond as described to at least one of the values within that
range. For example, if in the example above the boundary monitored variable
accuracy is 0.5 V, and the value of the boundary monitored variable at some
point in time is 2.5 V, then the requirements are saying that the subsystem may
respond as if the value at that time is any one of the values in the range [2.0, 3.0]
V. In this way, monitored variable accuracy results in the SRS describing a set of
allowable behaviors. Any design which exhibits one of the allowable behaviors,
meets the requirements.

The ideal required behavior in the SRS (i.e., REQ), when applied to the
inner monitored variables, provides a description of required behavior which ac-
counts for decisions regarding accuracy. For example, the requirement specifier
can use a condition m_HT Temperature > m_HT_Setpoint, rather than ex-
plaining within the condition how to account for the accuracy of the variable
m_HT _Temperature. Note that in some cases, IM may be the same as BM.
For example, in a trip computer a configuration EPROM value does not change
on-line and is represented as a digital value. Thus the accuracy would be £0. The
MTOL relation between BM and IM is typically not a functional relationship,
since one value in a boundary monitored variable is related to many values in
the corresponding inner monitored variable when there is a non-zero monitored
variable accuracy associated with the variable.

I refers to the Input Variables. Input variables are mathematical variables
which model the information available to the software. For example, a voltage
which is converted to a digital value via an A/D converter may be made avail-
able to the software as a base-2 integer in a register. The value read from that
register could be modeled as an input variable. The IN relation between BM
and I is usually not a functional relationship. This relation takes into account
quantization of values (i.e., loss of accuracy due to constructing a discrete rep-
resentation of a continuous quantity) and hardware inaccuracies (e.g., an A/D
converter tolerance).

O refers to the Output Variables. Output variables are mathematical variables
which model the values set by the software. For example, if the software sets a
bit in a register to indicate that a trip should occur, the bit could be modeled
as an output variable.

IC refers to the Inner Controlled Variables. Inner controlled variables are
mathematical variables which represent the boundary controlled variables, before
Controlled Variable Accuracy is taken into account.

Controlled variable accuracy describes a range of values, such that the re-
sponse of the subsystem is required to equal a value which is within that range
around the value described by the ideal required behavior. For example, if a
boundary controlled variable accuracy is £0.1 V, and the ideal required value

of the controlled variable at a point in time is 2.1 V, then the requirements
are saying that the subsystem may respond at that time with a result which
is any one of the values in the range [2.0,2.2] V. As with monitored variable
accuracy, controlled variable accuracy results in the SRS describing a set of al-
lowable behaviors. Any design which exhibits one of the behaviors allowed is
thereby meeting the requirements.

BC refers to the Boundary Controlled Variables. These are mathematical
variables which model properties being controlled at the limits of the subsys-
tem being described. For example, a voltage produced by the subsystem at the
terminal blocks of the computer could be modeled by a boundary controlled
variable. Note that, as with boundary monitored variables, it is convenient for
the specifier writing the requirements to give each boundary controlled variable
a name which reflects the property being modeled by the associated field con-
trolled variable. The CT OL relation between IC and BC is not functional since
one value in an inner controlled variable can be related to many values in the
corresponding boundary controlled variable. The OUT relation between O and
BC is not typically functional since it takes into account hardware inaccuracies
(e.g., D/A converter tolerance).

FC refers to the Field Controlled Variables. These are mathematical variables
which model properties of the environment that are being controlled. Typically
there is a functional relationship CT RAN between BC and FC. If BC and FC
are not, the same variables, then the system level documentation should describe
the transformation between them.

Collectively, the variables FM, BM and IM will be referred to as Monitored
Variables. Similarly, IC, BC and FC will be referred to as Controlled Variables.

Monitored Variable Accuracy If each boundary monitored variable bm;,
has an accuracy requirement +a;/ — b;, where a; > 0 and b; > 0, then MTOL
defines a relation over BM x IM such that (bm,im) € MTOL <=

(Vz € {0,1,2,...})(Vi € {1,2,..np })bmi(2) — b; < imi(z) < bmi(z) + a;
Controlled Variable Accuracy If each boundary controlled variable bc;, has

an accuracy requirement +c¢;/ —d;, where ¢; > 0 and d; > 0, then CTOL defines
a relation over IC x BC such that (ic,bc) € CTOL <

(V2 € {0,1,2,...})(Vi € {1,2,..nc})(ic;(z) — d; < bei(z) <ici(z) + ¢;)

4.1 Design Verification

From Fig. 5, there are two “paths” from BM to BC. The first path is via
IM and IC, with MTOL, REQ, and CTOL. The second path is via I and O,
with IN, SOF, and OUT'. More precisely, when MTOL, REQ and CTOL are

composed, they describe the REQUIREM ENT'S relation which is the subset
of BM x BC given by: REQUIREMENTS = MTOL e REQ ¢ CTOL

Similarly, when IN, SOF and OUT are composed, they describe the relation
DESIGN =IN ¢ SOF ¢« OUT C BM x BC.

Design verification of functional requirements with tolerances is then the
process of showing two things:

DESIGN C REQUIREMENTS, and (6)
DESIGN s total (7

Thus, by (6), all behaviors that the design may exhibit represent acceptable
behavior according to the requirements, and by (7) the design is defined for all
possible values of boundary monitored variables. Note that together conditions
(6) and (7) guarantee that REQUIREMENTS is total so that the acceptable
behavior of the system has been completely specified for all possible monitored
variable values.

It may be that the designer does not want or need REQUIREMENTS to
be complete (e.g., in case when there are input combinations that are physically
impossible). This happens when the system being controlled, the “plant”, places
restrictions on how the monitored variables can be related to the controlled
variables. In the standard 4-variable model of [11] this is modeled by the relation
NAT C M x C. In the case of the proposed 8-variable model we could have
NAT C BM x BC. In this case (7) could be replaced by the requirement:

NATNREQUIREMENTS C DESIGN (8)

to guarantee that (6) being met by a non-trivial design.

4.2 The Simplified Sensor Trip Revisited

For the simple sensor trip example in Section 3.4, MT RAN can be used to define
the mapping from the physical pressure in kPa to a real valued sensor output
voltage while CTRAN relates the Tripped/NotTripped value of f_PressTrip
to the Open/Closed state of a physical relay. The +5 tolerance on the input due
to the uncertainty in the sensors and A /D conversion is modeled by MTOL and
CTOL is just the identity map due to the discrete nature of the trip output. The
remaining maps REQ, SOF, IN and OUT are still be modeled by the functions
f-PressTrip, PTRIP, posreal2AI and the inverse of Trip2bool, respectively.

Using PVS’s dependent typing capabilities, the block comparison theorem
Sentripl can be restated as the easily proved theorem:

Sentripl : THEOREM
(V (Pressure : posreal, f PressTripS1 : Trip)
(3 (Pressure2 : {(z : posreal)|Pressure — 5 < z < Pressure + 5}) :
Trip2bool (f_PressTrip(Pressure2, f_PressTripS1)) =
PTRIP(posreal2AI(Pressure), Trip2bool (f_PressTripS1))))

5 Conclusion

The main goals of this paper have been to provide insight into how relational
methods can be adapted to increase their utility in practical applications. We
have outlined a functional specification and verification technique for safety crit-
ical software based upon the four variable model of [11]. A simple example was
used to illustrate the limitations of a functional model and motivate a modest
extension of the theory to a relational setting that we call the 8-variable model.
The main benefit of this model refinement of the relational 4-variable model is
that the method is intuitive and easy to use for both requirements specifica-
tion and design description since engineers typically prefer to think in terms of
functions with tolerances when dealing with safety critical systems.

References

1. R. Janicki and R. Khédri. On a formal semantics of tabular expressions. Science
of Computer Programming, 2000. To appear.

2. R. Janicki, D. Parnas, and J. Zucker. Tabular representations in relational docu-
ments. In C. Brink et al., editors, Relational Methods in Computer Science, Ad-
vances in Computing Science, ch. 12, p. 184-196. Springer Wien NewYork, 1997.

3. E. Jankowski and J. McDougall. Procedure for the Specification of Software Re-
quirements for Safety Critical Software. CANDU Computer Systems Engineering
Centre of Excellence Procedure CE-1001-PROC Rev. 1, July 1995.

4. P. Joannou et al. Standard for Software Engineering of Safety Critical Software.
CANDU Computer Systems Engineering Centre of Excellence Standard CE-1001-
STD Rev. 1, January 1995.

5. M. Lawford and P. Froebel. Application of tabular methods to the specification
and verification of a nuclear reactor shutdown system. Submitted to FMSD.

6. J. McDougall and J. Lee. Procedure for the Software Design Description for Safety
Critical Software. CANDU Computer Systems Engineering Centre of Excellence
Procedure CE-1002-PROC Rev. 1, October 1995.

7. J. McDougall, M. Viola, and G. Moum. Tabular representation of mathematical
functions for the specification and verification of safety critical software. In SAFE-
COMP’94, p. 21-30, Anaheim, October 1994. Instrument Society of America.

8. G. Moum. Procedure for the Systematic Design Verification of Safety Critical
Software. CANDU Computer Systems Engineering Centre of Excellence Procedure
CE-1003-PROC Rev. 1, December 1997.

9. Sam Owre, John Rushby, and N. Shankar. Integration in PVS: Tables, types, and
model checking. In Ed Brinksma, editor, TACAS ’97, LNCS 1217, p. 366—383,
Enschede, The Netherlands, April 1997. Springer-Verlag.

10. D. Parnas. Tabular representation of relations. Technical Report 260, Communi-
cations Research Laboratory, McMaster University, October 1992.

11. D. Parnas and J. Madey. Functional documentation for computer systems engi-
neering. Technical Report CRL No. 273, Telecommunications Research Institute
of Ontario, McMaster University, September 1991.

12. N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer Science Labo-
ratory, SRI International, Menlo Park, CA, February 1993.

