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Abstract The focus of this paper is the pseudometric used as a key concept in our
previous work on optimal supervisory control of probabilistic discrete event systems.
The pseudometric is employed to measure the behavioural similarity between prob-
abilistic systems, and initially was defined as a greatest fixed point of a monotone
function. This paper further characterizes the pseudometric. First, it gives a logical
characterization of the pseudometric so that the distance between two systems is
measured by a formula that distinguishes between the systems the most. A trace char-
acterization of the pseudometric is then derived from the logical characterization,
characterizing the similarity between systems from a language perspective. Further,
the solution of the problem of approximation of a given probabilistic generator with
another generator of a prespecified structure is suggested such that the new model is
as close as possible to the original one in the pseudometric. The significance of the
approximation is then discussed, especially with respect to previous work on optimal
supervisory control of probabilistic discrete event systems.

Keywords Supervisory control · Probabilistic systems · Pseudometric ·
Optimal control

1 Introduction

A supervisory control framework for probabilistic discrete event systems (PDES) was
proposed in Lawford and Wonham (1993). The framework represents a straight-
forward probabilistic extension of the framework of standard Supervisory Control
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Theory (SCT). PDES are modeled as probabilistic generators inspired by Garg
(1992a, b). Probabilistic generators are a generalization of generators used in stan-
dard SCT to model discrete event systems (DES): each transition is labeled not
only with an event but also with a probability that represents the probability of the
occurrence of the transition. The probabilities of all the events in a state add up to
at most one. Further, deterministic supervisors for DES are generalized to proba-
bilistic supervisors: after observing a string s, the probabilistic supervisor enables an
event σ with a certain probability. Although far more intricate than deterministic
control, both from a theoretical and a practical point of view, probabilistic control is
also much more powerful: Lawford and Wonham (1993) show that a plant under
probabilistic control can generate a much larger class of probabilistic languages
than deterministic control. Further, the classical Supervisory Control Problem is
generalized to the Probabilistic Supervisory Control Problem (PSCP) (Lawford
and Wonham 1993). The PSCP is to find, if possible, a supervisor under whose
control the behaviour of a plant is identical to a given probabilistic specification.
Necessary and sufficient conditions for the existence of a supervisor for the PSCP
are given in Lawford and Wonham (1993) and Pantelic et al. (2009). A formal
proof of the necessity and sufficiency of the conditions and an algorithm for the
calculation of the supervisor, if it exists, are presented in Postma and Lawford (2004),
and Pantelic et al. (2009). Further, analogous to a problem in classical supervisory
control theory, it can happen that, given a plant to be controlled and a probabilistic
specification language, no probabilistic supervisor exists such that the plant under
control generates the specified probabilistic language. In this case, when the exact
solution is not achievable, a designer tries to find a supervisor such that the plant
generates the behaviour closest to the desired behaviour (Pantelic and Lawford 2009,
2012). The problem is referred to as the Optimal Probabilistic Supervisory Control
Problem (OPSCP). The nonprobabilistic behaviour of the requirements specification
is considered to be a safety constraint in the standard supervisory control sense
similar to Kumar and Garg (1998). Therefore, the supremal controllable sublanguage
of the specification with respect to the plant is generated as the maximal achievable
legal nonprobabilistic behaviour of the plant under control. Then, the transition
probabilities of the controlled plant are determined such that it is behaviourally the
most similar to the requirements specification (whose nonprobabilistic behaviour
is reduced to the mentioned supremal controllable sublanguage). The behavioural
similarity is measured using a pseudometric on states of probabilistic generators.
Therefore, a controlled plant at the minimal distance (in the chosen pseudometric)
from the modified requirements specification is found: this controlled plant is
referred to as a closest approximation.

The pseudometric is based on the pseudometric introduced in Deng et al. (2006).
It measures behavioural similarity between two states: the smaller the distance,
the greater similarity between the states. The pseudometric subsumes probabilistic
bisimulation: two states are at distance 0 in the pseudometric if and only if they are
probabilistic bisimilar. The pseudometric has a discount factor e ∈ (0, 1]: the smaller
the factor, the greater the discount on differences between systems farther in the
future than those in the near future. This pseudometric is inspired by the Kantorovich
metric (Kantorovich 1942) which is used in transport problems, and more recently
has been used by Hutchinson in his theory of fractals (Hutchinson 1981). The
metric is also known as Wasserstein metric (Wasserstein 1969), earthmover’s metric,
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transport metric etc. While extensively used in business, economics, scheduling
problems etc., the metric has only recently found applications in computer science
(Deng and Du 2009). The work of Deng et al. (2006) is closely related to Desharnais
et al. (1999, 2002, 2004), van Breugel and Worrell (2001, 2005, 2006), van Breugel
et al. (2005, 2007), Ferns et al. (2004, 2005, 2006) which consider reactive systems.

For e ∈ (0, 1), there is a simple algorithm to compute distances in our pseudo-
metric for our generative, deterministic model (see Pantelic and Lawford 2009,
2012; with detailed proofs given in Pantelic 2011). Also, the pseudometric intuitively
matches our notion of the distance between PDES and accounts for all differences
between corresponding transition probabilities, as opposed to e.g., that of Giacalone
et al. (1990) that, roughly speaking, considers only the maximum of the differences
between the corresponding probabilities. Furthermore, as the pseudometric is ap-
plicable to a large class of systems, it allows for an extension of our work to e.g.,
nondeterministic systems.

While our initial interest in the pseudometric lies in the context of supervisory
control theory of probabilistic discrete event systems, the pseudometric is interesting
in its own right. We are not interested in topological aspects of the pseudometric
(convergence, continuity, etc.), but rather in its use as a tool to measure the behav-
ioural similarity of systems in our framework. As Giacalone et al. (1990), Desharnais
et al. (1999, 2002) (to name a few) pointed out, probabilistic bisimulation is not robust
as it requires the exact matching of the values of probabilities of corresponding
transitions. It is too sensitive to small changes in probabilities: a slight change of
probabilities makes bisimilar systems nonbisimilar. Similarly, two systems with only
slightly different probabilities of corresponding transitions would be as different as
two systems with disjoint event sets (Deng et al. 2006). Further, as the values of
probabilities are often only approximations, using either probabilistic bisimulation
or reasoning in a boolean-valued logic is not sensible (van Breugel and Worrell
2005). The notion of a pseudometric is hence used to approximate the notion of
equivalence. It provides for a notion of “approximately intersubstitutable” system
instead of rigid “exactly intersubstitutable” system (Desharnais et al. 1999), although
we do not explore compositional reasoning in this paper.

This paper further characterizes the pseudometric as to deepen the understanding
of it as an approximation tool in our framework. The characterization also provides
an additional, a posteriori motivation for the choice of the pseudometric in the
solution of the control problem of Pantelic and Lawford (2009, 2012). First, the
pseudometric is characterized using a real-valued logic. In the aforementioned bulk
of research closely related to the pseudometric of Deng et al. (2006), Desharnais
et al. (1999) were the first to suggest a pseudometric via a real-valued logic that is
motivated by the well-known result that the Hennessy-Milner logic is complete for
bisimulation Arnold (1994). More concretely, Desharnais et al. (1999) use the ideas
of Kozen (1985) to generalize a logic so that reasoning about probabilistic systems is
supported. Let F be a set of functions such that a function f ∈ F evaluated at a state
takes a truth value in the interval [0, 1], instead of {0, 1}. Then, the distance between
two states is defined as a pseudometric:

d(qq, qr) = sup{| f (qq) − f (qr)| f ∈ F}. (1)

Similarly, Desharnais et al. (2002), van Breugel and Worrell (2005) and van Breugel
et al. (2007) suggest pseudometrics via real-valued logics for different reactive
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models. Our logical characterization is the most similar to that of Desharnais et al.
(2002). However, the logic itself is different than that of Desharnais et al. (2002) as
our models are generative. Also, the main part of the characterization proof is, to
the best of our knowledge, novel. The idea of the logical characterization is that the
distance between two systems is measured by a real-valued formula that distinguishes
between the systems the most (as in Eq. 1).

Further, in this paper, this logical characterization is used to derive a trace
characterization. While trace characterization has not been of concern in any of
the aforementioned related literature, it is of importance in our work, given the
language-oriented aspect of supervisory control theory. The trace characterization
answers the following question: “If two systems are similar in our pseudometric, how
similar are the discounted probabilities of the strings generated by the systems?” The
probability of (the occurrence of) a string is discounted by discount factor e for each
event in the string.

In the control theory of PDES, Chattopadhyay and Ray (2008) introduce a
pseudometric in a symbolic pattern recognition application to measure the distance
between the original model and one with a prespecified structure, where the latter
has the same long term distribution over the states as the original one. In this paper,
the problem of a similar probabilistic model transformation is discussed in our set-
ting. The problem is referred to as the Probabilistic Model Fitting Problem. A prob-
abilistic generator is approximated by another one with a prespecified structure such
that the distance between the two is minimal in our pseudometric. The significance of
model fitting for model reduction and control-related applications is then discussed.
Then, a transformation used in the solution of the probabilistic model fitting problem
is used to solve a modified version of the OPSCP: instead of minimizing the distance
between the controlled plant and the requirements specification restricted to the
supremal controllable sublanguage, the distance between the controlled plant and
the original requirements specification is minimized.

Our research should find an application in the field of robotics as probabilistic
generators have been used extensively to model systems in the control of robot
systems (Li et al. 1998; Mallapragada et al. 2009; Chattopadhyay et al. 2009).
Also, the Kantorovich metric has been used in a number of applications (Deng
and Du 2009). The most promising area in regard to our research is the field of
bionformatics, where the metric has been increasingly used (Thorsley and Klavins
2010; Koeppl et al. 2010; Deng and Du 2009). Further, one of the routes to explore
is the use of our research in the generation of test cases (adversaries) for MDPs.
More precisely, a probabilistic generator can be viewed as a supervisor for MDPs
(see Pantelic 2011). On the other hand, a probabilistic supervisor as defined in our
framework can be represented as an MDP (see Pantelic 2011). This duality between
the plant to be controlled and the probabilistic supervisor performing the control
might provide interesting connections between probabilistic model checking and
supervisory control theory.

In Section 2, the probabilistic control of PDES is reviewed. Section 3 presents the
logical characterization of the pseudometric. The trace characterization stems from
the logical one and is presented in Section 4. The probabilistic model fitting problem,
its solution, and its applications are introduced in Section 5. Section 6 solves the
modified OPSCP. Section 7 concludes with avenues for future work.
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This paper is an extended version of the conference paper (Pantelic and Lawford
2010). The conference version has been extended with detailed proofs and the
solution of the modified OPSCP.

2 Preliminaries

In this section, PDES modeled as generators of probabilistic languages are presented,
and probabilistic control is introduced. The pseudometric is next defined. Finally, the
problem statements and solutions for the PSCP and the OPSCP are presented.

2.1 Modeling PDES

Following Lawford and Wonham (1993) and Pantelic et al. (2009), a probabilistic
DES is modeled as a probabilistic generator defined as follows.

Definition 1 A probabilistic generator G is a tuple G = (Q, �, δ, q0, p), where Q is
the nonempty finite set of states, � is a finite alphabet whose elements we will refer
to as event labels, δ : Q × � → Q is the (partial) transition function, q0 ∈ Q is the
initial state, and p : Q × � → [0, 1] is the statewise event probability distribution,
i.e. for any q ∈ Q,

∑
σ∈� p(q, σ ) = 1. The probability that the generator will execute

event σ ∈ � at state q ∈ Q is p(q, σ ). For generator G to be well-defined, p(q, σ ) =
0 holds if and only if δ(q, σ ) is undefined.

Remark 1 Relaxing the condition
∑

σ∈� p(q, σ ) = 1 to
∑

σ∈� p(q, σ ) ≤ 1 would al-
low for modeling termination. The probability that the system terminates at state
q would then be 1 − ∑

σ∈� p(q, σ ). However, since a terminating PDES can easily
be transformed into a probabilistic generator of Definition 1 using the technique
described in Lawford and Wonham (1993), we find the model of Definition 1 general
enough for our purposes.

The state transition function is traditionally extended by induction on the length
of strings to δ : Q × �∗ → Q in a natural way. For a state q, and a string s, the
expression δ(q, s)! will denote that δ is defined for string s in state q. Note that
the definition of PDES does not contain marking states since the probabilistic
specification languages considered in this paper are prefix closed languages. The lan-
guage L(G) generated by G is L(G) = {s ∈ �∗ | δ(q0, s)!}. The probabilistic language
generated by G is defined as:

Lp(G)(ε) = 1,

Lp(G)(sσ) =
{

Lp(G)(s) · p(δ(q0, s), σ ), if δ(q0, s)!
0, otherwise.

Informally, Lp(G)(s) is the probability that the string s is executed in G. Also,
Lp(G)(s) > 0 iff s ∈ L(G).
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For each state q ∈ Q, we define the function ρq : � × Q → [0, 1] such that for
any q′ ∈ Q, σ ∈ �, we have ρq(σ, q′) = p(q, σ ) if q′ = δ(q, σ ), and 0 otherwise. The
function ρq is a probability distribution on the set � × Q induced by q. Also, for a
state q, we define the set of possible events to be Pos(q) := {σ ∈ �|p(q, σ ) > 0}, or,
equivalently, Pos(q) := {σ ∈ �|δ(q, σ )!}.

Next, the synchronous product of the (nonprobabilistic) discrete event sys-
tems that underlie PDES is defined in a standard manner. For a probabilistic
generator G = (Q, �, δ, q0, p), the (nonprobabilistic) DES that underlies G will
be denoted Gnp, i.e., Gnp = (Q, �, δ, q0) throughout this paper. Let Gnp

1 and
Gnp

2 be the nonprobabilistic generators (DES) underlying G1 = (Q1, �, δ1, q01 , p1)

and G2 = (Q2, �, δ2, q02 , p2), respectively, i.e., Gnp
1 = (Q1, �1, δ1, q01) and Gnp

2 =
(Q2, �, δ2, q02).

Definition 2 The synchronous product of Gnp
1 = (Q1, �, δ1, q01) and Gnp

2 = (Q2, �,

δ2, q02), denoted Gnp
1 ‖ Gnp

2 , is the reachable sub-DES of DES Ga = (Qa, �, δ, q0),
where Qa = Q1 × Q2, q0 = (q01 , q02), and, for any σ ∈ �, qi ∈ Qi, i = 1, 2, it holds
that δ((q1, q2), σ ) = (δ1(q1, σ ), δ2(q2, σ )) whenever δ1(q1, σ )! and δ2(q2, σ )!.

While the synchronous product of nonprobabilistic DES as defined by
Definition 2 is straightforward in supervisory control theory, the definition of the
synchronous product of probabilistic discrete event systems requires more careful
consideration. However, it is not needed for the results of this paper.

2.2 Probabilistic control

As in classical supervisory control theory, the set � is partitioned into �c and �u, the
sets of controllable and uncontrollable events, respectively. Deterministic supervi-
sors for DES are generalized to probabilistic supervisors. Instead of deterministically
enabling or disabling controllable events, probabilistic supervisors enable them with
certain probabilities. This means that, upon reaching a certain state q, the control
pattern is chosen according to supervisor’s probability distributions of controllable
events. Consequently, the controller does not always enable the same events when in
the state q.

Let x : L(G) → [0, 1]�c . For a PDES G = (Q, �, δ, q0, p), a probabilistic supervi-
sor is a function Vp : L(G) → [0, 1]� such that

(∀s ∈ L(G))(∀σ ∈ �)Vp(s)(σ ) =
{

1, if σ ∈ �u

x(s)(σ ),otherwise.

Therefore, after observing a string s ∈ L(G) (all the events are assumed to be ob-
servable), the supervisor enables event σ with probability Vp(s)(σ ). More precisely,
for event σ , the supervisor performs a Bernoulli trial with possible outcomes enable
(that has the probability Vp(s)(σ )), and disable (with probability 1 − Vp(s)(σ )), and,
depending on the outcome of the trial, decides whether to enable or disable the
event. After (independent) Bernoulli trials have been performed for all controllable
events, control pattern � is determined as a set of controllable events such that
a controllable event belongs to � if and only if its corresponding Bernoulli trial
resulted in outcome enable. After � has been decided upon, the system acts as if
supervised by a deterministic supervisor. Given sets A, B, we will denote the power

Author's personal copy



Discrete Event Dyn Syst (2012) 22:479–510 485

set of A by P(A), and the set difference of A and B by A\B. Let q ∈ Q be the state
of the plant after s ∈ L(G) has been observed. The plant G under the control of the
supervisor Vp will be denoted Vp/G. The probability that the event α ∈ � will occur
in the controlled plant Vp/G after string s has been observed is equal to:

P(α in Vp/G|s) =
∑

�∈P(Pos(q)∩�c)

P(α|Vp enables � after s) · P(Vp enables �|s) (2)

where

P(α|Vp enables � after s) =

⎧
⎪⎨

⎪⎩

p(q, α)
∑

σ∈�∪�u

p(q, σ ) , if α ∈ � ∪ �u

0, otherwise

P(Vp enables �|s) =
∏

σ∈�

Vp(s)(σ ) ·
∏

σ∈(Pos(q)∩�c)\�
(1 − Vp(s)(σ ))

An example of probabilistic generators representing a plant and a requirements
specification is shown in Fig. 1. Controllable events are marked with a bar on their
edges.

2.3 PSCP

The formulation of the PSCP is given first, and, then, its solution is presented.

2.3.1 PSCP: formulation

The problem was first presented in Lawford and Wonham (1993). The goal is to
match the behaviour of the controlled plant with a given probabilistic specification
language. The problem is called the Probabilistic Supervisory Control Problem
(PSCP). More formally:

Given a plant PDES Gp and a specif ication PDES Gr, f ind, if possible, a
probabilistic supervisor Vp such that Lp(Vp/Gp) = Lp(Gr).

Fig. 1 Plant Gp, and requirements specification Gr
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2.3.2 PSCP: solution

We present the conditions for the existence of a probabilistic supervisor for the PSCP
from Lawford and Wonham (1993) and Pantelic et al. (2009).

Theorem 1 Let Gp = (Qp, �, δp, qp0 , pp) and Gr = (Qr, �, δr, qr0 , pr) be two PDES
with disjoint state sets Qp and Qr. Then, let Gnp

p and Gnp
r be the nonprobabilis-

tic generators underlying Gp and Gr, respectively, i.e. Gnp
p = (Qp, �, δp, qp0) and

Gnp
r = (Qr, �, δr, qr0). Also, let Gs = (Qs, �, δs, q0s) be the synchronous product of

generators Gnp
p and Gnp

r , Gs = Gnp
p ‖ Gnp

r . There exists a probabilistic supervisor Vp

such that Lp(Vp/Gp) = Lp(Gr) if f for all (q, r) ∈ Qs, the following two conditions
hold:

(i) Pos(q) ∩ �u = Pos(r) ∩ �u, and for all σ ∈ Pos(q) ∩ �u,

pp(q, σ )
∑

α∈�u

pp(q, α)
= pr(r, σ )

∑

α∈�u

pr(r, α)

(ii) Pos(r) ∩ �c ⊆ Pos(q) ∩ �c, and, if Pos(q) ∩ �u �=∅, then for all σ ∈ Pos(q) ∩ �c,

pr(r, σ )

pp(q, σ )

∑

α∈�u

pp(q, α) +
∑

α∈Pos(q)∩�c

pr(r, α) ≤ 1.

Conditions (i) and (ii) together are necessary and sufficient for the existence of
a probabilistic supervisor. The first part of both conditions corresponds to control-
lability as used in classical supervisory theory (namely, the condition Pos(q) ∩ �u =
Pos(r) ∩ �u of (i), and Pos(r) ∩ �c ⊆ Pos(q) ∩ �c of (ii)). The remaining equations
and inequalities correspond to the conditions for probability matching. For each
uncontrollable event possible from a state in a plant, the equation to be checked
reflects the fact that the ratio of probabilities of uncontrollable events remains the
same under supervision. This comes from the fact that after a control pattern has
been chosen, the probabilities of disabled events in the plant are redistributed over
enabled events in proportion to their probabilities. Any possible uncontrollable
events are always enabled, hence the ratios of their probabilities remain unchanged.
An inequality for each possible controllable event σ is derived from the the upper
bound on the probability of the occurrence of σ in the supervised plant, that is
reached when the controllable event is always enabled.

When the conditions are satisfied, a solution to the PSCP exists. The probabilistic
supervisor can then be computed by the fixed point iteration algorithm as presented
in Postma and Lawford (2004) and Pantelic et al. (2009). For the example from Fig. 1,
the probabilistic supervisor for the PSCP is given in Fig. 2.

Also, we would like to note that the initial plant, the supervisor, and the controlled
plant satisfy the Markov property as can be easily inferred.

2.4 Definition of the pseudometric

Probabilistic bisimulation, introduced in Larsen and Skou (1991), is commonly
used to define an equivalence relation between probabilistic systems. However,
probabilistic bisimulation is not a robust relation: the probabilities of corresponding
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Fig. 2 Probabilistic supervisor
Vp such that
L(Vp/Gp) = L(Gr) for Gp
and Gr from Fig. 1

transitions must match exactly. As a more flexible way to compare probabilistic
systems, a notion of pseudometric is introduced. A pseudometric on a set of states
Q is a function d : Q × Q → R that defines a distance between two elements of Q,
and satisfies the following conditions: d(x, y) ≥ 0, d(x, x) = 0, d(x, y) = d(y, x), and
d(x, z) ≤ d(x, y) + d(y, z), for any x, y, z ∈ Q. A pseudometric generalizes a metric
in that two distinct points are allowed to be at the distance 0. If all distances are less
than or equal to 1, the pseudometric is 1-bounded.

The work of Deng et al. (2006) introduces a pseudometric on states for a large class
of probabilistic automata, including reactive and generative probabilistic automata.
The pseudometric is based on the Kantorovich metric on distributions. Two states
are at distance 0 in this pseudometric if and only if they are probabilistic bisimilar.
Here, the pseudometric is presented only for probabilistic generators.

Let G = (Q, �, δ, q0, p) be a PDES, where Q = {q0, q1, . . . qN−1}.
First, in Desharnais et al. (2002) and Deng et al. (2006), the class M of 1-bounded

pseudometrics on states is defined with the ordering (d1, d2 ∈ M)

d1 � d2 if ∀qq, qr ∈ Q d1(qq, qr) ≥ d2(qq, qr). (3)

Further, it is proved that (M, �) is a complete lattice. The ordering in Eq. 3 is
reversed for the purpose of characterizing bisimilarity as the greatest fixed point of a
function.

Next, let d ∈ M, and let the constant e ∈ (0, 1] be a discount factor that determines
the degree to which the difference in the probabilities of future transitions is
discounted: the smaller the value of e, the greater the discount on future transitions.
Let qq, qr ∈ Q, and let ρqq and ρqr be the distributions on � × Q induced by the
states qq and qr, respectively. Next, let i(qq, σ ) = i such that qi = δ(qq, σ ) if δ(qq, σ )!,
and i(qq, σ ) = 0, otherwise. Similarly, j(qr, σ ) = j such that q j = δ(qr, σ ) if δ(qr, σ )!,
and j(qr, σ ) = 0, otherwise. For readability purposes, we will write i instead of
i(qq, σ ), and j instead of j(qr, σ ). Further, we will write ρσ,i instead of ρqq(σ, qi), and,
similarly, ρ ′

σ, j instead of ρqr (σ, q j). Then, the pseudometric on states dfp is given as the
greatest fixed point of the function D on M, that, in the special case of probabilistic
generators, can be shown to be (see Pantelic and Lawford 2009, 2012):

D(d)(qq, qr) =
∑

σ∈�

max(ρσ,i − ρ ′
σ, j + eρ ′

σ, jd(qi, q j), eρσ,id(qi, q j))

=
∑

σ∈{σ∈�|ρσ,i≥ρ ′
σ, j}

(
ρσ,i − ρ ′

σ, j + eρ ′
σ, jd(qi, q j)

)
+

∑

σ∈{σ∈�|ρσ,i<ρ ′
σ, j}

eρσ,id(qi, q j) (4)
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We arbitrarily choose i(qq, σ ) to be 0 (similarly for j(qr, σ )) when δ(qq, σ ) is not
defined although we could have chosen any other i ∈ {1, . . . , N − 1}. This is because
when δ(qq, σ )! does not hold, then ρσ,i(qq,σ ) = 0 for any i(qq, σ ) ∈ {0, . . . , N − 1}.

The distances between the states in dfp are larger by the factor 1/e than the
distances in pseudometric defined in Deng et al. (2006). This has been done so that
the distances are in the range [0, 1], instead of [0, e].

Remark 2 According to Tarski’s fixed point theorem, since D is a monotone function
on a complete lattice, it has a greatest fixed point. Furthermore, this greatest fixed
point can be reached through an iterative process that starts from the greatest
element. As the number of transitions from a state of a probabilistic generator is
finite, the greatest fixed point of the function D is reached after at most ω iterations
(Deng et al. 2006; Desharnais et al. 2002) (equivalently, the closure ordinal of D is ω,
where ω is the first infinite ordinal). Therefore, the pseudometric dfp can be reached
through the following iterative process.

Definition 3 The distance function d0
fp is defined as:

d0
fp = 0,

and the distance function dn+1
fp , n ∈ N, is given as:

dn+1
fp = D(dn

fp), (5)

where D is given in Eq. 4.

Remark 3 An important feature of dfp is to be noted: pseudometric dfp is defined on
any two states of a single PDES, not on two states that belong to different PDES. In
order to define the distance between two PDES (with disjoint sets of states) as the
distance between their initial states, a new PDES is created that represents the union
of the two PDES, with the initial state arbitrarily chosen between the initial states of
the two PDES. The union will not be formalized as it does not change the distance
between the states.

Remark 4 Discount factor e is very important in the definition of pseudometric dfp.
An excellent discussion on the significance of discount in different fields has been
presented in de Alfaro et al. (2003). E.g., in economics, it has been a key concept
as it models inflation. From an engineering point of view presented in de Alfaro
et al. (2003), the near future might feel more important than the distant future (e.g.,
a bug in the near future is more urgent than the one in the distant future; entering
a bad state, if not preventable, might be desired to be postponed, etc.). Also, the
concept of discount has been widely applied in game theory, and optimal control
(Blackwell 1962). Discount is also important from the computational point of view.
Specifically, when it comes to pseudometrics, van Breugel and Worrell (2001, 2006),
Ferns et al. (2004, 2005, 2006) all present polynomial algorithms that approximate
(with a specified accuracy) the distances in respective pseudometrics (also based
on the Kantorovich metric with a discount factor). The algorithms are applicable
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for e ∈ (0, 1). In general, for Kantorovich-like pseudometrics, efficient algorithms
typically exist that approximate the distances for e ∈ (0, 1), while no such algorithms
are known to exist for e = 1. It is not surprising, then, that for e ∈ (0, 1), there is
a simple algorithm to compute distances in pseudometric dfp for our generative,
deterministic model (see Pantelic and Lawford 2009 and 2012).

2.5 OPSCP

In the case when the conditions for the existence of a solution to the probabilistic
supervisory control problem are not satisfied, we search for a suitable approximation.
The problem is referred to as the Optimal Probabilistic Supervisory Control Problem
(OPSCP). The problem and the solution were introduced in Pantelic and Lawford
(2009, 2012), with detailed proofs presented in Pantelic (2011).

2.5.1 OPSCP: formulation

Optimal Probabilistic Supervisory Control Problem (OPSCP): Let Gp = (Qp, �,

δp, qp0 , pp) be a plant PDES, and let Gr = (Qr, �, δr, qr0 , pr) be a requirements
specification represented as a PDES. If there is no probabilistic supervisor Vp such
that Lp(Vp/Gp) = Lp(Gr) (i.e., the conditions of Theorem 1 fail), find, if it exists,
Vp such that

1. L(Vp/Gp) ⊆ L(Gr) and supervisor Vp is maximally permissive in the nonproba-
bilistic sense (i.e., L(Vp/Gp) is the supremal controllable sublanguage of L(Gr)

with the respect to Gp).
2. The probabilistic behaviour of the controlled plant is “as close as possible” to

the probabilistic behaviour of the requirements specification restricted to the
supremal controllable sublanguage of L(Gr) with the respect to Gp.

Let G = Vp/Gp = (S, �, δ, s0, p) be a closest approximation.
The first criterion is straightforward. The requirement Gr represents a safety

constraint: the controlled plant is not allowed to generate strings not in L(Gr) even
with the smallest of probabilities. Further, the criterion of maximal permissiveness
is a standard one for optimality of supervisory control. The second criterion, on the
other hand, is probabilistic: the distance in pseudometric dfp between the initial states
of the probabilistic generators G and an appropriately modified Gr is chosen as a
measure of probabilistic similarity. The requirements specification Gr is modified
such that its (nonprobabilistic) language is the supremal controllable sublanguage
of L(Gr) with respect to Gp. Consequently, the probabilities of the specification
are revised so that the probabilities of the events inadmissible for not satisfying the
first criterion are redistributed over the admissible ones. The reasons for using the
modified specification are the following:

– After realizing that only a subset of the desired nonprobabilistic behaviour is
achievable, the designer may see no reason in insisting on probabilities suggested
for the behaviour that cannot be achieved. We assume that the designer wants
to, for each state, distribute the probabilities of the events not possible anymore
over the remaining events so that the new probabilities are proportional to the
old ones. However, the designer might want to rebalance the probabilities any
way it suites him/her.
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– It might be the case that the designer prefers to leave the specification intact.
Then, the problem to solve would be a modified OPSCP with criterion (2)
changed so that the difference between the controlled plant and the original
specification is minimized. As will be shown in Section 6, with some preprocess-
ing, the algorithm that solves the original OPSCP (which is reproduced in
Section 2.5.2) can be reused to solve the modified OPSCP.

2.5.2 Solution of the OPSCP

The solution of the OPSCP uses the separation of concerns from its formulation: the
classical supervisory theory of supremal controllable sublanguages is used first, and,
then, a closest approximation in the probabilistic sense is calculated.

First, the classical controllability conditions that correspond to the first parts of
conditions (i) and (ii) of Theorem 1 are checked while constructing L(Gp) ∩ L(Gr).
Then, if these conditions are not satisfied, the goal is to find K, the deadlock-free
supremal controllable sublanguage of L(Gp) ∩ L(Gr) (with respect to Gp). The
language K is required to be deadlock-free since termination is not allowed (as
assumed in Section 2.1). Then, the DES that represents this language K, further
equipped with distribution pp (appropriately normalized) becomes the modified
plant PDES G1. Also, a DES corresponding to language K equipped with the
distribution pr appropriately normalized, becomes the desired behaviour PDES G2.
Formally, let the reachable and deadlock-free DES G1k = (T, �, ζ, t0) represent
language K. Generator PDES G1 = (T, �, ζ, t0, p1) is defined, where the distribution
p1 : T × � → [0, 1], for any q ∈ T, σ ∈ �, is defined as:

p1(q, σ ) = pp(qp, σ )
∑

σ∈{σ∈�|ζ(q,σ )!}
pp(qp, σ )

where qp = δp(qp0 , s) for any s ∈ K such that q = ζ(t0, s).
Similarly, let G2k = (Q, �, δ, q0) be a DES isomorphic to G1k up to renaming of

states, and, without loss of generality, assume T ∩ Q = ∅. Obviously, the nonprob-
abilistic language generated by G2k is K, too. Similarly, we define a PDES G2 =
(Q, �, δ, q0, p) where the distribution p : Q × � → [0, 1], for any q ∈ Q, σ ∈ �, is
defined as:

p(q, σ ) = pr(qr, σ )
∑

σ∈{σ∈�|δ(q,σ )!}
pr(qr, σ )

where qr = δr(qr0 , s) for any s ∈ K such that q = δ(q0, s). Note that p1 and p are
well-defined as no state minimization on the automaton representing language K is
performed. E.g., if the minimization were performed, it could happen that, for s1, s2 ∈
K, q1, q2 ∈ Qp such that ζ(t0, s1) = ζ(t0, s2), q1 = δp(qp0 , s1), and q2 = δp(qp0 , s2), it
holds that q1 �= q2. Then, in general, pp(q1, σ ) �= pp(q2, σ ) for σ ∈ �, and p1 would
not be well-defined.

Now, the probability matching equations and inequalities from Theorem 1 are
checked. If they are not satisfied (i.e., there is no probabilistic supervisor Vp such
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that Lp(Vp/G1) = Lp(G2)), the goal is to find G′
2 = (Q′, �, δ′, q′

0, p′) such that there
exists a probabilistic supervisor Vp so that Lp(Vp/G1) = Lp(G′

2) holds, and G′
2 is

closest to G2 in pseudometric dfp. Without loss of generality, it is assumed that
Q ∩ Q′ = ∅. Also, without loss of generality, it is assumed that the nonprobabilistic
automata underlying G2 and G′

2 are isomorphic (with labeling of events being
preserved). Therefore, the nonprobabilistic automata underlying G2 and G′

2 (Gnp
2

and G′np
2 , respectively) are identical up to renaming of states. This assumption is not

restrictive as there cannot be any string in the desired system that does not belong
to K, and, therefore, since K = L(G2), there cannot be any string in the desired
system that does not belong to L(G2). This comes from the fact that L(G2) is the
reachable and deadlock-free supremal controllable sublanguage: if any string not in
L(G2) would be allowed in the controlled plant, either the safety or nontermination
requirement would not be met.

Let f be the isomorphism between Gnp
2 and G′np

2 . Also, let h be the isomorphism
between Gnp

2 and Gnp
1 . G′

2 is approximated as follows.

Theorem 2 Let T = {t0, t1, . . . tN−1}, Q = {q0, q1, . . . qN−1}, and Q′ = {q′
0, q′

1, . . .

q′
N−1}, where q′

i = f (qi), ti = h(qi), i = 0, . . . , N − 1. Let 0 ≤ i ≤ N − 1, �(qi) =
Pos(qi), �u(qi) = Pos(qi) ∩ �u, and �c(qi) = Pos(qi) ∩ �c. Let ρq be the probability
distribution induced by the state q ∈ Q of PDES G2 and let ρ ′

q′ be the probability
distribution induced by the state q′ ∈ Q′ of PDES G′

2. Also, we will write j for j(i, σ ),
then ρqi,σ instead of ρqi(σ, qk), and ρ ′

q′
i,σ

instead of ρ ′
q′

i
(σ, q′

k), k = 0, 1, . . . N − 1. Let

d0(qi, q′
i) = 0, i = 0, 1, ...N − 1. The distance dn(qi, q′

i) in the n-th iteration (n > 0) is
given as:

Minimize
∑

σ∈�(qi)

yqi,σ (6)

subject to

ρqi,σ − ρ ′
q′

i,σ
+ c jρ

′
q′

i,σ
≤ yqi,σ , σ ∈ �(qi)

c jρqi,σ ≤ yqi,σ , σ ∈ �(qi)

where c j = e · dn−1(q j, q′
j) s.t. q j = δ(qi, σ ),

p1(ti, σ )
∑

α∈�u(qi)

ρ ′
qi,α

= ρ ′
q′

i,σ

∑

α∈�u(qi)

p1(ti, α), σ ∈ �u(qi),

∑
α∈�u

p1(ti, α)

p1(ti, σ )
ρ ′

q′
i,σ

+
∑

α∈�c(qi)

ρ ′
q′

i,α
≤ 1, σ ∈ �c(qi),

∑

α∈�(qi)

ρ ′
q′

i,α
= 1,

ρ ′
q′

i,σ
≥ 0, σ ∈ �(qi).

After the n-th iteration, the values of decision variables ρ ′
q′

i,σ
that represent the

unknown transition probabilities, are such that the distance between the (initial states
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of) systems G2 and G′
2 is within en of the minimal achievable distance between the two

systems (in pseudometric dfp).

Therefore, the algorithm first finds K, the supremal controllable sublanguage
of L(Gr) with respect to Gp. Then, probabilistic generator G2 that represents a
modified requirements specification is constructed such that its underlying graph
generates exactly the sublanguage K, while the probabilities are appropriately nor-
malized (or, in general, modified as a user wishes). Likewise, probabilistic generator
G′

2 that represents a closest approximation is constructed such that its underlying
graph generates exactly sublanguage K, while the probabilities of G′

2 are yet to be
determined. Then, the distance in dfp between these two generators representing
the controlled plant, and the modified probabilistic requirement is now minimized
such that the probabilistic controllability conditions of Theorem 1 are satisfied. An
iterative algorithm is given to approximate the probabilities of the controlled plant
G′

2. More precisely, as the underlying graphs of the two generators are isomorphic,
in each iteration, the distance is minimized by minimizing the distance between each
pair of isomorphic states. The algorithm iterates until a prespecified accuracy is
reached.

Note that the aforementioned results hold for e ∈ (0, 1). The detailed proof of the
Theorem 2 can be found in Pantelic (2011).

3 Logical characterization

The pseudometric with the fixed point characterization as presented in Section 2.4 is
now given a logical characterization, along the lines of Desharnais et al. (2002). The
idea behind the logical characterization is that the distance between two systems is
measured by a logical formula that distinguishes between the systems the most. If the
systems are probabilistic bisimilar, there should not be a formula that distinguishes
between the systems.

As before, let G = (Q, �, δ, q0, p) be a probabilistic generator, where Q =
{q0, q1, . . . qN−1}, and discount factor e ∈ (0, 1].

Definition 4 The logic L is defined as follows:

φ ::= 1 | 〈σ 〉φ |
∨

σ∈�

〈σ 〉φ | 1 − φ | φ � p,

where p is a rational number in [0, 1], σ ∈ �, and � ⊆ �.

The formula φ evaluated at a state q ∈ Q, denoted φ(q), is a measure of how much
φ is satisfied in state q. The semantics of the logic L is given next.
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Definition 5 Let q ∈ Q, and ρq be the probability distribution on � × Q induced by
state q. Let φ ∈ L, and ψ : � → L. The notation ψσ will be used for ψ(σ), σ ∈ �.
Then:

1(q) = 1

〈σ 〉φ(q) = eρq(σ, qi(q,σ ))φ(qi(q,σ ))

∨

σ∈�

〈σ 〉ψσ (q) =
∑

σ∈�

eρq(σ, qi(q,σ ))ψσ (qi(q,σ ))

(1 − φ)(q) = 1 − φ(q)

(φ � p)(q) = max(φ(q) − p, 0)

where σ ∈ �, and, as before, i(q, σ ) = i such that qi = δ(q, σ ) if δ(q, σ )!, and i(q, σ ) =
0, otherwise.

The presented logic represents a probabilistic modification of Hennessy-Milner
logic (Hennessy and Milner 1985). The formula 1 corresponds to the constant true,
〈σ 〉φ is the next operator, 1 − φ corresponds to negation, and φ � p provides for the
testing of the value of φ (Desharnais et al. 2002). The logic only supports disjunctions
of the form

∨〈σ 〉φ; extending it to
∨

φ would require a more complicated formaliza-
tion that is unnecessary for the main result to be presented.

The pseudometric dL is defined next. The distance between two states is measured
by a formula that differentiates them the most.

Definition 6 For every qq, qr ∈ Q, the pseudometric dL is defined as:

dL(qq, qr) = sup
φ∈L

{|φ(qq) − φ(qr)|}.

It is easy to verify that dL is indeed a pseudometric.
In this logical setting, the smaller the factor e is, the more discounted the difference

is for complex formulae.
An example is given in Fig. 3. States q0 and q′

0 are at the distance 0.35e + 0.65e2 in
the pseudometric dL, witnessed by formula φ = ∨

σ∈{α,β}〈σ 〉φσ , where φα = 1 − 〈γ 〉1,

Fig. 3 The distance between
G1 and G′

1 (between states q0

and q′
0) in dL is 0.35e + 0.65e2

and is witnessed by formula
φ = ∨

σ∈{α,β}〈σ 〉φσ , where
φα = 1 − 〈γ 〉1, and φβ = 〈τ 〉1,
i.e.,
dL(q0, q′

0) = |φ(q0) − φ(q′
0)|.

The distance between q1 and
q′

1 (also, q1 and q′
2) is e, and is

witnessed by φ = 〈τ 〉1
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and φβ = 〈τ 〉1. Further, states q1 and q′
1 (also, q1 and q′

2) are at the distance e as
witnessed by formula φ = 〈τ 〉1.

The goal is to show that pseudometric dfp is equal to pseudometric dL up to
constant e.

Lemma 1 Let qq, qr ∈ Q. For a function ψ : � → L, the shorthand notation ψσ will
be used for ψ(σ). Then:

dL(qq, qr) = sup
ψσ ∈L

{∣
∣
∣
∣
∣

∨

σ∈�

〈σ 〉ψσ (qq) −
∨

σ∈�

〈σ 〉ψσ (qr)

∣
∣
∣
∣
∣

}

.

Proof The idea of the proof is similar to that of Desharnais et al. (2002), Lemma 4.4.
As before, for a function ϕ : � → L, the shorthand notation ϕσ will be used for ϕ(σ).
It should be proven that there exist ϕσ ∈ L, σ ∈ �, such that

∣
∣
∣
∣
∣

∨

σ∈�

〈σ 〉ϕσ (qq) −
∨

σ∈�

〈σ 〉ϕσ (qr)

∣
∣
∣
∣
∣
≥ |φ(qq) − φ(qr)|,

for any φ ∈ L. Induction on the structure of φ is used. The base case (φ = 1) is
satisfied. Next, the case when φ = 〈α〉φ′, φ′ ∈ L, is investigated. It should be shown
that

∣
∣
∣
∣
∣

∨

σ∈�

〈σ 〉ϕσ (qq) −
∨

σ∈�

〈σ 〉ϕσ (qr)

∣
∣
∣
∣
∣
≥ |〈α〉φ′(qq) − 〈α〉φ′(qr)|.

If, for σ �= α, ϕσ = 1 − 1 = 0, and ϕσ = φ′ for σ = α, the inequality is obviously
satisfied. The case when φ = ∨

σ∈�〈σ 〉ϕσ , for � ⊆ �, is proven in the same manner.
The functions φ = 1 − φ′ and φ = φ′ � p are non-expansive (easily shown), so

∣
∣φ(qq) − φ(qr)

∣
∣ ≤ ∣

∣φ′(qq) − φ′(qr)
∣
∣

≤
∣
∣
∣
∣
∣

∨

σ∈�

〈σ 〉ϕσ (qq) −
∨

σ∈�

〈σ 〉ϕσ (qr)

∣
∣
∣
∣
∣

by the induction hypothesis on φ′. ��

The following two definitions will be used for the proof of the main result. First,
the depth of a formula φ ∈ L is defined (in a manner similar to that of Desharnais
et al. 2002).
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Definition 7 The depth of a formula of logic L is defined as:

depth(1) = 0,

depth(〈σ 〉φ) = depth(φ) + 1,

depth

(
∨

σ∈�

〈σ 〉ψσ (q)

)

= max{depth(ψσ )|σ ∈ �} + 1,

depth(1 − φ) = depth(φ),

depth(φ � p) = depth(φ).

Now, the formula φn
qq,qr

is introduced.

Definition 8 Let qq, qr ∈ Q. The notation adopted for Eq. 4 is used here. Then,
formula φ0

qq,qr
is defined as

φ0
qq,qr

= 1,

and, for n ∈ N, formula φn+1
qq,qr

is defined as

φn+1
qq,qr

=
∨

σ∈�

〈σ 〉ψn
σ,qq,qr

, where

ψn
σ,qq,qr

=
{

1 − ((1 − φn
qi,q j

) � (1 − φn
qi,q j

(qi))), if ρσ,i ≥ ρ ′
σ, j

φn
qi,q j

� φn
qi,q j

(q j), otherwise.

The main result relating the two pseudometrics is presented next. It states that dL

and dfp are equal up to constant e.

Theorem 3 dL = edfp

Proof The proof consists of two parts. In the first part, it is proven that, for
every qq, qr, there exists φ ∈ L such that φ(qq) − φ(qr) = edfp(qq, qr). Consequently,
dL(qq, qr) ≥ edfp(qq, qr). In the second part, inequality dL(qq, qr) ≤ edfp(qq, qr) is
proven.

First, let us prove that for every qq, qr, there exists φ ∈ L such that φ(qq) − φ(qr) =
edfp(qq, qr). Given Definition 3, it is sufficient to prove that φn

qq,qr
(qq) − φn

qq,qr
(qr) =

edn
fp(qq, qr), for every n ∈ N, where φn

qq,qr
is given as in Definition 8. The proof

is by induction. The base case is satisfied, since φ0
qq,qr

(qq) = φ0
qq,qr

(qr) = 1, and
d0

fp(qq, qr) = 0 according to Definition 3. Now assume that for some n ∈ N, we have
for every qq, qr ∈ Q:

φn
qq,qr

(qq) − φn
qq,qr

(qr) = edn
fp(qq, qr).
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Also, let ρqq and ρqr be the distributions on � × Q induced by the states qq and qr,
respectively. Also, for notational convenience, we will write ρσ,i instead of ρqq(σ, qi),
and, similarly, ρ ′

σ, j instead of ρqr (σ, q j) for any i, j such that 0 ≤ i, j ≤ N − 1. Then,
for σ ∈ �, let i(qq, σ ) = i such that qi = δ(qq, σ ) if δ(qq, σ )!, and i(qq, σ ) = 0, other-
wise. Similarly, let j(qr, σ ) = j such that q j = δ(qr, σ ) if δ(qr, σ )!, and j(qr, σ ) = 0,
otherwise. For readability purposes, we will write i instead of i(qq, σ ), and j instead
of j(qr, σ ). Then:

φn+1
qq,qr

(qq) − φn+1
qq,qr

(qr)

=
⎛

⎝
∑

σ∈{σ∈�|ρσ,i≥ρ ′
σ, j}

eρσ,i +
∑

σ∈{σ∈�|ρσ,i<ρ ′
σ, j}

eρσ,iedn
fp(qi, q j)

⎞

⎠

−
∑

σ∈{σ∈�|ρσ,i≥ρ ′
σ, j}

eρ ′
σ, j(1 − edn

fp(qi, q j))

(by the definition of φn+1
qq,qr

and the induction hypothesis)

=
∑

σ∈{σ∈�|ρσ,i≥ρ ′
σ, j}

(
e(ρσ,i − ρ ′

σ, j) + e2ρ ′
σ, jd

n
fp(qi, q j)

)

+
∑

σ∈{σ∈�|ρσ,i<ρ ′
σ, j}

e2ρσ,idn
fp(qi, q j)

= e
∑

σ∈{σ∈�|ρσ,i≥ρ ′
σ, j}

(
ρσ,i − ρσ, j + eρ ′

σ, jd
n
fp(qi, q j)

)

+ e
∑

σ∈{σ∈�|ρσ,i<ρ ′
σ, j}

eρσ,idn
fp(qi, q j)

= edn+1
fp (qq, qr) (follows from Eq. 5)

Next, the induction on the depth of formula is used to prove that dL(qq, qr) ≤
edfp(qq, qr) by proving that dn

L(qq, qr) ≤ edn
fp(qq, qr) for any n ∈ N, where

dn
L(qq, qr) = sup

φ∈L
{|φ(qq) − φ(qr)| |depth(φ) ≤ n}.

The base case is satisfied as d0
L(qq, qr) = d0

fp(qq, qr) = 0. For n ∈ N, assume:

dn
L(qq, qr) ≤ edn

fp(qq, qr).
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Then, according to Lemma 1, and the definition of function depth:

dn+1
L (qq, qr)

= sup
φn

σ ∈L

{∣
∣
∣
∣
∣

∨

σ∈�

〈σ 〉φn
σ (qq) −

∨

σ∈�

〈σ 〉φn
σ (qr)

∣
∣
∣
∣
∣

}

= e · sup
φn

σ ∈L

{
∑

σ∈�

ρσ,iφ
n
σ (qi) −

∑

σ∈�

ρ ′
σ, jφ

n
σ (q j),

∑

σ∈�

ρ ′
σ, jφ

n
σ (q j) −

∑

σ∈�

ρσ,iφ
n
σ (qi)

}

= e · sup
φn

σ ∈L

⎧
⎪⎪⎨

⎪⎪⎩

∑

σ∈�

0≤i≤N−1

ρσ,iφ
n
σ (qi) −

∑

σ∈�

0≤ j≤N−1

ρ ′
σ, jφ

n
σ (q j),

∑

σ∈�

0≤ j≤N−1

ρ ′
σ, jφ

n
σ (q j) −

∑

σ∈�

0≤i≤N−1

ρσ,iφ
n
σ (qi)

⎫
⎪⎪⎬

⎪⎪⎭

(as G is deterministic)

where, for any σ, α ∈ �, |φn
σ (qi) − φn

α(q j)| ≤ dn
L(qi, q j) ≤ edn

fp(qi, q j) (by induction
hypothesis). In Pantelic and Lawford (2009), the function in Equation (2) of that
paper is a pseudometric (therefore, symmetry holds), and, for aσ,i (of that equation)
equal to φn

σ (qi), the constraints of that equation are satisfied, so dn+1
L (qq, qr) ≤

edn+1
fp (qq, qr). ��

Therefore, Theorem 3 proves that pseudometric dfp can be characterized in terms
of logic L. Hence, pseudometric dfp measures the extent to which two states (systems)
differ in satisfying properties in logic L.

4 From logic to traces

In this section, the logical characterization from the previous section is used for the
derivation of the trace characterization of the pseudometric. The section answers
the question of how the pseudometric relates to the difference in the (discounted)
probabilities of traces generated by systems.

First, Lp(G)(s) is modified to define the discounted probability of a string s in G,
denoted Pd(G)(s).

Definition 9 Let Pd(G) : L(G) → [0, 1] be defined as:

Pd(G)(ε) = 1

Pd(G)(sσ) =
{

e · Pd(G)(s) · p(δ(q0, s), σ ), if δ(q0, s)!
0, otherwise

Author's personal copy



498 Discrete Event Dyn Syst (2012) 22:479–510

where s ∈ L(G), σ ∈ �. Then, Pd(G)(s) is the discounted probability of a string s
in G.

Informally, the discounted probability of a string is the probability of occurrence
of the string discounted by factor e for every event in the string, i.e. Pd(G)(s) =
e|s|Lp(G)(s).

Let G1 and G2 be two probabilistic generators. An important result states that
there is not a string whose discounted probabilities differ by more than the distance
dL between the corresponding generators.

Theorem 4

dL(G1, G2) ≥ sup
s∈�∗

{|Pd(G1)(s) − Pd(G2)(s)|} (7)

Proof Let t be the string for which the supremum in Eq. 7 is reached. The formula
corresponding to this distance is easily constructed. Assume that t = σ1σ2 . . . σn.
Then, the formula is given as φ = 〈σ1〉〈σ2〉 . . . 〈σn〉1. ��

Further, it can be shown that distance in the pseudometric dL between the two
systems is also greater than the difference in discounted probabilities of a set of
strings such that none of the strings is a substring of another. Let � ⊆ �∗, such that
no string in � is a prefix of another string in �. Then:

Theorem 5

dL(G1, G2) ≥ sup
�⊆�∗

{∣
∣
∣
∣
∣

∑

s∈�

Pd(G1)(s) −
∑

s∈�

Pd(G2)(s)

∣
∣
∣
∣
∣

}

Proof Similar to Theorem 4, by using the disjunction formula. ��

Similarly, the correspondence between the discounted probability of strings and
formulae in L can be made for the remaining formulae of Definition 5. Therefore,
the pseudometric measures not only the difference in probabilities of strings in two
languages (discounted for their lengths), but also the difference in discounted proba-
bilities of a certain set of strings, or some more complicated properties of strings, e.g.,
whether the discounted probability of a string is greater than a prespecified value.

5 Probabilistic model fitting

We next turn to the probabilistic model f itting problem: a non-control problem whose
solution will turn out to have control-related implications. The problem is to how to
represent a given PDES with a generator of a prespecified graph such that the new
representation is at the minimal distance from the old one in pseudometric dfp.

First, the section introduces the probabilistic model fitting problem. Then, the
solution of the problem is presented. Next, some applications of model fitting are
presented.
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Also, it is assumed that e ∈ (0, 1], unless otherwise stated.

5.1 Probabilistic model fitting: problem and solution

The Probabilistic Model Fitting Problem: Let G1 = (Q1, �, δ1, q01, p1) be a proba-
bilistic generator. Given a nonprobabilistic generator Gnp

2 = (Q2, �, δ2, r0) such that
Gnp

1 ‖ Gnp
2 is isomorphic to Gnp

2 , find the statewise event probability distribution p2

such that probabilistic generator G2 = (Q2, �, δ2, r0, p2) is at the minimal distance
from G1 in pseudometric dfp.

It should be noted that no minimization is done in the construction of the
synchronous product of (nonprobabilistic) generators as defined by Definition 2 in
Section 2.1.

The idea of solving the problem is as follows. The generator G1 is to be modified
to make Gnp

2 isomorphic (identical up to renaming of states) to a subautomaton of
modified Gnp

1 , while the probabilistic language of G1 is preserved. Then, the distance
between G1 and G2 is minimized by minimizing the distance between the modified
G1, and G2. This is allowed as the two distances are the same, since G1 and its
modified version are probabilistic bisimilar:

Lemma 2 Let G1 and G2 be two probabilistic generators. Then, if Lp(G1) = Lp(G2),
then dfp(G1, G2) = 0.

Proof Since Lp(G1) = Lp(G2), G1 and G2 are probabilistic trace equivalent in the
sense of Jou and Smolka (1990). As G1 and G2 are deterministic, probabilistic
trace equivalence implies probabilistic bisimulation equivalence. Therefore, dfp(G1,

G2) = 0. ��

Next, as previously stated, we seek to represent Lp(G1) with an automaton
G1a such that Gnp

2 is isomorphic to a subautomaton of Gnp
1a . Figure 4 illustrates an

example. The part of G1a drawn by a solid line corresponds to the subautomaton of
Gnp

1a isomorphic to Gnp
2 . In general, the automaton G1a will represent a non-minimal

realization of Lp(G1) (in the sense that it might have more states than G1, but
Lp(G1) = Lp(G1a)). Generator G1a can be constructed in the following manner.

1. Self-loop each state of Gnp
2 with events not possible from that state. Formally,

Gnp
2a = (Q2, �, δ2a, r0), where, for q ∈ Q2, σ ∈ �:

δ2a(q, σ ) =
{

δ2(q, σ ), if δ2(q, σ )!
q, otherwise.

2. Next, let Gnp
1a = (Q1a, �, δ1a, q0) = Gnp

1 ‖ Gnp
2a .

3. The probabilistic version of Gnp
1a is G1a = (Q1a, �, δ1a, q0, p1a), such that, for all

q ∈ Q1a, σ ∈ �:

p1a(q, σ ) = p1(r, σ ),

where r = δ1(q01, s) for any s ∈ L(G1a) such that q = δ1a(q0, s).
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Fig. 4 Model fitting: an example. G1 is the probabilistic generator that is to be represented using a
probabilistic generator G1a with an underlying subgraph isomorphic to Gnp

2 . Therefore, G1a is such
that Lp(G1a) = Lp(G1), and the subgraph of G1a depicted by the solid arcs is isomorphic to Gnp

2 . G2
is one of the possble solutions to the model fitting problem as given by Theorem 6

Lemma 3 Lp(G1) = Lp(G1a).

Proof Follows from the construction of G1a. ��

Now, let f : Q2 → Q1a be an embedding (a monomorphism) of Gnp
2 into Gnp

1a , i.e.:

1. f (r0) = q0,
2. ∀q ∈ Q2∀σ ∈ Pos(q) ( f (δ2(q, σ )) = δ1a( f (q), σ )) .

The function f always exists and is unique. This fact follows from the construction
of G1a and the determinism of generators.

Without loss of generality, it is assumed that, Q1a = {q0, . . . , qM−1}, Q2 =
{r0, . . . , rN−1}, and M ≥ N > 0, d ∈ M, q ∈ Q2, where M is the set of 1-bounded
pseudometrics on the states of the system that represents the union of G1a and G2

(see Remark 3) with the same ordering as in Eq. 3. Next, i( f (q), σ ) = i such that
qi = δ1a( f (q), σ ) if δ1a( f (q), σ )!, and i( f (q), σ ) = 0, otherwise. Let j(q, σ ) = j such
that r j = δ2(q, σ ) if δ2(q, σ )!, and j(q, σ ) = 0, otherwise. For readability purposes, we
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will write i instead of i( f (q), σ ), and j instead of j(q, σ ). The distance between G1a

and G2 is dfp(q0, r0). Also, f (r0) = q0, and

D(d)( f (q), q)

=
∑

σ∈�

max
(
ρσ,i − ρ ′

σ, j + eρ ′
σ, jd(qi, r j), eρσ,id(qi, r j)

)

=
∑

σ∈Pos( f (q))\Pos(q)

ρσ,i

+
∑

σ∈Pos(q)

max
(
ρσ,i − ρ ′

σ, j + eρ ′
σ, jd( f (r j), r j), eρσ,id( f (q j), q j)

)
(8)

(since f (r j) = qi, by the definition of f )

where ρ f (q) and ρq are the distributions on � × Q induced by the states f (q) and q,
respectively, and ρσ,i is written instead of ρ f (q)(σ, qi), and, similarly, ρ ′

σ, j instead of
ρq(σ, r j).

Remark 5 Based on Eq. 8, it can be concluded that, for q ∈ Q2, the distance between
state f (q) ∈ Q1a and state q depends only on distances between f (t) and t, t ∈ Q2.
E.g., in Fig. 4, the distance between G1a and G2 depends only on distances between
states of pairs (q0, r0), (q1, r1), and (q2, r2); states q3, q4, q5 are irrelevant.

Therefore, in order to calculate the distance between G1a and G2, only the
distances dfp( f (q), q), q ∈ Q2, are of interest. Hence, the distance between G1a and
G2, for a fixed p2, can be found by at most ω iterations given in Definition 3, where
the domain of dn

fp is restricted to Q1a × Q2 and only distances between f (q) ∈ Q1a

and q ∈ Q2 are defined.
This reasoning leads to the solution of the probabilistic model fitting problem as

presented next.

Theorem 6 Let G1 = (Q1, �, δ1, q01, p1) be a probabilistic generator. For a given
Gnp

2 = (Q2, �, δ2, r0) such that Gnp
1 ‖ Gnp

2 is isomorphic to Gnp
2 , if the statewise event

probability distribution p2 satisf ies, for all r ∈ Q2, σ ∈ Pos(r):

p2(r, σ ) ≥ p1(q, σ ), (9)

where q = δ1(q01, s) for any s ∈ L(G2) such that r = δ2(r0, s), then G2 = (Q2,

�, δ2, r0, p2) is at the minimal distance from G1 in the pseudometric dfp.

Proof Let G2 = (Q2, �, δ2, r0, p2), where p2 satisfies Eq. 9. Also, let G′
2 = (Q2,

�, δ2, r0, p′
2) be a probabilistic generator with an arbitrary probability distribution

p′
2, and let G1a be the generator constructed from G1 and Gnp

2 as before in this
section. We use induction to show that dfp(G1a, G′

2) ≥ dfp(G1a, G2) by showing
that dn

fp(G1a, G′
2) ≥ dn

fp(G1a, G2), n ∈ N. For q ∈ Q2, let dn
fp( f (q), q) be the distance

between the states f (q) of G1a and q of G2, and d′n
fp( f (q), q) be the distance between

f (q) of G1a and q of G′
2. The base case is trivially satisfied. Next, assume that, for

each q ∈ Q2, d′n
fp( f (q), q) ≥ dn

fp( f (q), q). The functions i and j are defined as for
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Eq. 8, and, for q ∈ Q2, k(q, σ ) = k such that rk = δ2(q, σ ) if δ2(q, σ )!, and k(r, σ ) = 0,
otherwise. The shorthand notation k will be used. For q ∈ Q2, let ρ f (q), νq and ν ′

q be
the distributions induced by the states f (q) of G1a, q of G2 and q of G′

2, respectively.
Also, for q ∈ Q2, let ρσ,i be used instead of ρ f (q)(σ, qi), and, similarly, νσ, j instead of
νq(σ, r j) and ν ′

σ,k instead of ν ′
q(σ, rk). Then:

d′n+1
fp ( f (q), q)

=
∑

σ∈{σ∈�|ρσ,i≥ν ′
σ,k}

(
ρσ,i − ν ′

σ,k + eν ′
σ,kd′n

fp(qi, rk)
)

+
∑

σ∈{σ∈�|ρσ,qi <ν ′
σ,k}

eρσ,id′n
fp(qi, rk)

(follows from Eqs. 4 and 5)

=
∑

σ∈Pos( f (q))\Pos(q)

ρσ,i +
∑

σ∈{σ∈Pos(q)|ρσ,i≥ν ′
σ,k}

(
ρσ,i − ν ′

σ,k + eν ′
σ,kd′n

fp(qi, rk)
)

+
∑

σ∈{σ∈Pos(q)|ρσ,i<ν ′
σ,k}

eρσ,id′n
fp(qi, rk)

≥
∑

σ∈Pos( f (q))\Pos(q)

ρσ,i +
∑

σ∈Pos(q)

eρσ,id′n
fp(qi, rk)

≥
∑

σ∈Pos( f (q))\Pos(q)

ρσ,i +
∑

σ∈Pos(q)

eρσ,idn
fp(qi, rk)

(because of induction hypothesis, since qi = f (rk))

=
∑

σ∈Pos( f (q))\Pos(q)

ρσ,i

+
∑

σ∈Pos(q)

max
(
ρσ,i − νσ, j + eνσ, jdn

fp(qi, r j), eρσ,idn
fp(qi, r j)

)

(since νσ, j ≥ ρσ,i for every σ ∈ Pos(q), as follows from Eq. 9)

= dn+1
fp ( f (q), q)

��

Therefore, the new model is not unique: as long as the probabilities of the events
possible in the new model increase or stay the same, the new model is at the minimal
distance from the original one. For the example from Fig. 4, one of the possible
solutions is represented by the generator at the bottom right corner of the figure.
In another possible solution, the probabilities of occurrence of β and γ at the state
r1 would be 0.2 and 0.8, respectively. Therefore, the fitting can be performed by any
redistribution of the probabilities of events that are not possible anymore over the
possible ones. Hence, model fitting can accommodate some further requirements
on p2.
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5.2 Some applications of model fitting

Other than the obvious use of the presented fitting to simplify and reduce the
state space of probabilistic systems, the fitting has much more significant control
implications.

As mentioned before, it is possible to choose probabilities of events in the new
system to a certain extent: as long as they are greater than or equal to the original
ones. However, some of the further requirements on p2 cannot be accommodated
by Theorem 6 (e.g., an obvious one would be that the probability of an event still
possible in the new system be smaller than in the original system). If the restrictions
are given on probabilities of events, statewise, a straightforward modification of the
OPSCP algorithm of Section 2.5.2 for e ∈ (0, 1) would suffice. An example of such an
additional requirement would be that the probability of a certain event from a state
is less than a specified value, that is, in turn, smaller than the original one.

Further, in the solution of the OPSCP problem presented in Section 2.5.1, in order
for the first, maximal permissiveness requirement as presented in Section 2.5.1 to
be satisfied, the supremal controllable sublanguage of L(Gr) with respect to Gp is
generated. Then, the distance between the controlled plant, and the probabilistic re-
quirement now restricted to the supremal controllable sublanguage, with normalized
probabilities, is minimized. Intuitively, after satisfying the nonprobabilistic require-
ment, and before the probabilistic part is handled, it makes sense for a designer to
modify the original requirement so that its nonprobabilistic behaviour matches the
one achievable. Then, the probabilities are revised accordingly: probabilities of the
events that are inadmissible because they do not satisfy the nonprobabilistic require-
ment, are redistributed over the admissible ones. The redistribution is such that the
probability of an event in the new system is proportional to its original probability.
Theorem 6 proves that this normalization is justified in a strict mathematical sense,
as the new model that is normalized is at the minimal possible distance from the
original one in the pseudometric dfp. However, a revised specification is going to be
at the minimal possible distance from the original one, as long as the probabilities of
its remaining events are greater than or equal to the original ones: a designer has a
freedom to choose how to redistribute the probabilities over the events that are still
possible.

Further, the transformation of G1 into G1a presented here can be used in a
modification of the OPSCP algorithm to solve the OPSCP (as presented in Sec-
tion 2.5.1) with requirement 2) changed so that the controlled plant is “as close as
possible” to the unmodified requirement Gr. This modification is shown in detail in
the next section.

6 Model fitting and OPSCP: problem revisited

In this section, the OPSCP is revisited. First, in Section 6.1, the OPSCP is modified,
and the solution of the problem is presented. Next, in Section 6.2, a complexity
analysis of the solution is offered, and an example is presented.
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6.1 Revisiting OPSCP

In Section 2.5, after satisfying the nonprobabilistic criterion (the first part of the
OPSCP of Section 2.5.1), a designer revises the requirements specification before sat-
isfying the probabilistic criterion (the second part of the OPSCP of Section 2.5.1). In
this section, after satisfying the nonprobabilistic requirement, the distance between
the achievable behaviour of the plant under control and the original requirements
specification is minimized.

Modif ied Optimal Probabilistic Supervisory Control Problem (Modif ied OPSCP)
Let Gp = (Qp, �, δp, qp0 , pp) be a plant PDES, and let Gr = (Qr, �, δr, qr0 , pr) be
a requirements specification represented as a PDES. If there is no probabilistic
supervisor Vp such that Lp(Vp/Gp) = Lp(Gr) (i.e., the conditions of Theorem 1
fail), find, if it exists, Vp such that

1. L(Vp/Gp) ⊆ L(Gr) and supervisor Vp is maximally permissive in the nonproba-
bilistic sense (i.e., L(Vp/Gp) is the supremal controllable sublanguage of L(Gr)

with respect to Gp).
2. The probabilistic behaviour of the controlled plant is “as close as possible” to the

probabilistic behaviour of the requirements specification.

Let e ∈ (0, 1). Formally, let the reachable and deadlock-free DES G1k = (T,

�, ζ, t0) represent language K, the supremal controllable sublanguage as defined
in Section 2.5.2. Then, G1 = (T, �, ζ, t0, p1) is defined in the same manner as in
Section 2.5.2—it is the probabilistic automaton corresponding to the restriction of
the plant Gp to K. Next, the requirement is not normalized as before, but, instead,
the language Lp(Gr) is represented using the generator G2 = (Q, �, δ, q0, p), such
that a subautomaton of Gnp

2 is isomorphic to G1k; hence, isomorphic to Gnp
1 , too

(see Fig. 5 for an illustration). The part of G2 drawn by a solid line corresponds
to the subautomaton of Gnp

2 isomorphic to Gnp
1 . As before, we should find p′ in

G′
2 = (Q′, �, δ′, q′

0, p′), such that Lp(Vp/G1) = Lp(G′
2) holds, and G′

2 is closest to
G2 in our chosen metric. Also, G′np

2 is such that it is isomorphic to Gnp
1 . This comes

from the fact that there cannot be any string in the desired system that does not
belong to K, and, therefore, there cannot be any string in the desired system that does
not belong to L(G1) (as explained in Section 2.5.2). This comes from the fact that K
is the reachable and deadlock-free supremal controllable sublanguage: if any string
not in K would be allowed in the controlled plant, either the safety or nontermination
requirement would not be met. It follows from Lemma 3 that minimizing the distance
between the Gr and G′

2 is the same as minimizing the distance between G2 and
G′

2. Also, generator G2 can be constructed from Gr and G1 in the same manner
as G1a was constructed from G2 and G1 in Section 5, and, according to the results
of Section 5, the construction is possible, as Gnp

r ‖ Gnp
1 is isomorphic to Gnp

1 . Now,
given the definitions of G2 and G′

2, there exists an embedding f : Q′ → Q of G′np
2 to

Gnp
2 , i.e.:

1. f (q′
0) = q0,

2. ∀q ∈ Q′ ∀σ ∈ Pos(q) ( f (δ′(q, σ )) = δ( f (q), σ )).
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We assume that T = {t0, t1, . . . tN−1}, Q = {q0, q1, . . . qM−1}, and Q′ = {q′
0, q′

1,

. . . q′
N−1}, where qi = f (q′

i), ti = h(q′
i), i = 0, . . . , N − 1, where M ≥ N > 0, and h

is the isomorphism between G′np
2 and Gnp

1 . Let ρqi be the probability distribution
induced by the state qi ∈ Q of PDES G2 and let ρ ′

q′
i

be the probability distribution
induced by the state q′

i ∈ Q′ of PDES G′
2. Also, we will write j for j(i, σ ), then ρqi,σ

instead of ρqi(σ, qk), and ρ ′
q′

i,σ
instead of ρ ′

q′
i
(σ, q′

k), k = 0, 1, . . . , N − 1. Let A be the
class of all 1-bounded pseudometrics on the states of the system that represents the
union of G2 and G′

2, with domain reduced to Q × Q′, and only distances between q =
f (q′) ∈ Q and q′ ∈ Q′ defined. Let d ∈ A, 0 ≤ i ≤ N − 1, �(qi) = Pos(qi), �(q′

i) =
Pos(q′

i), �u(q′
i) = Pos(q′

i) ∩ �u, and �c(q′
i) = Pos(q′

i) ∩ �c.
Let c j = e · d(q j, q′

j) such that q j = δ(qi, σ ). Note that, since,

D(d)(qi, q′
i) =

∑

σ∈�(qi)\�(q′
i)

ρqi,σ +
∑

σ∈�(q′
i)

max
(
ρqi,σ − ρ ′

q′
i,σ

+ c jρ
′
q′

i,σ
, c jρqi,σ

)
, (10)

the distance between G2 and G′
2 is going to depend only on distances between the

isomorphic states. E.g., in Fig. 5, the distance between G2 and G′
2 depends only on

distances between states of pairs (q0, q′
0), (q1, q′

1), and (q2, q′
2); states q3, q4, q5 are

irrelevant.

Theorem 7 Let d0(qi, q′
i) = 0. The distance dn(qi, q′

i) in the n-th iteration (n > 0) is
given as:

Minimize
∑

σ∈�(qi)\�(q′
i)

ρqi,σ +
∑

σ∈�(q′
i)

yqi,σ (11)

subject to

ρqi,σ − ρ ′
q′

i,σ
+ c jρ

′
q′

i,σ
≤ yqi,σ , σ ∈ �(q′

i),

c jρqi,σ ≤ yqi,σ , σ ∈ �(q′
i),

where c j = e · dn−1(q j, q′
j) s.t. q j = δ(qi, σ ),

p1(ti, σ )
∑

α∈�u(qi)

ρ ′
qi,α

= ρ ′
q′

i,σ

∑

α∈�u(qi)

p1(ti, α), σ ∈ �u(q′
i), (12)

∑
α∈�u

p1(ti, α)

p1(ti, σ )
ρ ′

q′
i,σ

+
∑

α∈�c(q′
i)

ρ ′
q′

i,α
≤ 1, σ ∈ �c(q′

i),

0 ≤ ρ ′
q′

i,σ
≤ 1, σ ∈ �(q′

i),

∑

α∈�(q′
i)

ρ ′
q′

i,α
= 1.

After the n-th iteration, the values of decision variables ρ ′
q′

i,σ
that represent the

unknown transition probabilities, are such that the distance between the (initial states
of) systems G2 and G′

2 is within en of the minimal achievable distance between the two
systems (in pseudometric dfp).
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Fig. 5 Illustrating the modified OPSCP algorithm for the example from Fig. 1. The nonprobabilistic
languages generated by automata G1, G′

2 and the solid part of automaton G2, correspond to K, the
supremal controllable sublanguage of L(Gr) with respect to Gp. G1 is the normalized plant, G2 is
such that Lp(G2) = Lp(Gr), and, at first, the probabilities of G′

2 are unknown. These probabilities
are found by minimizing the distance between G2 and G′

2, i.e., minimizing the distance between
states q0 and q′

0, q1 and q′
1, q2 and q′

2. When G′
2 is calculated, the probabilistic supervisor Vp such

that Lp(Vp/Gp) = Lp(G′
2) is calculated by using the algorithm of Postma and Lawford (2004) and

Pantelic et al. (2009)

Proof The proof follows from Eq. 10 and the proof of Theorem 2. ��

In summary, the algorithm first finds language K, the supremal controllable
sublanguage of L(Gr) with respect to Gp. Probabilistic generator G′

2 that represents
a closest approximation is such that its underlying graph G′np

2 generates exactly sub-
language K, while the probabilities of G′

2 are yet to be determined. The probabilistic
language Lp(Gr) of the requirements specification Gr can be exactly represented by
a probabilistic generator G2 whose underlying nonprobabilistic automaton, Gnp

2 , has
a subautomaton that is isomorphic to the automaton that represents the supremal
controllable sublanguage of the controlled plant, K. Then, the probabilities of the
controlled plant G′

2 are approximated by minimizing the distance in dfp (under the
probabilistic controllability conditions of Theorem 1) between these two generators
representing the controlled plant G′

2, and the probabilistic requirement G2. An
iterative algorithm is used to minimize the distance. More precisely, using the
reasoning of Remark 5, the distance between the requirement and the controlled
plant depends only on the distances between isomorphic states of the subautomaton
of Gnp

2 and G′
2. So, in each iteration, the distance is minimized by minimizing the

distance between each pair of the isomorphic states. The algorithm iterates until a
prespecified accuracy is reached.
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Again, note that the aforementioned results hold for e ∈ (0, 1).

6.2 Complexity of the algorithm and an example

Either the simplex method or an interior point method can be used to solve the
linear programming problem 11. While the worst-case time complexity of the simplex
method is exponential in the number of events possible from state qi, the worst-case
time complexity of an interior method is polynomial. Still, the simplex method is
typically very efficient, especially since the number of events possible from a state is
typically small.

Let the prespecified accuracy be ε ∈ (0, 1), and let m = max{|Pos(q)||q ∈ T}.
Then, in the case that the simplex method is used, the worst-case time complexity
of the algorithm is O(|Qp| · |Qr| · (|�| + km · �loge ε�)), k ≥ 2 (for more details, see
Pantelic and Lawford 2012). Factor �loge ε� corresponds to the number of iterations
sufficient to reach accuracy ε. This factor is the same as in the algorithms of Ferns
et al. (2004, 2005, 2006), while the number of iterations in the algorithm of van
Breugel and Worrell (2001, 2006) is �loge ε/2�. These algorithms calculate distances
in pseudometrics related to dfp (for more discussion on the topic, see Pantelic and
Lawford 2012).

For the example from Fig. 1, 10 iterations of the algorithm are sufficient to find
a closest approximation, with the accuracy ε = 0.001, and e = 0.5. It took 0.25 s
on a 2.6 GHz dual core Opteron processor with 8 GB of RAM running Red Hat
Enterprise Linux Server 5.5. The algorithm is partially shown in Fig. 5.

7 Conclusions

The paper presents a pseudometric as a tool to measure the behavioural similarity
between probabilistic generators. The pseudometric has been adopted from the
theoretical computer science community, and used in Pantelic and Lawford (2009,
2012) to solve an optimal supervisory control problem (namely, the OPSCP).

This paper gives a logical characterization of the pseudometric that offers a better
insight into the core of the pseudometric from both logic and language standpoints.
Further, the pseudometric is used in the probabilistic model fitting problem: a
probabilistic system represented by a probabilistic generator is represented using
another probabilistic generator of prespecified structure, such that that the new
representation is at the minimal distance from the original one. The fitting has a
number of applications. One of the transformations used in the solution of the fitting
problem is reused in the solution of the modified OPSCP problem.

Operators on probabilistic generators remain to be defined (prefixing, choice
operators, parallel composition, etc.). The desired property of non-expansiveness of
operators with the respect to the pseudometric merits further study.
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