
Insulin Pump Software Certification

Yihai Chen1,�, Mark Lawford2,��, Hao Wang2,� � �, and Alan Wassyng2, ��

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
2 McMaster Centre for Software Certification

McMaster University, Hamilton, Ontario, Canada

Abstract. The insulin pump is a safety-critical embedded medical device used
for treatment of type 1 and insulin treated type 2 diabetes. Malfunction of the
insulin pump will endanger the user’s life. All countries impose some regula-
tion on the sale and use of medical devices. The purpose of such regulation is to
protect the public by imposing standards of safety for medical devices, including
insulin pumps. The regulator in the USA, the USA Food and Drug Administration
(FDA), actually goes further, and includes efficacy in the regulatory requirement.
Until recently, regulatory approval was dependent on process based guidance.
However, this has proven to be inadequate in some (most) cases where the device
depends on software for its safe and effective operation, and the FDA recently
changed its approval process for infusion pumps (including insulin pumps), so
that the production of an assurance case that demonstrates that the device is safe
and effective is now a strongly suggested regulatory requirement. However the
current regulatory guidance does not recommend any particular software devel-
opment methodology, and does not include definitive guidance on the evaluation
component of the certification process. In this paper, we briefly review the related
USA regulatory standards for insulin pumps, highlight development and certifica-
tion challenges, briefly discuss attributes of a safe, secure and dependable insulin
pump, and propose an effective certification process for insulin pumps.

Keywords: insulin pump, safety critical system, software certification, standards
compliance.

1 Introduction

Diabetes mellitus is one of the major noncommunicable diseases (NCDs) facing modern
society today. Type 1 diabetes results from the inability of the pancreas to create the
insulin required to constrain the blood glucose levels in the body. Type 1 diabetes is
fatal unless insulin can be introduced into the bloodstream. Type 2 diabetes is also
characterized by high blood glucose levels, but in this case the lack of insulin in the
body is not absolute. Type 2 diabetes can be treated through other means, but sometimes

� Supported by National Natural Science Foundation of China (NSFC) under grant No.
61170044 and China Scholarship Council.

�� Partially supported by IBM SOSCIP Project, and Ontario Research Fund - Research Excel-
lence.

� � � Supported by IBM Canada R&D Centre and Southern Ontario Smart Computing Innovation
Platform (SOSCIP) project.

J. Gibbons and W. MacCaull (Eds.): FHIES 2013, LNCS 8315, pp. 87–106, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



88 Y. Chen et al.

the use of insulin is necessary. Diabetes is directly responsible for 3.5% of NCD deaths.
Type 1 and insulin treated type 2 diabetes patients must inject insulin daily for their
survival. Historically, this has been achieved by the patient injecting insulin at particular
times in the day, typically at meal time.

For some years now, an alternative has been available. Continuous subcutaneous
insulin infusion (CSII) has been successfully used to treat type 1 and insulin treated
type 2 diabetes patients. This subcutaneous infusion of insulin is achieved through the
use of an insulin pump.

An insulin pump is a pager sized electronic device that continuously delivers insulin
using a catheter. The first reported insulin pump system was developed by Dr. Arnold
Kadish in the early 1960s. Since then people have explored using CSII therapy to treat
diabetes. The Diabetes Control and Complication Trial [28] in 1993, showed that sus-
tained lowering of blood glucose slows diabetes complications. The insulin pump can
imitate physiological insulin secretion, and a recent study showed that it results in sig-
nificant improvement in glycated hemoglobin levels as compared with injection therapy
[4]. These research findings and improvements in the design and function of insulin
pumps motivated their increased usage in recent years. More than 300,000 patients
around the world use insulin pumps today [26].

An insulin infusion pump is a safety-critical software-intensive medical device (SMD).
Flaws in the pump software can cause serious injury or even loss of life. Until recently,
regulatory approval of SMDs was dependent on process based guidance, e.g., in
Europe, IEC 62304 regulates the development processes of medical device software.
Process based guidance has proven to be inadequate: The USA Food and Drug Adminis-
tration (FDA)1 received nearly 17,000 insulin pump-related adverse-event reports from
Oct. 1, 2006 to Sept. 30, 2009 [8] and 41 of the 310 death reports were associated with
blood-sugar levels being too high or too low, suggesting the device may not have been
working properly.

The FDA recently changed its approval process for infusion pumps, so that the pro-
duction of an assurance case that demonstrates that the device is safe and effective is
now a recommended regulatory requirement in the USA. However the current regula-
tory guidance does not recommend any particular software development methodology,
and does not include definitive guidance on the evaluation component of the certifi-
cation process. In this paper, we briefly review the related USA regulatory standards
for insulin pumps, discuss development and certification challenges for such medical
devices, and propose an effective certification process for insulin pumps.

The remainder of this paper is organized as follows: section 2 introduces the domain
knowledge of an insulin pump system and the challenges for development and certifica-
tion. Section 3 gives an overview of related regulatory requirements and standards for
insulin pumps. Section 4 discusses required quality attributes, and Section 5 presents a
suggested certification process based on our understanding of those software attributes
and assurance cases. The final section provides conclusions.

1 In this paper, we use the FDA as representative of a government regulatory agency for med-
ical devices because we are more familiar with their regulatory standards and guidelines and
their certifying practices, and, more importantly, FDA approval is an important benchmark for
marketing medical devices globally.



Insulin Pump Software Certification 89

2 The Insulin Pump System

2.1 A Generic Insulin Pump

Typically, in modelling such devices, and in discussion related to their development and
certification, we need to be specific regarding the features and components of the de-
vices. This paper discusses a generic insulin pump, which is a pump that is not marketed
and not manufactured. The reason we have done this is so that we are able to describe
a pump that is typical of pumps on the market, and exhibits behaviour representative of
most pumps that we know about. The idea is to remove this from the baggage that is
often associated with analysis of an existing, physical pump, manufactured by a specific
company. The paper is concerned with principles, rather than with the certification of a
specific pump.

Throughout the remainder of this paper, when we talk about the insulin pump, we
are talking about the generic insulin pump. The structure of such a pump is presented
in the following section.

2.2 Insulin Pump Structure

The basic components of an insulin pump include (see Figure 1):

• a user interface;
• the controller;
• the pumping mechanism;
• the insulin reservoir; and
• wireless input/output.

Note that the infusion set, the complete tubing system to connect an insulin pump
to the pump user, is assumed to be outside of the system boundary for the purpose
of this paper. This affects any modelling of physical links and the hazards analysis,
but has no other effect. We have excluded discussion related to it simply to reduce
the complexity of the system dealt with in the paper. Similarly, although the battery is
shown in Figure 1, we are not going to include battery behaviour in our analysis other
than to recognize that power may be on or off. The last item missing from Figure 1, is
the environment. For the sake of simplicity in the presentation of this paper, we assume
that the environment, which is everything outside of the system, relates almost entirely
to the user – whether it be infusion of insulin into the user’s body, or data focused
interaction with the pump. In actual practice, of course, we would include the hardware,
all relevant aspects of the environment, and their interaction with the software, in the
development of convincing proof that the insulin pump is safe and secure.

The remainder of this section will provide a brief description of the components of
the insulin pump system.

The user interface includes the capability to input data, and also to choose actions. In
addition, the pump is able to display information to the user. In our case, the input and
output are kept very simple and not specific as to whether they are textual or audible.

The controller is the digital control unit that we are able to program. Again, this is
assumed to be as general as feasible. We are not interested (in this paper) in the different



90 Y. Chen et al.

faults that are introduced by digital computers compared with field programmable gate
arrays, e.g., The (pump) controller can be programmed to administer basal (periodic)
or bolus (extra) insulin according to a patient’s request.

The pumping mechanism is the hardware pump that moves the insulin from the reser-
voir into the user’s body (through the infusion set). It is also generic in that we do not
distinguish between the different types of pumps.

The insulin reservoir holds the insulin cartridges. The reservoir needs to have the ca-
pability of signalling when the remaining amount of insulin is low (below a threshold),
or empty.

Some of the latest insulin pumps can communicate wirelessly with a remote com-
puter, a continuous glucose monitor (CSM), or even the cloud [17].

The pump that we are considering is referred to as an “open loop” system in that
it does not use any form of automated feedback to determine the amount of insulin to
administer. Compared with open loop insulin pumps, a closed-loop system or “artificial
pancreas” can monitor glucose levels 24/7, and automatically delivers an appropriate
dose of insulin without a patient’s intervention. These pumps are just appearing, or are
about to appear, on the market. They are much more complex than the open loop pumps,
and since this complexity does not contribute to the principles and approaches we want
to present, and because we have not yet managed to develop even the simpler open loop
pumps to the appropriate level of dependability, we have excluded them from further
discussion in this paper.

User Interface

Controller Pump Delivery
Mechanism

Wireless Reservoir

Ba�ery

Legend:
component data flow insulin flow

Fig. 1. Structure of a Generic Insulin Pump



Insulin Pump Software Certification 91

2.3 Challenges for Development

Developers of medical devices face many challenges, and software intensive systems
certainly add to these. The following challenges have to be dealt with if we are to be
able to produce dependably safe and secure, software dependent insulin pumps.

• Medical software is subject to government laws and regulations
In the USA, the FDA requires the manufacturers to submit a premarket notifica-
tion2 [510(k)] [14]. The submission process requires the insulin pump to be in
compliance with guidelines including General Principles of Software Validation
[12] and Guidance for the Content of Premarket Submissions for Software Con-
tained in Medical Devices [13], etc. More discussion on regulatory requirements
can be found in Section 3.

• Process based regulation – yet there is no recommended software development life
cycle
In spite of the perceived burdensome regulation imposed on medical device man-
ufacturers, in terms of the software embedded in the device, the regulation and
referenced international standards do not mandate the usage of a specific software
development life cycle.

• Safety
This is a safety critical device and there are a large number of safety requirements.
Below are examples of some safety concerns related directly to the components of
the insulin pump.
• The user interface is critical in that the user cannot be assumed to be as skilled

as a nurse would be in interfacing with other types of infusion pumps
• The pump delivery mechanism must not allow free-flow, and must not allow

air bubbles to form in the liquid insulin
• The controller must deliver 24/7 service outside of routine maintenance, and so

must be proven to be deadlock free, and robust in the event of hardware failures
• Security

Modern insulin pumps have wireless capabilities (see Figure 1) that bring additional
security challenges for insulin pump software development. It has been reported
that insulin pumps are vulnerable to hackers [2,7]. This security problem leads
directly to a safety concern. Some research work has been done to address the
problem, but it is far from being solved [19,27].

2.4 Challenges for Certification

The goal of certification is to systematically determine, based on the principles of
science, engineering and measurement theory, whether an artifact satisfies accepted,
well defined and measurable criteria [15]. Maibaum and Wassyng pointed out that pro-
cess oriented software process quality does not necessarily translate into good software
product quality [21]. The certification of insulin pump software poses some additional
challenges:

2 A stricter premarket approval (PMA) process is required for closed-loop insulin pumps.



92 Y. Chen et al.

• Lack of clear definition of evidence and how to evaluate it [15]
What evidence would convince the FDA that the insulin pump is safe, secure and
dependable? In general, the FDA provides very little definitive guidance on what
evidence to provide. This results in huge unpredictability for the manufacturers,
because they are not sure how to document or structure the evidence they have
produced. Of course, in many cases they have not even developed the evidence that
the FDA may be expecting. In addition to this, different staff at the FDA may have
different lists of ‘essentials’. In the case of the insulin pump, in particular, what will
convince the regulator? Do they want/need to see that the manufacturer has defined
the smallest air bubble that can be detected in the pump, and that bubbles over a
threshold size can be prevented from being injected into the user?

• Do not provide any guidance on how to evaluate assurance cases and hazard anal-
ysis results
Currently relevant standards and guidance recommend assurance cases and talk
about mitigating hazards, but do not necessarily provide guidance on how to demon-
strate that all hazards have been mitigated. So, the FDA recommends that assurance
cases should be submitted – but it does not explicitly require that assurance cases
should have a structure that argues over all identified hazards [14].

• What do the FDA need to know about the battery?
The battery must be safe, i.e., it must not spontaneously combust. It needs to pro-
vide sufficient power and must provide n hours of continuous use. There should be
accurate warnings to the user when battery life is low. What evidence should be
presented to the FDA to support all of these ‘claims’?

• Integrating with third-party components
Insulin pump software usually integrates with third-party software components,
called Software Of Unknown Provenance (SOUP) components in IEC 62304. For
example, the insulin pump software may interface to WiFi radio software developed
by another company. SOUP components impede certification efforts.

• Insulin pump systems are becoming part of Medical Cyber-Physical Systems
A modern insulin pump system is not a stand-alone device anymore. It is connected
with a continuous glucose management system, blood glucose monitor, and other
associated devices and health information systems. These interconnections make
the certification more difficult and more challenging.

• Minimizing certification time and effort
Under the Medical Device User Fee Act (MDUFA), the FDA is under pressure to
finish 510(k) reviews quicker than they do now. Failure to follow guidance docu-
ment(s) or recognized standards, inadequate software documentation will delay the
review process [10].

3 Overview of Regulatory Requirements for Insulin Pumps
(Software Focus)

Many years ago, the FDA included a way of grandfathering devices onto the market
with the so-called “510(k) Guideline”. Its introduction was supposed to have been tem-
porary, and was made at the time the U.S. started to regulate medical devices. It has



Insulin Pump Software Certification 93

never been removed. Infusion pumps in general have been remarkably prone to error,
and so the FDA has published new guidance on the 510(k) process, the infusion pump
premarket notification 510(k) guidance (FDA 510K Guideline) [14]. The guideline re-
quires that the manufacturer show substantial equivalence with an existing device on
the market, and show that no new hazards are introduced in the device submitted for
approval. The guideline also encourages the manufacturers to take advantage of any
recognized software standards and provide statements or declarations of conformity as
described in the FDA guidance Use of Standards in Substantial Equivalence Determi-
nations [11]. In addition, in reaction to the poor dependability and safety record of infu-
sion pumps, the new guideline recommends that manufacturers demonstrate substantial
equivalence by using an assurance case to structure the claim [14]. In Section 5.2, we
discuss assurance cases in detail and present a partial assurance case template as part of
our proposed certification process.

Figure 2 shows international standards relevant to the development of medical device
software. The IEC 62304 standard provides a framework of life cycle processes and
requirements for each life cycle process. The standard requires that the manufacturer
use a quality management system, for which ISO 13485 is recommended, and a risk
management process complying with ISO 14971. In particular, IEC 62304 addresses
the usage of SOUP.

Risk management is undoubtedly vital to the development and certification of insulin
pumps, but the hazard analysis methods recommended by ISO 14971 do not reflect
more recent established methods for software-intensive systems like the STAMP-based
Analysis3 (STPA) [20]. More importantly, the European Committee for Standardization
(CEN) identified4 all content deviations of ISO 14971 compared with the requirements
of EU Directives 93/42/EEC. One deviation is that:

ISO 14971 ... contains the concept of reducing risks “as low as reasonably
practicable”...(while) Directive 93/42/EEC and various particular Essential Re-
quirements require risks to be reduced “as far as possible” without there being
room for economic considerations.

We can see that the majority of related standards are concerned with the development
process of medical device software, with the exception of IEC 60601-15. However, IEC
60601-1 is for general medical devices, so it does not cover all aspects of medical device
software. The FDA 510K Guideline recommends the insulin pump meet IEC 60601-1
as to the alarms/warnings and environmental safety requirements

4 The Quality Attributes of Insulin Pump Software

This section discusses some of the quality attributes important to insulin pump soft-
ware. It is not a comprehensive list, but covers several key elements that can be used as
3 STAMP stands for Systems-Theoretic Accident Model and Processes, an accident model by the

same MIT group
4 when the ISO 14971:2007, Corrected version 2007-10-01 was taken over as a European Stan-

dard EN ISO 14971:2012
5 The other product standard – IEC 61010-1 – is for electrical equipment for measurement, con-

trol and laboratory use, which is not relevant to insulin pumps.



94 Y. Chen et al.

Fig. 2. Relationship of key MEDICAL DEVICE standards to IEC 62304 [18]

acceptance criteria to evaluate insulin pump software. We divide the quality attributes
of the insulin pump into three sets: functional attributes, ‘design’ attributes (‘design’ in
the conceptual sense, which includes requirements specifications as well), and software
development process attributes. We have listed functional and design attributes in the
remainder of this section. We have not included process attributes in order to save space,
and also because process attributes form the mainstay of current certification processes
and we do not have anything significantly new to say on the subject.

4.1 Functional Quality Attributes

Safety. The safety challenge was described briefly in Section 2.3. What evidence do
we look for in this regard, and use in the certification? Brief list: global safety and live-
ness properties satisfied; hazards mitigated (includes fail-safe behaviour); completeness
checks satisfied; Human machine interface (HMI) testing report. Figure 3 provides an
excerpt from a table detailing the system hazards and proposed mitigations.

Security. The security challenge was also described briefly in Section 2.3. Brief list
of evidence: hazards mitigated; completeness checks satisfied; freedom from coding
defects.

Availability. This was also discussed in Section 2.3, and straddles the safety attribute.
Evidence to consider includes: global safety and liveness properties satisfied; fail-safe
hazards mitigated; completeness checks satisfied; freedom from coding defects.



Insulin Pump Software Certification 95

Fig. 3. Hazards and mitigations corresponding to infusion rate not matching requested value [29]

Usability. ([34]) Straddles safety and availability and is also discussed in Section 2.3.
Evidence is primarily HMI related validation test reports.

Maintainability. The lifespan of insulin pumps may be years, requiring updates and
safety/security enhancements as more usage data becomes available, and the science of
insulin pumps further develops. Evidence to consider includes: requirements-traceability
forward and backward; information hiding modularization (see 4.2); a documented uses
hierarchy.

4.2 Design Attributes

Requirements Consistent, Complete and Unambiguous. If this is not true, then the
software design loses its context. Evidence includes: completeness checks satisfied;
verification reports that include consistency, completeness, etc.

No Dead Code. ‘Dead code’ affects both safety and security, and many regulatory
domains have statements to the effect that it must be avoided. The question is what
evidence do we need to show that it has been avoided? The most effective evidence
in our opinion is a code (formal) verification report that demonstrates that the code
faithfully implements the software design.



96 Y. Chen et al.

Code Free from Common Defects. Reports from two or more static code analysis
tools are excellent evidence in this regard. We suggest two or more since different tools
tend to find different errors [5].

Information Hiding. The objective of information hiding is to identify requirements
or design decisions that are likely to change and to encapsulate the essence of what
would change in a single module/class. This results in excellent modularity and clearly
facilitates maintainability [23,24]. Evidence of effective information hiding includes
lists of requirements and design decisions that are likely to change in the future, and
traceability of those ‘secrets’ down into the software design level.

Design Facilitates Verification. Verification means confirmation through provision of
objective evidence that specified requirements have been fulfilled [18]. The IEC 62304
[18] guided process requires planning for software verification. Borrowing from the
nuclear domain, the design output “should facilitate the establishment of verification
criteria and the performance of analyses, reviews, or tests to determine whether those
criteria have been met”[22]. Evidence of this should be visible in project planning pro-
cedures, and in the design itself.

One task the certifier must then perform is to understand what quality attributes are used
in claims in the assurance case, and evaluate the evidence associated with them. In the
following section we describe the certification process.

5 A Suggested Certification Process

We have briefly described the current regulatory (certification) process for medical de-
vices in the USA (Section 3). It is not remarkably different, we believe, in most coun-
tries that have equivalent oversight of medical devices. We also briefly described the
major challenges faced by manufacturers of medical devices (Section 2.3), as well as
certifiers of medical devices (Section 2.4). In this section we present an overview of
a certification process for medical devices, focused on the evaluation of the software
attributes in those devices.

It is important to note that we are considering the certification of a medical device
that is safety critical – the insulin pump saves lives, but can also take them.

There is an old maxim that the certification of software intensive systems should
depend on a tripod – people, process and product. Currently, the regulatory regime in
most domains that deal with software intensive safety critical systems is predominantly
process based. As we have seen, the certification of medical devices is no different. Our
contention is that people (the developers and certifiers) and process are undoubtedly
important, but the certification process should be as product-focused as possible. This
section presents ways in which we think we can achieve this.

5.1 People and Process

Before we describe the product-focused aspects of the certification process, we deal
with the essentials that relate to people and process.



Insulin Pump Software Certification 97

People. The developers of the insulin pump must be competent in a variety of domains
in order to develop a safe, secure, effective and dependable pump. In terms of software
expertise, the developers need to be able to document knowledge and experience in the
crucial aspects of safety critical software development. If the company/division is too
small to be able to perform some of the activities, they will need to contract others to
help them. Their expertise will also need to be documented. We are not certain that the
FDA or other medical device regulators currently conduct checks of this nature – but
they should. In particular, development teams must be able to document relevant exper-
tise in: hazard analysis; software requirements elicitation and specification; software
design; coding; hardware interfacing; security; testing; configuration management; and
assurance cases. The acceptance criteria by which the regulator can evaluate this knowl-
edge and expertise is currently problematic. The body of knowledge in these areas is not
universally accepted. However, accreditation by various professional bodies, degrees in
relevant disciplines, and so on, are all useful in this regard.

Development Process and Tools. Safe, secure and dependable software needs to be de-
veloped using a development process approved by the regulator. This is often achieved
by showing compliance with a process standard, such as IEC 62304. Alternative stan-
dards usually exist within the relevant regulatory framework. The FDA, for example,
has process guidance in their set of regulatory guidelines [11]. Any tool support for the
process should not represent a potential “single point of failure” that either introduces
an error or result in an error going undetected. In many standards such reliance upon a
tool requires that the tool itself be developed to the same level of rigour as the system
under development. Thus the process and supporting tools must support each other to
eliminate any potential “single point failures”.

5.2 Product

As indicated in Sections 1 and 3, the FDA now recommends the submission of an
assurance case for insulin pumps. An assurance case should have substantial product
evidence to support the claims and arguments included in the case, and so is one way in
which we can focus our certification regime more on the product under scrutiny, rather
than on the process used to build it.

A Brief Introduction to Assurance Cases. An assurance case (originally developed
as safety cases) is a structured document that presents a claim about the product and
also demonstrates the validity of the claim through a series of connected arguments,
sub-claims and evidence [6].

Hawkins et al. [16] recently compared the two approaches to certification of soft-
ware safety: prescriptive certification6 and assurance cases. They argue that the two ap-
proaches are complementary and could lead to “a better solution than either approach
on its own”.

6 Some standards prescribe specific processes and techniques that must be followed.



98 Y. Chen et al.

Assurance Case Template. We believe that the quality of the evaluation of the assur-
ance case by a regulator (or certification authority) is just as important as the quality
of the development of the assurance case by the manufacturer. This would seem to
contradict our belief (shared by most proponents of assurance cases) that the act of de-
veloping the assurance case is more beneficial than the resulting assurance case, but
it does not. For the manufacturer, the act of developing the assurance case forces the
development team to consider gaps and the validity of their claims, continually. This
assumes, of course, that the assurance case is developed with honest intent, and that
it drives development, rather than serve as documentation after the fact. Sincerity and
skilled work are not sufficient though. We are probably all familiar with the effect of
reading and critiquing our own work (“own work” here includes other members of the
team or members of another team within the same company). We need an objective
check on this, and it makes sense that the relevant regulators (or certifying authority)
are the ones to do it. Not only is it within their mandate, but they are (almost always)
aware of issues that have plagued other manufacturers in the same domain. Thus, their
evaluation of the assurance case is also vital.

Now that we have established the importance of the regulatory evaluation of the as-
surance case, we need to examine aspects of the development and evaluation of the as-
surance case that are likely to affect the quality of the evaluation. This has only recently
generated interest. One of our concerns for some time now [32], has been that if each
assurance case submitted to the FDA is a one-off example, then the FDA is not likely
to build sufficient expertise in evaluating these assurance cases, and they are likely to
struggle to find subtle flaws in these cases in the time that they have available for the
evaluation. It is mainly for this reason, that we think that frameworks/patterns/templates
for assurance cases within an application domain, make excellent sense. Sufficiency of
the safety argument is also of interest, and there have been a few different approaches
in this regard. One recent approach is described in [3]. There are a number of assurance
case frameworks that have been suggested for medical device certification [1,30,33]. We
would go a little further, and suggest that a reasonably prescriptive template be provided
to insulin pump manufacturers, and that the manufacturers be given guidelines on how
(and why) to use the template. This introduces some problems – political and technical.
The political problems all stem from the fact that prescription seems to be a dirty word
in software. However, we need to come to terms with the fact that most branches of
engineering are quite prescriptive and conservative in their approved approaches to the
development of safety critical systems, that they do this for good reasons, and that they
often do manage to keep just behind the curve of innovation, so that there is progress as
new methods pass the stage from radical to normal design. We should also realize that
there are good ways and bad ways of mandating prescriptive approaches. The technical
problems relate to having to know more about our domain than we think we do. Our
belief is that we do know enough to get started. This paper presents one approach to
getting started on more prescriptive approaches to assurance cases for insulin pumps.

Most assurance cases that we have seen have used a hazards analysis to drive and
structure the assurance case. We do not believe that this is the best way to structure the
case. It is difficult to determine and show that any hazard analysis is complete, in the
sense that all relevant hazards have been identified. If we use the structure of the hazard



Insulin Pump Software Certification 99

analysis to structure the assurance case, we are then going to find it very difficult to
argue that the assurance case is sound. We could, of course, add a claim that deals with
the case that not all hazards were identified, but that seems to lead into having to then
show the argument we could have used if the hazard analysis was not the driver of the
structure. It seems clear to us then, that hazard analyses should be included at lower
levels of the arguments. Our suggested template has three claims at the top level:

• The requirements accurately and consistently specify the behaviour of the insulin
pump, such that the pump, if built in compliance with these requirements, will
maintain the user’s insulin levels so that they are within a safe range for the user

• The pump is built so that its behaviour is compliant with the behaviour specified in
the requirements, within specified tolerances

• It will be possible to maintain and operate the pump over its projected lifetime
without adversely affecting the safety, security and effectiveness of the pump

A fourth top level claim, fail-safe, is a possibility. If fail-safe behaviour is included
explicitly in the requirements specification, then we have an option to deal with evi-
dence related to fail-safe behaviour in the verification claim regarding compliance with
requirements. We could also separate it out as a separate claim. If details of the fail-
safe behaviour are not explicitly included in the requirements, then we definitely need
a fourth top level claim regarding fail-safe behaviour.

The real idea behind an assurance case template is to provide guidance to both man-
ufacturers and regulators of the assurance case in a way that directs the manufacturers
to develop arguments that are important in that domain, but are not so detailed as to
make it a mindless exercise performed solely to convince the regulators.

An idea of what this may look like is presented in Figure 4, in which we have shown
the claims and sub-claims for just one of the three top claims, since it is not possible
to show the other two claims in the space available. The claims are shown but the
strategies, context, and other types of possible nodes are not shown, again because of
space limitations. Also, because they are not really relevant to the point we are making.
The evidence at the end of the argument chain is blank here, but in an actual template we
would include a description of acceptable evidence for each of these paths. We would
also use context nodes to describe the rationale for the choice of claims, sub-claims,
strategies, etc.
So, how does this help us? It actually helps us in a number of ways.
First of all, for the regulator/certification authority:

• It conveys to the manufacturers, in a very explicit way, the type of argument and
supporting evidence required in order to obtain approval for marketing an insulin
pump;

• The main structure of the assurance case is pre-determined (not the specific content
of a node in many cases), and the regulator should have (must have) done sufficient
analysis to determine that arguments based on this structure, with relevant content
in the nodes, should produce adequate arguments;

• The consistency of the structure will allow the regulator to develop expertise in
what content leads to adequate assurance cases, and will be able to audit submis-
sions to determine if there is something important lacking, whether the specific
evidence presented does not adequately support a specific argument, etc.



100 Y. Chen et al.

Requirements accurately and 
consistently specify the behaviour 
of the insulin pump, such that the 

pump will maintain the user's 
insulin levels so that they are 

within a safe range for the user

The pump is built so that its 
behaviour is compliant with the 

behaviour specified in the 
requirements, 

within specified tolerances

It will be possible to maintain and 
operate the pump over its 
projected lifetime without 

adversely affecting the safety, 
security and effectiveness 

of the pump

Global 
safety 

& liveness 
properties
are true

Validation 
tests pass 

and are
sufficient to 

show OK

Reqs
conform to
 all relevant
standards

System 
level

hazards 
are

mitigated

Coverage
over 

perfor-
mance
reqs

Coverage
over 

functional
reqs

Coverage
over 

security
reqs

Coverage
over
HMI
reqs

Legend
claim or sub-claim

evidence: in the template we would
usually indicate what is considered
to be acceptable evidence

connector

... ...

Require-
ments are
complete

&
consistent

sub-tree of sub-claims

Fig. 4. Example Extract from an Assurance Case Template

Secondly, for the manufacturer:

• There should be much better predictability of the regulatory evaluation process, and
this is one of the major concerns of manufacturers;

• It provides guidance based on the regulator’s experience and knowledge of prob-
lems that are common in a specific domain;

• Manufacturers need to develop products knowing that they will be safe, not prove
that they are safe after development. Templates like this can help direct develop-
ment so that the product will be safe, secure and dependable.

We already presented an overview in graphical form of the top level claim “The
requirements accurately and consistently specify the behaviour of the insulin pump,
such that the pump, if built in compliance with these requirements, will maintain the
user’s insulin levels so that they are within a safe range for the user” in Figure 4. Now,
as another example, we show a template in text form7 that supports the claim that “The
pump is built so that its behaviour is compliant with the behaviour specified in the
requirements, within specified tolerances”. Possible sub-claims are as follows:

7 Although most assurance case research uses graphical representations of the case, we are not
yet convinced that this is effective for large, practical assurance cases. Tabular text form for
cases may be more appropriate in that we may be able to design the layout so that it facilitates
views of the ‘big picture’ more effectively than graphical layouts can.



Insulin Pump Software Certification 101

• The pump’s behaviour is compliant with the behaviour specified in the require-
ments, within specified tolerances
• All requirements in the system requirements spec (REQ) are present and equiv-

alent in the system level design (DGN)
∗ Evidence: DGN review report that shows all requirements from REQ are

present in DGN
∗ Evidence: DGN verification report shows equivalence of requirements in

REQ with their representation in DGN [may be omitted if model and no-
tation in REQ and DGN are the same]

• All behaviour specified in DGN that is not in REQ has been justified, and DGN
is correct, complete, unambiguous and consistent
∗ Evidence: DGN review report documents this justification

• All software related behaviour in DGN is represented equivalently in the soft-
ware requirements (SRS), and

• All hardware related behaviour in DGN is described in M-I or O-C mappings
(as in the 4 variable model [25], and transfer events [31])
∗ The software design (SDD) correctly includes all behaviour in the SRS

· Evidence: SDD verification report shows equivalence of requirements
in SRS with their representation in the SDD, within tolerance

∗ All behaviour specified in the SDD that is not in the SRS has been justified,
and the SDD is correct, complete, unambiguous and consistent
· Evidence: SDD review report shows justification
· Evidence: SDD verification reports demonstrates SDD is complete,

unambiguous and consistent
• All behaviour in the SDD is equivalently implemented in code

∗ Evidence: Code verification report shows equivalence of behaviour in code
with its representation in the SDD

∗ Evidence: Test reports demonstrate that no tests fail
• All behaviour implemented in code and not in the SDD has been justified

∗ Evidence: Code review report shows justification
• Code is complete, unambiguous and “free from coding defects”

∗ Evidence: Code verification report shows complete and unambiguous
∗ Evidence: Reports from two independent static code analysis tools show

code is “free from coding defects”

There are clearly some claims missing from this template – they are missing simply
because we do not want to complicate the claim/argument structure for the purpose
of this illustration. In particular, all the claims related to hazard analysis are missing.
Similarly, fail-safe items are also ignored. However, there is enough detail here to see
that there is some obvious prescription implicit in this template.

1. Required documents tell us something about the process – system level require-
ments, system level design, software requirements, software design, system level
design review report, software requirements review report, software design review
report, software design (mathematical) verification, code verification, testing (lots
of it), static analysis;

2. Mathematical verification is required;



102 Y. Chen et al.

3. The above point implies that the software requirements and software design must
be mathematically specified;

4. More subtly, it gives the manufacturer the option to form the SRS directly from the
DGN without rewriting the behaviour in any way.

c InfuFlRt

Inputs:

Name Description Initial Value Reference

M BolAmt A request for an amount of bolus N/A –
f BasProf The current basal profile in the system N/A –
c SysOp−1 The previous value of the system operation

indicator
NoOp 4.3

c BolInProg−1 The previous value of the bolus administra-
tion notification

NoBolInProg 4.4

c BadDelivNotif−1 The previous value of the bad delivery noti-
fication

NoBadDelivNotif 4.7

Output:

Name Description

c InfuFlRt The flow rate of the insulin to be delivered

Function Table:

Result
Condition c InfuFlRt

c SysOp−1

= Op
c BadDelivNotif−1

�= MaxDose
c BolInProg−1

= BolInProg
f BasProf + M BolAmt * Δt ≤
k MaxTotFlRt

f BasProf(tnow) +
M BolAmt * Δt

f BasProf + M BolAmt * Δt >
k MaxTotFlRt

k MaxTotFlRt

c BolInProg−1 = NoBolInProg f BasProf(tnow)
c BadDelivNotif−1 = MaxDose 0
c SysOp−1 = NoOp 0

Fig. 5. Example tabular requirements specification from [29]

This paper is about insulin pumps, yet if we examine the suggested items in the
template that we have presented, other than some very high-level claims we cannot
actually see anything specific to insulin pumps – it is reasonably general. This is an
excellent demonstration of why such a template is useful. It is possible to structure
the assurance case in a way that reviewers/certifiers build expertise in what should be
presented in particular sections, and it will still not be a mindless fill-in the blanks
exercise. The reason we can claim this, is that the domain and problem specific claims,
arguments and evidence will be necessary and visible at lower levels. They are essential



Insulin Pump Software Certification 103

to the overall argument. The fact that a template is used to say what should be proved, in
no way diminishes the intellectual burden on the developers to provide the appropriate,
problem specific sub-claims, arguments and evidence.

For example, in order to support the sub-claim “Requirements are complete & con-
sistent” from the template in Figure 4, once the system’s monitored and controlled
variables have been identified, the developers may choose to use tabular specifications
for the SRS such as the one in Figure 5. Part of the evidence to support the claim that
the requirements are complete and consistent would be that that the value of every con-
trolled variable is determined by a single table (or composition of tables) and each table
is complete (no missing input cases) and disjoint (no ambiguities). Figure 5 defines the
behaviour of the infusion flow rate which is given by the flow rate output to the pump
based on the current basal profile and any requested bolus. Due to space limitation we
refer the reader to [29] for a more detailed description of the requirement. The important
thing to note from the example is that it is easy to inspect that the table is complete and
disjoint. Further, these properties of the table can be easily formally verified by using a
tool such as [9].

Another low level sub-claim in the assurance case may be that no insulin will be
delivered when the maximum dosage has already been reached. The evidence to support
this could be a reference to appropriate test cases, as well as a reference to the tabular
expression in Figure 5, in which we see that when c BadDelivNotif−1 = MaxDose, the
value of c InfuFlRt is 0.

Evaluation of the Assurance Case. Although the assurance case template is used by
the manufacturer, it is presented in this section since it is developed by the regulator.
The regulator’s task is not finished though - the regulator has to evaluate the submitted
assurance case.

There are a number of ways to achieve this, and some of these have been presented
in the literature already [3,33]:

• The regulator audits one or more slices of the assurance case. A ‘slice’ may be
defined by following a path of claim, sub-claim, evidence. It is likely that the regu-
lator will know that specific claims are problematic for the insulin pump (or what-
ever other device is being evaluated), and will want to audit those claim-slices.
If the audit is close to perfect, it is likely that the regulator will simply then go
through a check-list of items, such as the safety requirements documented by the
manufacturer. If the audit uncovers problems, the regulator may immediately halt
the evaluation and inform the manufacturer, or they may start looking for more de-
tailed evidence that the submission is poor so as to have an overwhelming case for
denial.

• Another way of evaluating the assurance case would be to go through the entire
assurance case, comparing the submission with the regulator’s model case (docu-
mented or un-documented).

• Yet another process that could be followed is for the regulator to make an approval
assurance case (or a denial assurance case). This would document the claims for
approval (or denial) in a claim, sub-claim, evidence structure. Regulators do this
now, but it is implicit. Many people believe that assurance cases are effective simply



104 Y. Chen et al.

because they force us to make our arguments explicit, and this should work equally
well for evaluation as it does for development.

All of these involve confidence as a major component of the decision process. Some
of the literature already cited deals with this, and it is a growing research topic in assur-
ance cases. However, we (personally) do not have enough evidence yet to draw conclu-
sions about how confidence should be presented (as a separate case, for example), or
how it should be evaluated.

Our current preference for an assurance case evaluation process would be the audit
or the approval (denial) case – or a combination of the two.

6 Conclusion

In this paper we described some of the challenges in developing and certifying a generic
insulin infusion pump. We then outlined ways in which to address these challenges, in-
cluding a partial assurance case template, justifying a product focused approach to the
certification evidence and evaluation, and taking into account one of the main certifi-
cation challenges – reducing the variation in submitted assurance case structure. An
important point is that a prescriptive template provides structure that is useful and ap-
propriate in multiple domains and for multiple specific applications, and that, if care-
fully constructed, it should not lead to mindless completion of the template, since the
lower levels of the template require specific claims and evidence that depend on the
specific application. There is still important work to be done in identifying the form of
evidence required, how to evaluate the evidence (how to ‘measure’ the degree to which
specific attributes have been achieved), and how to evaluate the assurance case itself.
The important aspect of confidence in assurance cases will be central to some of this
research.

References

1. Ankrum, T.S., Kromholz, A.H.: Structured Assurance Cases: Three Common Standards. In:
HASE 2005: 9th IEEE International Symposium on High-Assurance Systems Engineering,
pp. 99–108 (2005)

2. Associated Press: Insulin Pumps Vulnerable to Hacking, http://www.foxnews.com/
tech/2011/08/04/insulin-pumps-vulnerable-to-hacking/

3. Ayoub, A., Chang, J., Sokolsky, O., Lee, I.: Assessing the Overall Sufficiency of Safety
Arguments. In: SSS 2013: 21st Safety-critical Systems Symposium. LNCS. Springer (2013)

4. Bergenstal, R.M., Tamborlane, W.V., Ahmann, A., Buse, J.B., Dailey, G., Davis, S.N., Joyce,
C., Peoples, T., Perkins, B.A., Welsh, J.B., et al.: Effectiveness of Sensor-augmented Insulin-
pump Therapy in Type 1 Diabetes. New England Journal of Medicine 363(4), 311–320
(2010)

5. Black, P.E.: Samate and Evaluating Static Analysis Tools. Ada User Journal 28(3), 184–188
(2007)

6. Bloomfield, R., Bishop, P.: Safety and Assurance Cases: Past, Present and Possible Future–an
Adelard Perspective. In: Making Systems Safer, pp. 51–67. Springer (2010)

7. Carollo, K.: Can Your Insulin Pump Be Hacked?, http://abcnews.go.com/blogs/
health/2012/newline04/10/can-your-insulin-pump-be-hacked/

http://www.foxnews.com/tech/2011/08/04/insulin-pumps-vulnerable-to-hacking/
http://www.foxnews.com/tech/2011/08/04/insulin-pumps-vulnerable-to-hacking/
http://abcnews.go.com/blogs/health/2012/newline04/10/can-your-insulin-pump-be-hacked/
http://abcnews.go.com/blogs/health/2012/newline04/10/can-your-insulin-pump-be-hacked/
0006825
Highlight
Dear Author,

If this is a LNCS volume ,please provide us the volume No.




Insulin Pump Software Certification 105

8. Dooren, J.C.: FDA Sees Increasing Number Of Insulin Pump Problems, http://online.
wsj.com/article/SB10001424052748703862704575099961829258070.
html

9. Eles, C., Lawford, M.: A Tabular Expression Toolbox for Matlab/Simulink. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 494–499.
Springer, Heidelberg (2011)

10. FDA: Analysis of Premarket Review Times Under the 510(k) Pro-
gram, http://www.fda.gov/AboutFDA/CentersOffices/
OfficeofMedicalProductsandTobacco/CDRH/CDRHReports/ucm263385.
htm

11. FDA: Use of Standards in Substantial Equivalence Determinations, http://
www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/
GuidanceDocuments/ucm073752.htm

12. FDA: Guidance – General Principles of Software Validation (2002)
13. FDA: Guidance for the Content of Premarket Submissions for Software Contained in Medi-

cal Devices (2005)
14. FDA: Guidance – Total Product Life Cycle: Infusion Pump-Premarket Notification Submis-

sions [510(k)] Submissions (2010)
15. Hatcliff, J., Heimdahl, M., Lawford, M., Maibaum, T., Wassyng, A., Wurden, F.: A software

certification consortium and its top 9 hurdles. Electronic Notes in Theoretical Computer Sci-
ence 238(4), 11–17 (2009)

16. Hawkins, R., Habli, I., Kelly, T., McDermid, J.: Assurance Cases and Prescriptive Software
Safety Certification: A Comparative Study. Safety Science 59, 55–71 (2013)

17. Horowitz, B.T.: Cellnovo’s Cloud System Monitors Diabetes in
Real Time, http://www.eweek.com/c/a/Health-Care-IT/
Cellnovos-Cloud-System-Monitors-Diabetes-in-Real-Time-520914/

18. International Electrotechnical Commission: IEC 62304: 2006 Medical Device Software–
Software Life Cycle Processes (2006)

19. Klonoff, D.C., Paul, N.R., Kohno, T.: A Review of the Security of Insulin Pump Infusion
Systems. Journal of Diabetes Science and Technology 5(6) (2011)

20. Leveson, N.: Engineering a Safer World: Applying Systems Thinking to Safety. MIT press
(2012)

21. Maibaum, T., Wassyng, A.: A Product-Focused Approach to Software Certification. Com-
puter 41(2), 91–93 (2008)

22. NRC: Guidance on Software Reviews for Digital Computer-Based Instrumentation and Con-
trol Systems, http://pbadupws.nrc.gov/docs/ML0525/ML052500547.pdf

23. Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules. Communi-
cations of the ACM 15(12), 1053–1058 (1972)

24. Parnas, D.L., Clements, P.C., Weiss, D.M.: The Modular Structure of Complex Systems. In:
7th International Conference on Software Engineering, pp. 408–417. IEEE (1984)

25. Parnas, D.L., Madey, J.: Functional documents for computer systems. Science of Computer
programming 25(1), 41–61 (1995)

26. Potti, L.G., Haines, S.T.: Continuous subcutaneous insulin infusion therapy: a primer on
insulin pumps. Journal of the American Pharmacists Association 49(1), e1–e17 (2009)

27. Raghunathan, A., Jha, N.K.: Hijacking an Insulin Pump: Security Attacks and Defenses for a
Diabetes Therapy System. In: IEEE 13th International Conference on e-Health Networking,
Applications and Services, pp. 150–156. IEEE (2011)

28. Siebert, C.: Diabetes control and complications trial (DCCT): Results of the feasibility study
and design of the full-scale clinical trial. Controlled Clinical Trials 7 (1986)

29. Stribbell, J.: Model Based Design of a Generic Insulin Infusion Pump. M.Eng. Report, Mc-
Master University (2013)

http://online.wsj.com/article/SB10001424052748703862704575099961829258070.html
http://online.wsj.com/article/SB10001424052748703862704575099961829258070.html
http://online.wsj.com/article/SB10001424052748703862704575099961829258070.html
http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHReports/ucm263385.htm
http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHReports/ucm263385.htm
http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHReports/ucm263385.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm073752.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm073752.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm073752.htm
http://www.eweek.com/c/a/Health-Care-IT/Cellnovos-Cloud-System-Monitors-Diabetes-in-Real-Time-520914/
http://www.eweek.com/c/a/Health-Care-IT/Cellnovos-Cloud-System-Monitors-Diabetes-in-Real-Time-520914/
http://pbadupws.nrc.gov/docs/ML0525/ML052500547.pdf


106 Y. Chen et al.

30. Sujan, M.-A., Koornneef, F., Voges, U.: Goal-Based Safety Cases for Medical Devices:
Opportunities and Challenges. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS,
vol. 4680, pp. 14–27. Springer, Heidelberg (2007)

31. Wassyng, A., Lawford, M.: Lessons Learned from a Successful Implementation of Formal
Methods in an Industrial Project. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003)

32. Wassyng, A., Maibaum, T., Lawford, M., Bherer, H.: Software Certification: Is There a Case
against Safety Cases? In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS,
vol. 6662, pp. 206–227. Springer, Heidelberg (2011)

33. Weinstock, C.B., Goodenough, J.B.: Towards an Assurance Case Practice for Medical De-
vices. Tech. rep., DTIC Document (2009)

34. Zhang, Y., Jones, P.L., Klonoff, D.C.: Second insulin pump safety meeting: summary report.
Journal of Diabetes Science and Technology 4(2), 488 (2010)


	Insulin Pump Software Certification
	Introduction
	The Insulin Pump System
	A Generic Insulin Pump
	Insulin Pump Structure
	Challenges for Development
	Challenges for Certification

	Overview of Regulatory Requirements for Insulin Pumps (Software Focus)
	The Quality Attributes of Insulin Pump Software
	Functional Quality Attributes
	Safety.
	Security.
	Availability.
	Usability.
	Maintainability.

	Design Attributes
	Requirements Consistent, Complete and Unambiguous.
	No Dead Code.
	Code Free from Common Defects.
	Information Hiding.
	Design Facilitates Verification.


	A Suggested Certification Process
	People and Process
	People.
	Development Process and Tools.

	Product
	A Brief Introduction to Assurance Cases.
	Assurance Case Template.
	Evaluation of the Assurance Case.


	Conclusion


