Invariance Under Scaling of Time Bounds in Timed
Discrete-Event Systems

Sean E. Bourdon, W.M. Wonham M. Lawford
Systems Control Group Dept. of Computing and Software
Dept. of Electrical and Computer Engineering McMaster University
University of Toronto Hamilton, ON L8S 4L8
Toronto, ON M5S 3G4
bourdon,wonham@control.toronto.edu lawford@mcmaster.ca
Abstract

A family of affine mappings on the time bounds for timed discrete-event systems
is introduced. It is shown that unless these affine maps are in fact linear, then the
timed activity transition graph (TATG) of an arbitrary timed discrete-event system
(TDES) may not be preserved under the scaling operation. Moreover, it is shown
that when the scaling is linear, the TATG is always preserved under scaling. We
examine some applications of the result, including state space reduction and make
connections to suboptimal supervisory controller synthesis and dense time scaling.
Finally, we briefly discuss topics for future study including extensions to model-
checking and efficient representation of TDES.

1 Introduction

Several paradigms have been proposed in order to introduce greater modeling flexibility
and realism to the Ramadge-Wonham framework of discrete-event systems. Among these
is the timed discrete-event systems (TDES) framework of Brandin and Wonham [6] in
which the passage of time (in the global sense) is marked by a special event, tick. In this
theory, time is uniformly quantized and the quantum used represents the elapsed time
between successive ticks of an integer valued clock. The framework is meant to real-
istically model sampled systems. Dense time systems, while sometimes mathematically
satisfying, are necessarily idealized.

When modeling a real-time system in the TDES framework for the purposes of imple-
menting supervisory control, a faster tick rate lends itself to increased accuracy. However,
in any physical system, there are limitations on the tick rate that may be used for the
model. These constraints on the tick rate generally arise from two sources. The first
of these is hardware limitations. For example, regardless of the technology used, our
sampling rate is always bounded. The second constraint on the tick rate stems from
the well-known state explosion problem. Namely, the size of the state space for a TDES
model can grow rapidly as the tick rate increases. Hence, a TDES with a high tick
density may not be very amenable to computation.

One way in which a model’s suitability can be judged is via its timed activity transition
graph (TATG). A given TDES G can be represented graphically using a timed transition
graph, which displays all possible sequences of events that can occur within the definition



of G, including the tick transitions. In order to obtain the TATG from the TTG, we
merely need to suppress all tick transitions. Thus, the TATG incorporates the constraints
imposed on the event sequences of G by their time bounds.

In Section 3 of this paper, we focus on a specific family of transformations of TDES
in which the time bounds for the activities in the original TDES G are affinely scaled to
produce a new TDES G’. We first consider the case where the tick rate is increased in the
scaled system. It will be shown that when the time bounds are linearly scaled the TATGs
for G and G’ will be the same. Moreover, we shall prove that when the scaling is affine
but not linear, the TATG for G’ may not necessarily coincide with that of G. These
first results can assist in determining how a model should change with the introduction
of faster components or better processors into the system. We then consider the effect of
scaling a system so that ticks become slower and discuss application to model reduction.
It is also shown that scaling commutes with composition of TDES, so that scaling can be
used in a compositional model reduction scheme of the type described in [12] and [11].

Next, we add to the set of results from Section 3 and discuss connections to related
work. The results obtained here allow us to relate our work to that of [8] on suboptimal
supervisory control.

In Section 4, we examine a few interesting properties that arise in the limit as ticks
become dense in the real line. Specifically, it is shown that the original definition of
TDES breaks down, motivating the need for minor semantic changes.

The final section of the paper summarizes the results presented in the two preceding
sections and discusses potential future topics of study.

2 Timed Discrete-Event Systems

Asin [6], we model a TDES G in two steps. The first is to construct an activity transition
structure Guet 1= (4, %, &, a,), which is simply a finite deterministic automaton [13]. In
this definition, A is the set of activities, a, € A is the initial activity, and X represents the
set of system events. The partial function £ : A x ¥ — A is called the activity transition
function and we write £(a, 0)! whenever £(a, o) is defined.

The second step in constructing a TDES consists of introducing time into the ATG.
In a TDES, time is measured via the tick of a discrete global clock, relative to which
the enablement of each of the events in X is defined. Specifically, to each event ¢ € ¥
we assign upper and lower time bounds u, € N, U {oco} and [, € N,, respectively, which
satisfy I, < u,. Here, N, := NU {0}, where N denotes the set of positive integers. An
event ¢ € ¥ must remain continuously enabled for at least [,, but no more than u,, ticks
of the clock in order to occur (provided its occurrence is not preempted by the occurrence
of another competing event). In the sequel, we refer to Xy, := {(0,ly,u,) : 0 € L} as
the set of timed events of G.

Following [6], we give the TDES G an automaton structure. For this, we need some
further notation. Let Xy, := {0 € ¥ : u, < 00} and e, := {0 € X : 4, = 00}. We say
that an event o is prospective (remote) if 0 € Xype (00 € Eypem). It is clear from the above
definitions that ¥ = ¥,, UX,.,, and that a remote event has no deadline attached to it.
Next, we introduce the special event tick to denote the passage of one unit of time in
our global clock, and write ¥; := ¥ U {tick}. Finally, we define the timer interval, T,,



for an event o via

_ 0,u,], 0 € Xgpe
7 0,1,], o€ Spem’

where [7, k| denotes the set of integers i satisfying j < i < k.
We are now able to formally write G := (@, X, J,¢,). The state set in this case is

defined to be Q = A x H T,. Similarly, we have that the initial state gy := (ao, {ts0 :

oeEY
o € X}), where t, := max(7,). Now, suppose ¢ = (a,{t, : 0 € ¥}). We have that

d(g,0)! if and only if
e 0 = tick and (V7 € Xy.) &(a, 7)! implies £, > 0; or
® 0 € Xy, £(a,0)!,and 0 < t, <wu, —l,; or
® 0€ Yem, £(a,0),and t, =0

When one of the above conditions is satisfied, we have that ¢ = 6(q,0) := (', {t. : 0 €
Y}) where either

ax(0,t, — 1), ,7)!
e 0 = tick implies ¢’ := a and ¢, := max(0, ), &(a,7) .
Lr0, otherwise
t;, &, 7)!and T #0

€ ¥ implies @' := £(a,0) and t, :=
® O 11mpil a f(a U) n T {tTO: T = 0 Or _‘(f(aluT)!)

Now, given an event set, or alphabet, 3, we define the set ¥} to be the set of all finite
strings of elements in Y, including the empty string €. It is straightforward to extend
the definition for the transition function ¢ so that § : @ x X} — (). Specifically, given
g€ Q,o€X,and s € X}, we set §(q,s0) := 0(6(q,s),0). Of course, the definition of
¢ can similarly be extended. A language over ¥, is simply a subset of ¥j. The language
consisting of strings generated by a TDES G is called the closed behaviour of G and is
denoted by L(G). Using the above definitions, we can write L(G) = {s € X} : §(¢o, 5)!}-
We also define the projection operator P, : ¥; — ¥* inductively via

Pe):=¢

o, 0€X
P, = ’
(o) {s, o = tick

P,(so) := Py(s)Py(o).

Thus, P, simply erases all occurrences of the tick event in any string s € 2.

Since a TDES G has an automaton structure, it can be uniquely represented using
a labeled digraph. Such a representation will be referred to as a timed transition graph
(TTG) in the sequel. Similarly, we call the graphical representation of G, the activity
transition graph (ATG) of G. A third useful representation of G is called the timed
activity transition graph (TATG) and is the graphical representation of the untimed
language P,(L(G)). Throughout the paper, we assume that all automata and graphical
representations are deterministic in their transition structures and minimal state. This
ensures that there is a one-to-one correspondence between the automaton, language, and
graphical characterizations of G. We denote by Gyiacy the automaton with the property
that L(Gtact) = P:(L(G)). These definitions in hand, we are now ready to introduce the
notion of scaling timed discrete-event systems.



3 Invariance of TATGs Under Scaling of TDES

The goal of this section is to introduce a three parameter family of scaling functions
on TDES. The scaling functions are affine transformations on the time bounds of the
events in 2. We choose to work with affine rather than linear scaling functions mainly
for flexibility. While linear scaling functions allow for expansion and contraction of time
intervals, affine scaling functions provide additional capacity for resizing intervals and also
permit translations along the real-time axis. Moreover, when applying inverse scaling to
TDES for the purposes of aggregation, affine scaling functions allow for rounding of time
bounds and hence approximation methods. This in turn makes scaling applicable to
a wider class of systems. We begin by showing that only under linear scaling of time
bounds can we guarantee a priori the invariance of the TATG of an arbitrary TDES G
under scaling.

3.1 Scaling Timed Discrete-Event Systems

Consider the TDES G = (Q,%4,6,q,) with ¥; = ¥ U {tick} and whose timed events
belong to the set X4, = {(0,l,,uy) : 0 € L}.

Definition 1 Suppose a, by, and by are integers. Then G’ =: Syp,5,(G) is an affine
scaling of G if GLy, = Gaet and X, = {(0,1L,ul) : 0 € 3} where

tim » Yoy Yo
llg = alg + b1
o AUy + b2, 0 € Xgpe
7 0, o€ Erem

Moreover, the affine scaling is well-defined if the following conditions are satisfied:

1) a>0
2) 0 <1l <ul, for everyoc € &
3) for every q € Q and every string s € ¥* — {e}, d(q,s) # ¢

The first two conditions say that an affine scaling is well-defined if the scaling factor
a > 0 and (I,u)) forms an admissible set of time bounds for each event o € X, given
the choice of offsets b; and bs. The third condition is included for technical reasons. It
prevents “non-Zeno” behaviour in which an infinite number of transitions are executed in
a finite time interval. This condition can only be violated if G, contains a loop whose
events all have lower time bounds that are mapped to 0 in G’. For future reference, we
denote the set of all TDES defined over the alphabet ¥ by G(X), from which we define

the subsets S,4, 4, by
Sapiby :={G € G(X2) : Sapyp,(G) is well defined}.

Note that in this notation, we have S, o= G(X) for any integer a > 0.

Theorem 2 below constitutes the main result of the paper. It states that the only well-
defined affine scalings which preserve the TATG of an arbitrary TDES G are those which
are linear — namely, those for which the offsets b; and by are identically zero. Moreover,
the result states that the TATG will remain the same, regardless of the scaling factor used.
Thus, from an event-sequence perspective, refinement of the original model provides no
additional insight. This consequence is somewhat reminiscent of the famous Shannon
Sampling Theorem for continuous time systems.



Theorem 2 Given integers a > 0, by and by, let G' := Sy p, 4, (G) for each G € Sy p, p,-
Then L(Giet) = L(Gtact) for every TDES G € Syp,p, if and only if by = by = 0.

The proof of the result is much too long to present here. We merely sketch the main
ideas employed and refer the interested reader to [5] for details. Necessity of the condition
by = by = 0 is easily shown using examples. However, proving the sufficiency of this con-
dition is significantly more challenging. Using the definition of an arbitrary TDES G, it
can be shown that if s = sy tick sy tick ... € L(G) then s’ = sq tick™ s, tick™ ... € L(G'),
where G’ := S,(G) and S, := S, 0. Since Py(s) = P(s'), we have that L(Giact) C
L(G{,.)- The reverse subset inclusion is similarly proved using the definition of TDES
although it is more difficult to deal with tick transitions in this direction.

While an analogous result to that of Theorem 2 is obvious for dense time systems
such as the timed automata of Alur and Dill [2], it is somewhat counterintuitive in the
TDES framework due to the discretization of time. Consider as an example the TDES
G and G’ whose ATG G, is shown in Figure 1.

Figure 1: ATG G, for the example

Assume for G, we have ¥y, = {(o,1,1)} while ¥}, = {(a,2,2)}. Suppose the
tick frequency is one tick per second for G while G’ operates with a tick rate of two
ticks per second. The first occurrence of o must take place between the first and second
ticks in G. Namely, the first occurrence of o must take place in the real-time interval
(1,2). Similarly, we find that the second occurrence of a takes place in the interval (2, 3).
Hence, the time between successive « transitions can be arbitrarily small in G. Compare
this to the TDES G’ in which the first occurrence of « takes place between the second
and third tick. Thus, this first occurrence of tick takes place in the real-time interval
(1,1.5). It is easy to see that the second occurrence of o must lie in the real time interval
(2,2.5) in G'. So, we find that successive occurrences of « are subject to a relaxation
time of at least 0.5 second in G’. This can be seen in Figure 2 below. Note that despite
this difference Theorem 2 says that G and G’ share the same TATG. This phenomenon
can lead to difficulties when composing subsystems operating with different granularities
of time [5].

Before extending the result in different directions and discussing applications, we
present an equivalent characterization of the sufficient condition appearing in Theorem 2.
To this end, we make two final definitions before introducing Lemma 3. First, we define
the function tickcount : X} — N, which simply counts the number of occurrences of tick
in a given string s € ¥j. Formally, for any o € ¥, and s € X}, we have

tickcount(e) = 0

0 eX
tickcount(o) = {1’ ’ vick
, o= tic

tickcount(so) = tickcount(s) + tickcount(o).



Figure 2: Real time axis

Next, for each n > 2, we define a new projection operator P, : X} — X} inductively as
follows:

e, o =tick

Pu(o) = {o, o # tick

P, (s0) P.(s), o = tick and tickcount(soc) Z0 (mod n)
w(s0) =
P,(s)o, o # tick, or o = tick and tickcount(soc) =0 (mod n),

where in the above ¢ € ¥, and s € ¥j. Thus, given a string s € ¥y, the mapping P,
will keep every n'* occurrence of tick while deleting all other instances. We are now in
a position to state our next result.

Lemma 3 For everyn € N, L(G) = P,(L(S,(G))).

Notice that the sufficiency of the condition b; = by = 0 in Theorem 2 immediately
follows by application of P, to both sides of the equality in Lemma 3. That P,(L(G)) =
P,(L(S,(G))) implies L(G) = P,(L(S,(G))) can easily be derived using the results found
in [5].

3.2 Inverse Scaling and State Space Reduction

The scaling result presented in the last section is useful in integrating faster components
into a real-time system. However, inverse scaling, in which the tick rate experiences an
n-fold decrease, has more applicability from a practical point of view. Below, we will show
that a TDES can be inversely scaled provided the (finite) time bounds for each activity
are divisible by a common integer n. In such a case, the scaled system G’ satisfies the
property L(Gi..i) = L(Giact)- We now make this discussion more precise.

Once again, we suppose the activity set for the TDES G is 3 and that the correspond-
ing timed events are Xy, = {(0,l,,u,) : 0 € ¥}. Now consider the mapping S;;hb?. If
G = S;,}hbz(G), then it is clear that G, = Gact and X3, = {(o,ll,ul} : 0 € ¥},
where

(la - bl)

1
a(ug —by), 0€ X

£

o~

Il I
—_—A—

00, 0 E Yrem



Hence, the mapping S, ,}1,172 also affinely scales the time bounds of the activities in
G. In this case, we will say that G’ is well-defined if 0 < I/ < o/, I/ € N, for every
o€ X, and u € N, for each 0 € ¥;,.. By analogy with our earlier work, we define the
set S, 4, to consist of all TDES G € G(X) such that S,; , (G) is well-defined. Using

these definitions, we have the following corollary of Theorem 2.

Corollary 4 Suppose a > 0, by and by are integers. Then L(Gi,..) = L(Gtact) for
every TDES G € S;})lm if and only if by = by = 0, where for each G € S;})hbz, G =
S (G).

a,b1,b2

Proof: It is obvious that G € S;im if and only if G’ € S, 4,5, The result follows by a
direct application of Theorem 2. [ |

The result is not unexpected. It says that if the time bounds are all integer multiples
of a common integer n > 1, then our system is to some extent overspecified. Although the
original system contains more accurate timing information which may be used elsewhere,
the scaled system is identical with respect to its possible event sequences.

That this result is also quite useful from a practical point of view should now be
obvious. Recall that typically the TATG for a given timed discrete-event system is
obtained by first constructing its TTG and then projecting out all occurrences of tick.
Now, the state size of a TTG grows quite rapidly with an increase in tick frequency. (It
is easy to construct an example similar to that shown in Figure 1 for which the number of
states and transitions both grow as O(n"), where n is the tick density and r is the number
of self-looped events.) Using Corollary 4, we can dramatically reduce the state size of
the TTG for certain TDES and hence the computational effort required in obtaining its
TATG.

Composition is also a source of combinatorial explosion of TDES. We now show that
scaling for the purposes of state space reduction can be applied to composed systems,
before or after composition, without changing the resulting system provided all subsys-
tems can be scaled by a common factor n € N. The result can also be combined with
the compositional model reduction techniques described in [12, 11].

Lemma 5 Suppose G1, Gz € S.!, for some integer n € N. Then Gy || G2 € ;" and
Sp 1 (G1) || S71(G2) = S, (G || Ga).

It should be clear that inverse scaling can only be applied in special cases. In [5], we
investigate other variants of the scaling functions introduced here. Specifically, we are
able to derive language containment results by reintroducing nonzero offsets b; and bs.
This naturally leads to approximate scaling methods. For example, in [8], the authors

. : 1 1
use the scaling function .S, ! " modeled after S, * but with [, := {_ZUJ , and v := [—ug-‘
n n

(i.e., the floor and ceiling respectively) whenever u, < co. The function .S, !" is used in
order to synthesize suboptimal supervisory controllers for TDES.

4 Dense Time Limit

We now begin our study of the limiting behaviour of affine scalings as ticks become dense
in the real time axis. In this section, we merely sketch the details of our findings. The
interested reader is referred to [5] for additional details.



Suppose we are given a TDES G and that for each n € N, G,, := S,(G). Our specific
goal is to investigate whether the limit
G’ := lim Gy,
n—oo
is meaningful. If the system G’ can in fact be defined, then we would also like to study
some of its properties. It is clear that G’ need not be in G(X), solely by considering the

time bounds for its timed events. Notice that if [, > 0 then [, = co in the limit, which
violates the definition of TDES.

Instantaneity and Simultaneity of Events

For the purposes of the discussion below, we assume that the system G’ as defined
above exists, ignoring the above mentioned problem regarding the new definition of time
bounds. We now give further evidence that such a system is not a TDES over ». A
second problem, more subtle than the one discussed in the above paragraph, exists with
G’. Consider once again the TDES G whose ATG is that of Figure 1. If the activity
« has time bounds (1,1), then the first occurrence of o must lie between the first and
the second tick of the global clock. If ticks occur at a rate of one per unit of time in G,
then we see that the first o occurs at some time ¢ € (1,2). Now scale G by a factor of
n to obtain the TDES G,,. Under this transformation, the timed event (o, 1,1) maps to
(a,n,n) and so a must first occur between the n™* and the (n + 1) occurrence of tick
in G,. It is not difficult to see that given any n € N, if the tick frequency increases to
n ticks per unit time in Gy, then the first occurrence of a in G,, must be at some time
te(1,1+ %) In the limit as n becomes large, this interval is empty and hence G’ is
ill-defined.

The problem we encountered above results from the interleaving semantics of TDES
in which no two events are allowed to occur simultaneously. Since tick € ¥, it follows
that no activity o € ¥ may occur at the precise moment in time that the digital clock is
updated. One solution is to declare tick a “special” event whose occurrence can coincide
with that of any other event o € ¥. The interpretation is that tick is simply an external
signal which denotes the passage of one unit of time. By redefining TDES in this way,
the occurrence of tick will always precede the occurrence of ¢ in a string s € L(G) in
which tick and o € X have occurred simultaneously in the real world. Two things should
be clear at this point. First, by redefining TDES in this fashion, we have not enlarged
the behaviour of any given TDES G. Second, we note that splitting hairs in this manner
is rooted in the mathematical description of the model rather than physical reality since
measuring time with infinite precision is impossible to accomplish. Nonetheless, we make
this definition and examine its consequences. To this end, consider the example of the
previous paragraph once again. In this new framework, the first occurrence of the event
ain Gy, lies in the interval [1, 1 +%) In the limit, the interval collapses to the single point
{1} and is thus well-defined. However, note that in G, o has become an instantaneous
event, a feature which is reserved only for tick in the original TDES definition.

It should also be clear that two instantaneous (non-tick) events can be made to occur
simultaneously with this redefinition and that G', regardless of how it is defined, is not a
TDES in the conventional sense. This motivates the introduction of a new representation
for TDES which is invariant under scaling. It is believed that such a new representation
will provide further insight into how the limiting system G’ should be defined and help
elucidate more of its interesting features.

TDES and Discrete Systems



Before concluding this section, we will examine one last property of TDES that can be
gleaned by applying the limit as ticks become dense in the real line. The simultaneity
encountered above is a salient feature of synchronous (viz. clock driven) systems which
use interleaving semantics [4, 3, 7, 9]. We will now show that given a TDES G, we can
define a corresponding synchronous system H for which L(Ggact) = Pi(L(H)), providing
some justification for the remark in [1] that “discrete-time model[s] can be viewed as a
special case [of fictitious clock models| where the events happen only in lock-step with
the ticks”.

Recall the discussion following the statement of Theorem 2. It should be clear that
strings of the form sq tick™ s; tick™ss . .. (tick)"sy are sufficient to generate the TATG of
G,. We also now know that all events in the string s, must occur in the time interval
[0, 1), all the events in s; occur in [1,1+ 1), and so on. In the limit as n gets large, we see
that all events in the string s; must occur exactly at time ¢ = j. It is now clear how one
would define a synchronous transition system whose untimed language is precisely that of
our limiting system. The end result is similar to the digitization of timed state sequences
described in [10]. It should also be clear that creating a TDES whose untimed language
is precisely that of an arbitrary synchronous system is just as easily accomplished.

5 Conclusions and Future Work

The paper introduces a three parameter family of scaling functions on timed discrete-
event systems. It is shown that linearity of the scaling function is an a priori necessary
and sufficient condition to ensure invariance of the TATG. We described inverse scaling
and its role in model reduction and showed that the operation of scaling commutes with
composition.

Current work in the area is focused on extending the methods of this paper to scale
real-time temporal logics involving tick transitions. It is hoped that the cost of model-
checking some TDES can be significantly reduced in this fashion. Further research will
be directed toward the study of multirate TDES in which different subsystems have
different tick frequencies and toward the introduction of a scaling invariant representation
of TDES.
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