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Abstract. This paper describes an attempt to combine theorem proving and model-checking to for-
mally verify real-time systems in a discrete time setting. The Timed Automata Modeling Environ-
ment (TAME) has been modified to provide a formal model for Time Transition Models (TTMs) in
the PVS proof checker. Strong and weak state-event observation equivalences are formalized in PVS
for state-event labeled transition systems (SELTS), the underlying semantic model of TTMs. The
state-event equivalences form the basis of truth value preserving abstractions for a real-time tempo-
ral logic. When appropriate restrictions are placed upon the TTMs, their PVS models can be easily
translated into input for the SAL model-checker. A simple real-time control system is specified and
verified using these theories. While these preliminary results indicate that the combination of PVS
and SAL could provide a useful environment to perform equivalence verification, model-checking
and compositional model reduction of real-time systems, the current implementation in the general
purpose SAL model-checker lags well behind state of the art real-time model-checkers.

Keywords: Real-time, equivalence verification, theorem proving, PVS, model-checking, model
reduction, SAL

1. Introduction

Timed Transition Models (TTMs) are a form of guarded transition systems that can be used to con-
veniently model real-time systems in a discrete time setting [23, 26]. In particular one may model a
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system’s desired behavior or specification using one TTM andthe actual implementation of the system
using another, more detailed TTM [13]. One can then verify that the implementation is in some sense
equivalent to the specification. For an appropriately defined equivalence relation, one can “reduce before
use”, performing compositional model reduction where concurrent component subsystems are replaced
with smaller equivalent subsystems before they are composed [14, 13]. To be of practical use, such
equivalence verification techniques require some form of mechanized support. This paper describes how
the Timed Automata Modeling Environment (TAME) [2, 3] has been modified to provide a formal model
for TTMs in the PVS automated proof assistant [28]. Strong and weak versions of state-event equiva-
lences are formalized in PVS for state-event labeled transition systems (SELTS), the underlying semantic
model of TTMs, thus providing mechanized support for equivalence verification of TTMs.

If, in addition to equivalence verification, one wishes to model-check the specification and imple-
mentation, PVS does have limited model-checking facilities for the branching time Computational Tree
Logic (CTL), though the model-checker is not considered to be state of the art and does not have a much
needed counter example generation and simulation capabilities. Fortunately the SAL 2 model-checker
[22] has a similar, though more restrictive, type system andsimilar input syntax to PVS while providing
state of the art BDD and SAT-solver based model checkers for Linear Temporal Logic (LTL) [7]. By
restricting ourselves to finite state TTMs on types with operations supported by SAL, the PVS specifica-
tions can be easily translated into input for SAL, providingstate of the art model checking capabilities
for our real-time setting.

As we will see in the example of section 5, to prove two TTMs areweakly equivalent, we first specify
the two TTMs in PVS using the modeling environment, define a relation between the states of these two
TTMs and prove that the relation is a weak state-event bisimulation relating the initial states of these two
TTMs. If we wish to model-check our system we can translate the more abstract (specification) TTM
into SAL. Provided the model-checking formulas of interestsatisfy a form of stuttering invariance, the
model-checking results can be used to infer the results for the implementation.

The remainder of this section discusses related work. Section 2 gives a brief description of TTMs,
SELTS and a simple real-time state-event temporal logic. The formalization of TTMs and SELTS in
PVS and SAL is described in section 3. Section 4 gives the definitions of strong and weak state-event
equivalences, describes how the equivalences can be used toperform compositional model reduction and
then outlines their formalization in PVS. The results of a mechanized verification of an industrial real-
time controller modeled using TTMs in PVS and SAL is given in section 5. As a basis for comparison
of the model-checking results, timed automata models of thecontrollers are partially verified using the
UPPAAL real-time model-checker [11]. Finally section 6 summarizes the method’s benefits, limitations
and possible extensions.

1.1. Related Work

The recent survey article [31] provides an extensive overview of the various techniques and tools that
can be used for the formal specification and verification of real-time systems. It covers equivalence
verification, model checking and model reduction techniques that have been applied to both continuous
and discrete time settings. While each of these topics have been addressed previously, there is no single
tool suite that lets the user combined these methods in a particular formalism. This paper illustrates
some potential benefits of combining methods and outline howthe methods can be integrated using a
combination of theorem proving and model-checking.
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The Timed Automata Modeling Environment (TAME) [2, 3] is a special-purpose interface to PVS
designed to support developers of software systems in proving invariants. It supports the creation of
PVS descriptions of three different automata models: Lynch-Vaandrager (LV) timed automata [18], I/O
automata [17], and the automata model that underlies SCR specifications [10]. It does not include support
for verifying different types of equivalences on pairs of automata models, nor does it support automated
composition of automatons. The user must combine the individual automaton descriptions to produce a
single TAME specification by extracting the common variables to produce a single TAME specification.

TAME does not support TTMs directly and its representation of time as part of the state variables is
not suitable for TTMs. In TAME, the time variablenow is explicitly changed in the LV timed automata
by a specialtime-passageactionν. The time requirement for othernon-time-passageactions are checked
against thefirst andlast value of the corresponding action. TAME uses the real numbers extended with
∞ to represent time values. In our TTM model, we use the extended natural numbers to represent
time values up to the resolution of a global clock tick. A special tick action is needed to update the
clocks associated withnon-tickactions. The actions also need to satisfy the state variablerequirements
appearing in guard conditions, a common situation in control systems. The PVS theories underlying
TAME provide the basis for our formalization of TTMs in PVS. We make use of some of the basic
theories and follow a similar template based method to make the theories easier to use. As we have
used TAME as the initial basis for our TTM models in PVS, our method currently also requires manual
composition of TTMs. Most significantly, we have add theories defining equivalences between pairs of
models, a feature previously absent in TAME.

In [27] Ostroff outlines a compositional method for provingReal-Time Temporal Logic properties
of TTM modules. The work makes extensive use of the results of[13, 14] to provide model reduction
based upon state-event equivalences. He uses the Delayed Reactor Trip (DRT) example of [13, 15] to
illustrate the proof methodology using a combination of theStateTime tool [25] for modeling and the
STeP theorem prover and model-checker [19]. We examine a variation of the same DRT example in
section 5. The main distinction between [27] and the currentwork is that here we provide a means of
rigorously verifying equivalence of TTMs to provide provably correct abstractions which can then be
used for compositional model reduction as in [13, 14] or compositional reasoning as done in [27].

Verifying the state-event equivalences described in this paper for finite state TTMs reduces to solv-
ing the relational coarsest partition problem on the underlying transition structure [13], and hence can
be solved using model-checking techniques. While there exist model-checking tools such as MOCHA
[1] and UPPAAL [11], these tools do not directly support the verification of user defined equivalence
relations and they do not directly support the semantics of TTMs. Our experience using an interactive
theorem prover such as PVS to verify systems like the examplein section 5 indicates that a combination
of theorem proving to decompose the problem and model-checking to discharge parts of the proof obli-
gation would be the most effective combination. Unfortunately soundness problems with PVS’ built-in
model-checker limited our ability to test this hypothesis.The recently released SAL 2 model-checker
[22], with a type system similar, though more restrictive than PVS, has provided an opportunity to use
model-checking techniques on TTM specification, though this currently requires a manual translation of
the PVS model to a SAL 2 model. In this paper SAL is used to verify temporal logic properties of TTMs
that have been reduced using equivalences verified in PVS. Wehave not yet tried exporting equivalence
proof subgoals from PVS to SAL, though this should be possible for a suitably restricted class of TTMs
to deal with SAL’s type restrictions.
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2. Preliminaries

This section introduces the TTMs that will be used as high level representations of systems that motivate
the state-event approach taken in this work. The SELTS described later will be used as our underlying
semantic model.

2.1. Timed Transition Models

We use a modified version of the Timed Transition Models (TTMs) employed in [26]. To simplify the
problem of equivalence verification, the initial conditionis limited to specifying a unique initial state
instead of (possibly) multiple initial states.

A Timed Transition Model(TTM) M := (V,Θ,T ), whereV is a set of variables,Θ is an initial
condition, andT is a finite set of transitions.

V always includes two special variables: the global time variablet and an activity variable which we will
usually denote byx. A TTM’s activities typically corresponds to its modes, sox is used to track the
system’s current mode. Forv ∈ V the range space ofv isRange(v) (e.g.Range(t) = N where
N := {0, 1, 2, . . .}). We define the set ofstate assignments ofM to beQ := ×vi∈VRange(vi). For
a state assignmentq ∈ Q and a variablev ∈ V, we will denote the value ofv in state assignmentq
by q(v) whereq(v) ∈ Range(v). This notation can be extended to expressions overV in a natural
way.

T is the transition set. A transitionα is a 4-tuple

α := (eα, hα, lα, uα)

whereeα is the transition’s enablement condition (a boolean valuedexpression in the variables of
V), hα is the operation function, andlα ∈ N anduα ∈ N ∪ {∞} are the lower and upper time
bounds respectively withlα ≤ uα. We say thatα is enabledwhenq(eα) = true. The operation
functionhα : Q → Q is a partial function, defined whenq(eα) = true, that maps the current state
assignment to the new state assignment when the transition occurs.T always contains the special
transitiontick := (true, [t : t+1],−,−) which represents the passage of time on the global clock.
It is the only transition that affects the time variablet and also has no lower or upper time bound.

Θ is a boolean valued expression in the variables ofV that identifies a unique initial state of the system.

TTM Semantics A trajectoryof a TTM is any infinite string of the TTM state assignments connected
by transitions, of the formq0

α0→q1
α1→q2

α2→ . . .. The interpretation is thatqi goes toqi+1 via the transition
αi. A state trajectoryσ := q0

α0→q1
α1→q2

α2→ . . . is a legal trajectory of a TTMM if it meets the following
four requirements:

1. Initialization: The initial state assignment satisfies the initial condition - i.e. q0(Θ) = true.

2. Succession:∀i, qi+1 = hαi
(qi) ∧ qi(eαi

) = true.

3. Ticking: There is an infinite number ofαi = tick. This eliminates the possibility of “clock
stoppers” in the trajectory where an infinite number of non-tick transitions occur consecutively
without being interleaved with anyticks.
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4. Time Bounds: To determine if the trajectoryσ satisfies the time bound requirements ofM , we
associate with each non-tick transitionα, a counter variablecα with Range(cα) = N. We denote
the set of transition counters byC := {cα : α ∈ T − {tick}}. From the trajectoryσ we derive
the full trajectory σ̄ := q̄0

α0→q̄1
α1→q̄2

α2→ . . ., where each̄qi ∈ Q̄ = Q × NC is obtained fromσ by
extending eachqi as follows:

For all cα ∈ C, q̄0(cα) = 0 and fori = 0, 1, 2, . . .

q̄i+1(cα) =











q̄i(cα) + 1, if qi(eα) ∧ αi = tick

0, if ¬qi+1(eα) ∨ αi = α

q̄i(cα), otherwise

The trajectoryσ satisfies the time bounds ofM iff the following conditions hold in̄σ for all i ∈ N:

(i) αi = tick iff for all α ∈ T − {tick}, qi(eα) = true implies q̄i(cα) < uα, and

(ii) αi = α, α ∈ T − {tick} iff lα ≤ q̄i(cα) ≤ uα.

Condition (i) means that upper time bounds on transitions represent hard time bounds by which time the
transitions are guaranteed to occur if they are not preempted. Note that any loop of transitions in a TTM
must have at least one transition with a non-zero upper time bound.

As a small example, consider the TTMM shown in Fig. 1 together with its legal trajectories. The
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Figure 1. Example TTMM (left) and its legal trajectories (right).

full enablement conditions for the transitions should alsoinclude conditions derived from the graph. For
instance, in the case ofγ, the full enablement condition iseγ := v ≥ 0 ∧ (x = a ∨ x = b). When
describing TTM transitions we will usually omit these activity variable conditions since they are obvious
from the transition diagram. Finally, the special transition tick is declared to implicitly be inT and
hence is omitted from the list ofM ’s transitions.

In writing out the operation functions of the transitions ofM we employ Ostroff’s assignment format
[23]. When a transition occurs, the new value of the activityvariablex is obtained from the transition
diagram. The other variables that are affected by the transition are listed in the form[v1 : expr1, v2 :
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expr2, . . . , vn : exprn] with the interpretation that variablesv1 to vn are assigned the new values given
by the simultaneous evaluations of expressionsexpr1 to exprn respectively. The operation function acts
as the identity on variables not listed in the assignment statement.

If we let the current state assignment be represented by a 4-tuple of the form(u, v, x, t), then a le-

gal trajectory ofM would beq0
tick
→ q1

α
→q2

tick
→ q3

γ
→ q4

tick
→ . . ., i.e.(0, 1, a, 0)

tick
→ (0, 1, a, 1)

α
→(1, 1, b, 1)

tick
→

(1, 1, b, 2)
γ
→(1, 1, e, 2)

tick
→ where fromq4 onward the trajectory is continued by an infinite string ofticks.

Note that after the second occurrence oftick, γ is forced to occur. Atick could not take place fromq3
sinceγ hasuγ = 2 and, upon reachingq3, eγ has been true for twoticks already.

If the initial condition forM is changed toΘ := (u = 0 ∧ v = −1 ∧ x = a), then a legal trajectory

is (0,−1, a, 0)
α
→(−1,−1, b, 0)

tick
→ (−1,−1, b, 1)

tick
→ (−1,−1, b, 2)

tick
→ where again this trajectory is con-

tinued by an infinite number oftick transitions. This trajectory illustrates our interpretation of uβ = ∞.
We do not insist on “fairness”, allowing trajectories such as the one above whereβ is a possible next
transition for an infinitely long time, although it does not occur. Thus an upper time bound of∞ means
that a transition is possible but is not forced to occur in a legal trajectory.

To be useful for designing real systems, a formalism must provide a means of decomposing large
systems into smaller, more manageable subsystems. Complexsystems are then typically constructed
from interacting components running in parallel. In [24] Ostroff defines a TTM parallel composition
operator that allows for shared variables and synchronous (shared) transitions. We extend this TTM
parallel composition operator to handle nondeterministicoperation functions. In the following definition
we denote the state assignments over a set of variablesV by QV := ×v∈VRange(v). ForU ⊆ V the
natural state assignment projectionPU : QV → QU maps a state assignment overV to its corresponding
state assignment overU . In order to allow us to distinguish between a transition andits label, forT , a
given set of transitions (labeled 4-tuples), letΣ(T ) denote the set of transition labels. For the example
TTM of Figure 1,Σ(T ) = {α, β, γ, tick}.

In order to deal with the possibility of nondeterministic transition functions in TTM composition, to
model for example an input variable, we need theset wise functional productof h1 : Q1 → P(R1) and
h2 : Q2 → P(R2) to be the function:

h1 ⊗ h2 : Q1 ×Q2 → P(R1) × P(R2)

such that(q1, q2) 7→ f1(q1)×f2(q2). Thus ifR′
i ⊂ Ri andfi(qi) = R′

i for i = 1, 2 thenf1⊗f2(q1, q2) =
R′

1 × R′
2 = {(r1, r2) : r1 ∈ R′

1 andr2 ∈ R′
2} while f1 × f2(q1, q2) = (R′

1, R
′
2). We can extend the set

wise product operator to handle functions that range over elements instead of sets. For example withf1

as above, iff2 : Q1 → R2 then definef1 ⊗ f2(q1, q2) = f1(q1) × {f2(q2)}.

Definition 2.1. Given two TTMsMi := 〈Vi,Θi,Ti〉, i = 1, 2, theparallel composition ofM1 andM2

is given byM1‖M2 := 〈V1 ∪ V2,Θ1 ∧ Θ2,T1‖T2〉, where the composite transition setT1‖T2 is defined
as follows.

(i) If α := (e, h, l, u) ∈ T1 with operation functionh : QV1
→ P(QV1

) andα 6∈ Σ(T2), then
α := (e, h′, l, u) ∈ T1‖T2 whereh′ : QV1∪V2

→ P(QV1∪V2
) is the extension ofh given by

h′ := h ⊗ idQV2\V1

. The reverse case whenα := (e, h, l, u) ∈ T2 andα 6∈ Σ(T1) is similarly
defined.
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(ii) If α is a shared transition, i.e.α ∈ Σ(T1) ∩ Σ(T2), with α := (e1, h1, l1, u1) ∈ T1 and
α := (e2, h2, l2, u2) ∈ T2 and operation functionshi : QVi

→ P(QVi
), i = 1, 2 thenα :=

(e′, h′, l′, u′) ∈ T1‖T2 where

e′ := e1 ∧ e2 is the enablement condition.

h′ : QV1∪V2
→ P(QV1∪V2

) is the function such thath′(q) := {q′ ∈ QV1∪V2
: PV1

(q′) ∈
h1 ◦ PV1

(q) andPV2
(q′) ∈ h2 ◦ PV2

(q)}.

l′ := max(l1, l2) is the lower time bound.

u′ := min(u1, u2) is the upper time bound.

Condition (i) states that if the transitionα := (e, h, l, u) of M1 is not a shared transition then the new
operation function in the composite system is given byh′(q) = {q′ ∈ QV1∪V2

: PV1
(q′) ∈ h ◦ PV1

(q) ∧
PV2\V1

(q′) = PV2\V1
(q)}. The value of variables not inM1’s variable set (i.e.v ∈ V2 \ V1) are left

unchanged by a transition occurring only inM1. Condition (ii) requires that any new assignment to the
shared variables (V1 ∩ V2) made by a sharedα transition must be possible assignments byα in bothM1

andM2.

2.2. State-Event Labeled Transition Systems

SELTS extend Labeled Transition Systems (LTS) by adding a state output map [13]. We further add an
event output map that is used in the definition of equivalenceof two SELTS. SELTS provides a convenient
way of illustrating the combination of state and event dynamics of TTMs. Rather than using an equivalent
purely state-based or event-based formalism, SELTS explicitly retain the separation of state and event
information that provides the intuition for the equivalences definitions. As we will see, the equivalence
kernel of the state output map provides an initial state partition which is further refined using the event
dynamics to obtain state-event equivalences.

Definition 2.2. A State-Event Labeled Transition System (SELTS)is an 8-tupleQ := 〈Q,Q′,Σ,Σ′, RΣ,

q0, ps, pa〉 whereQ andQ′ are an at most countable set of states and state outputs, respectively,Σ and
Σ′ are a finite set of elementary events (actions) and event outputs, respectively,RΣ = {

α
→: α ∈ Σ}

is a set of binary relations onQ, q0 ∈ Q is the initial state,ps : Q → Q′ is the state output map, and
pa : Σ → Σ′ is the event output map.

In the above definition,q
α
→ q′ (whereα ∈ Σ andq, q′ ∈ Q) means the SELTS can move from

stateq to q′ by executing elementary actionα. TTMs can be expanded to a corresponding SELTS so
that we can analyze it. The legal trajectories of the TTM fromFigure 1 are reproduced on the left of
Figure 2. The top line of each state in the graph contains the state assignments of the system variables in
the format(u, v, x). The second line of each state contains the current values ofeach transition’s counter
variable in the format[cα, cβ , cγ ]. The states of the graph are elements ofM ’s set of extended state
assignmentsQ, which include all state variable, activity variable and counter variable information. The
initial stateq0 of the graph is indicated by an entering arrow. A TTM’s legal trajectories are all infinite
sequences and as can be seen from Figure 1, every path starting from q0 can be extended to an infinite
path. The transitions’ counter variables are only used to obtain the structure of the graph. They are not
part of the system’s observed timed behavior. The counter variables are hidden variables, the values of
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Figure 2. Legal trajectories of TTMM (left) and SELTS for its timed behavior ofα andu, v (right)

which determine the Markovian dynamics of the structure. Thus if we were to treat the graph on the left
of Figure 2 as a SELTS forM , the state output map would be the canonical projection fromextended
state assignments to state assignmentsps : Q → Q. Assuming all of the events were observable, then
pa := id, the identity map on transition labels.

Often a TTM’s activity variablex plays a role similar to the counter variables in that it is only used
to keep track of when transitions might possibly be enabled.Similarly, not all transition labels may be
of significance. For instanceM may be designed to shareα andtick transitions whileβ andγ represent
transitions that are internal toM . If one’s real interest in the TTMM was the timed behavior of the
variablesu andv and the occurrence ofα transitions, then this could be represented by the SELTS on
the right of Figure 2 whereps(q) = (u, v) andpa(β) = pa(γ) = τ .

2.3. A Simple Real-Time State-Event Temporal Logic

In this section we introduce state-event temporal logics asan abstract method for reasoning about SELTS
behavior with particular attention being paid to a simple real-time logic. In general when discussing
SELTS throughout this sectionAP,AP1, AP2, . . . will represent sets of atomic propositions and the
SELTS state output map will map each state to the set of atomicpropositions satisfied by the state (i.e.
ps : Q → P(AP )). We now give a brief summary of temporal logic and refer the reader to [4, 20, 23]
for the full details. Following [23], the state-event sequences defined above will play the role of the state
sequences in [20]. This will allow us to distinguish state formulas and state-event formulas. RTTL, as
an example of a state-event temporal logic, is based upon Manna-Pnueli temporal logic with additional
proof rules for dealing with real-time (tick event) properties. To allow us to express simple real-time
properties we add a bounded “until” operator.

Before defining the computations of a SELTS, we will introduce some notation to aid in our discus-
sion of generated and observed state-event sequences. We are interested in sequences of both states and
events so for notational convenience we defineΣ− := Σ ∪ {−}, the event set extended with the “null”
event symbol−, andS := Q × Σ−. For s = (q, α) ∈ S, in addition to the set of atomic propositions
found inps(q) we associate the atomic propositionη = α. We refer toη as the (next) transition variable.
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The computations of the SELTSQ will then be a subset of the union of the set of all finite, non-empty,
state-event sequencesS+, and the set of all infinite state-event sequencesSω. As a notational conve-
nience, we introduce the notation|σ|, which forσ = s0s1s2 . . . sn ∈ S+ is defined as|σ| = n and for
σ = s0s1s2 . . . ∈ Sω, |σ| = ω.

Definition 2.3. Given a SELTSQ, the set ofcomputationsof Q, denotedM(Q), is the largest subset of
S+ ∪ Sω such that for allσ ∈ M(Q),

σ =

{

s0s1 . . . sn = (q0, α0)(q1, α1) . . . (qn,−) ∈ S+, or,

s0s1 . . . = (q0, α0)(q1, α1) . . . ∈ Sω

and

(i) Initialization: q0 is the initial state ofQ.

(ii) Succession:0 ≤ i < |σ| impliesαi ∈ Σ andqi
αi→qi+1 in Q.

(iii) Diligence: αi = − iff i = |σ| and for allα ∈ Σ andq ∈ Q, qi
α

6→ q.

Condition (iii) above states that the only finite sequences in M(Q) are those which terminate in a state
where no transitions are possible and hence the final “event”of the state-event sequence is denoted by
−. This diligence condition differs from that of [20] in that there is no idling transition in our setting so
we allow finite sequences of states to be computations and modify our definition of temporal semantics
accordingly [4].

State-event formulasare arbitrary boolean combinations of atomic predicates. We say that a state-
event formula is astate formulaif is does not include any transition predicates such asη = α. For
example,(y ≤ 10 ∧ x = atdelay) ∨ t = 5 is both a state formula and a state-event formula while
η = α ∨ y = 3 is a state-event formula but not a state formula. State-event formulas (and hence state
formulas) do not contain any temporal operators. For a stateformulaFs and a stateq, we use the standard
inductive definition of satisfaction and writeq |= Fs whenFs is true in stateq. Similarly the definition
of satisfaction can be extended to any state-event pairs ∈ S and any state-event formulaFse.

In the following inductive definition of satisfaction of temporal state-event formulas we will consider
an arbitrary (possibly finite) state-event sequenceσ = s0s1 . . . = (q0, α0)(q1, α1) . . .. Henceforthσk

will be used to denote thek-shifted suffix ofσ,

σk := sksk+1 . . . = (qk, αk)(qk+1, αk+1) . . .

when it exists (i.e. when|σ| ≥ k). When talking about projections of computations we will denote the
prefix ofσ up to positionk by σ−k = (q0, α0)(q1, α1) . . . (qk, αk). For eachα ∈ Σ we use the notation
#α(σ, i) to denote the number ofα transitions that occur betweenq0 andqi in the state-event sequence
σ. If |σ| < i then#α(σ, i) is undefined.

Definition 2.4. For temporal formulasF,F1, F2 and state-event sequenceσ, thesatisfaction relation|=
is defined as follows:

• If F ∈ AP is an atomic predicate, thenσ |= F iff s0 |= F (i.e.F ∈ ps(q0))
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• If F := (η = α), thenσ |= F iff pa(α0) = α

• σ |= F1 ∨ F2 iff σ |= F1 or σ |= F2

• σ |= F1 ∧ F2 iff σ |= F1 andσ |= F2

• σ |= ¬F iff σ 6|= F

• σ |= ©F iff σ1 exists andσ1 |= F

• σ |= F1UF2 iff σ |= F2 or ∃k > 0 such thatσk is defined,σk |= F2 and∀i, 0 ≤ i < k, σi |= F1.

• σ |= F1U
α
[l,u]F2 iff σ |= F2 or ∃k > 0 such thatσk is defined,σk |= F2 and∀i, 0 ≤ i < k, σi |= F1

andl ≤ #α(σ, k) ≤ u.

Given a SELTSQ and a temporal formulaF , we say thatF is Q-valid, written Q |= F , iff for all
σ ∈ M(Q), σ |= F .

The “next” operator© and “until” operatorU are typically used to define additional operators.
In particular the “eventually” (“future”) operator♦F , which denotes(true)UF , and the “henceforth”
(“always”) operator�F , which is an abbreviation of¬♦¬F . As an example of a temporal formula,
considerF := � © true. F is satisfied only by thoseσ such that|σ| = ω. TheUα

[l,u] operator is
just the until operator subject to the restriction that for aformulaF1U

α
[l,u]F2, F2 must become true after

the lth occurrence of events producingα observations and before the(u + 1)th occurrence of anα
observation. In systems in which time is represented by discrete tick events theU tick

[l,u] operator can be
used to specify that a system meets hard time bounds. For example, any system satisfying the formula
(true)U tick

[0,2](η = β) will produce aβ event before 3 time units have passed. We will useU tick
≤k as an

abbreviation forU tick
[0,k]. For example the above formula can be written as(true)U tick

≤2 (η = β).

Fairness Typically when a given transition structure is used as the model for a system, a designer
specifies some fairness constraints which a computation must satisfy if it is to be considered a “legal”
computation of the system. For example, all systems in RTTL have the fairness constraint that thetick
event must occur infinitely often (�♦(η = tick)), that is the system must not stop the clock or permit
an infinite number of non-tick transitions to occur between successive clockticks. Given a specification
as a temporal formulaF , one then is not so much interested in verifying thatall the computations of
the transition structure satisfyF but rather in verifying that all thelegal computations satisfyF . That
is Q |= ¬Ffair ∨ F , whereFfair is the conjunction of all formulas that are to be satisfied by the
system’s legal computations. In performing such a verification one implicitly assumes that the set of
legal computations considered is non-empty (i.e.∃σ ∈ M(Q), σ |= Ffair).

3. Formalization of TTMs in PVS

PVS stands for “Prototype Verification System,” and as the name suggests, it is an environment for
specification and verification. The system consists of a specification language, a parser, a type checker,
and an interactive theorem prover with a powerful collection of inference procedures that are applied
interactively under user guidance within a sequent calculus framework. The specification language is
based on higher-order logic with a richly expressive type system [28].
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3.1. PVS Theories for the Timed Transition Model

Following the lead of the TAME system, we introduce several PVS theories and a pair of templates which
support the specification of TTMs directly in PVS. When combined with selected theories from TAME,
these theories can provide us with a modeling environment inwhich the software developer can produce
specifications of TTMs in a straightforward way. It also provides us with a validated formal specification
that, under appropriate restrictions, can be easily translated into input for the SAL model-checker.

Datatype time: In a TTM, eachaction (transition) has an associated timer with values inN. The
value of the timer is compared with thelower bound andupper bound to decide theenabled time

condition for each action. Theupper bound ∞ represents the case where there is no final deadline on
an action. So thetime type in our model is the union type of natural numbers and{∞}, shown at the
top of Figure 3.

The datatypetime has two constructors. The first constructor,fintime, has a natural number pa-
rameterdur and the recognizerfintime?, and the second constructor,infinity, has no parameters
and the recognizerinftime?. We can then reuse the theorytime thy from TAME [9] which provides
the definitions of the standard arithmetic operators and predicates for time values.

Theory states: Appearing in the middle of Figure 3, this theory provides a standard record structure
for the Timed Transition Model. The theory has four type parameters. They areactivity, nt action,
internal state andtime. Thent action is the set of all actions excluding the actiontick. The
states type defines the record type used to represent the system state. The first field isactivity which
specifies the activity label of the state. The second field isbasic which represent all the non-time state
information. The third field isaction time which is a function fromnt action to time. It associates
each non-tick action with a time value. Thus each action is associated with a timer.

Theory ttm: The theoryttm specifies the common time operations of TTMs. It appears in the bottom
section of Figure 3. The theory requires seven parameters todefine a TTM. The first three have been
described above. The parameterslower bound andupper bound are functions fromnt action (non-
tick actions) totime which associate the time bounds with each action. The parameterenabled state

is instantiated by a predicate onaction and internal state that is true only when the action is
enabled, based on the value ofinternal state. The parametergraph is instantiated by a predicate on
action andactivity that is true only when the action is enabled based on theactivity label of the
state. These parameters are all defined in the TTM template insection 3.2 where they are instantiated
according to the specifics of the TTM being modeled.

3.2. PVS Templates for Timed Transition Models

We provide two templates that can be instantiated to simplify the process of specifying a TTM in PVS. In
the theoryactions, we defineaction as the type of all the possible actions in the TTM. The template
for the theoryactions is shown in Figure 4 where it has been instantiated for the TTMin Figure 1.
Here the lines append with the comment “%* user *” indicates the TTM specific information supplied
by a user of the template. Non-tick actions are distinguished with thent action subtype.
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time: DATATYPE

BEGIN

fintime(dur: nat): fintime?

infinity: inftime?

END time

states [activity,nt_action,internal_state:TYPE,time:TYPE]: THEORY

BEGIN

states: TYPE = [# activity: activity,

basic:internal_state,

action_time: [nt_action -> time] #]

END states

ttm [activity,internal_state, nt_action: TYPE,

(IMPORTING time_thy, states[activity,nt_action,internal_state,time])

lower_bound,upper_bound:[nt_action->time],

enabled_state: [nt_action,internal_state -> bool],

graph:[nt_action, activity -> bool] ]: THEORY

BEGIN

s: VAR states

alpha: VAR nt_action

enabled_general(alpha,s):bool =

enabled_state(alpha,s‘basic) & graph(alpha,s‘activity)

update_clocks(s): [nt_action->time] =

(LAMBDA (alpha):

IF enabled_general(alpha,s) THEN s‘action_time(alpha) + one

ELSE zero ENDIF)

reset_clocks(ac:nt_action,s): [nt_action->time] =

(LAMBDA (beta:nt_action):

IF (enabled_general(beta,s) & beta/=alpha) THEN s‘action_time(beta)

ELSE zero ENDIF)

enabled_time(alpha, s): bool =

s‘action_time(alpha) >= lower_bound(alpha) &

s‘action_time(alpha) <= upper_bound(alpha)

enabled_tick(s): bool =

FORALL alpha: enabled_general(alpha,s) =>

(s‘action_time(alpha) < upper_bound(alpha))

END ttm

Figure 3. Datatypetime andstates andttm theories
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actions : THEORY

BEGIN

action:DATATYPE

BEGIN

tick:tick?

alpha:alpha? % * user *

beta:beta? % * user *

gamma:gamma? % * user *

END action

nt_action:TYPE={action:action |action/=tick}

END actions

Figure 4. Instantiatedactions for M in Fig. 1

Appendix A contains thettm decls template where a TTM’s main declarations are provided. Once
again it has been instantiated for the TTM in Figure 1 with the“%* user *” comment indicating user
supplied lines specific to this TTM. In the template we importthe fixed theorytime thy and the in-
stantiatedactions theory from Figure 4. Thetime thy contains the definition of all of the constants
of datatypetime (eg.twenty nine is the constant of datatypetime for the natural number29). Then
we defineactivity, the set of TTM activities. The interpretations of typeinternal state, functions
lower bound andupper bound, enabled state andgraph have all been discussed above.

Once the values of each of these are filled in for the TTM in Fig.1, thettm theory can be imported to
define the common operations. The functionenabled combines theenabled general, enabled time

andenabled tick conditions to get the finalenabled condition for all actions. In the transition func-
tion trans, the definition oftick’s effect as well as the resetting of clocks according to the new state
variables assigned by other events is the same for all TTMs. The effects of non-tick actions on state
variables are specified by the user to complete thetrans function. Finally, the functionstart specifies
valid initial states of the TTM. After defining these functions, we import the TAMEmachine theory
[2, 3] which allows us to specify and inductively prove reachability invariants and other properties of the
TTM.

3.3. Translation of TTMs to SAL Model-Checker

Theories defining state, transitions and initialization ofthe system are rewritten into the module lan-
guage of SAL. We did not need themachine theory from PVS that recursively defines the set of reach-
able states, since SAL is designed for the modular specification of state machines. Thestate type
remains largely the same, although SAL offers the option of definingactiv as a local variable, which
would be beneficial in case of the system containing more thanone module. In fact all filesttm.sal,
time thy.sal, states.sal are very similar to the corresponding PVS files. To provide anexample
of how “close” the SAL versions of the TTM files are to the PVS files, the SAL version of the instanti-
atedttm decls.pvs template of Appendix A appears in Appendix B. In specifying transition relations
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SAL’s guarded commands style is employed rather than its invariant style to more closely match the
TTM formalism and PVS model.

The most significant difference is theupdate clocks function inttm.sal. In the current version
of the PVS model, the counter values associated with any non-tick action (action time) is unbounded
if its upper bound is∞. However, since we are using the SAL model-checkers for finite state systems,
we wantaction time to be a finite subrange ofN.

In the example of Fig. 1, although theβ transition ofM has an upper time bound of∞, the SELTS
M in Fig. 2 is finite state sinceγ preemptsβ, preventing an infinite number ofticks from causingcβ
from becoming unbounded. What ifγ also had an upper time bound of∞? How do we generate a finite
state representation of the timed behavior ofM?

The set of extended state assignments is reduced to produce afinite state set by redefining theRange
of the counter variables as follows. ForM := 〈V,Θ,T 〉 andα := (e, h, l, u) ∈ T

RangeM (cα) :=

{

{n ∈ N : n ≤ l}, if u = ∞

{n ∈ N : n ≤ u}, u <∞

If α has a finite upper time bounduα, then TTM semantics preventcα from being incremented to a value
exceedinguα. For transitions with lower time boundlα and upper time bounduα = ∞, we redefine the
the clock update effect oftick to cease incrementingcα once it reacheslα since all values ofcα ≥ lα
have the same effect of enabling the transition. We then redefine the set of extended state assignments to
use the reduced clock ranges.

Other differences between the PVS and SAL files are mainly dueto the limited capabilities of the
current version of SAL. For examplestates.sal has more than one state type defined because the
current version of SAL does not allow parameters of context to be a function of more than one parameter.

4. State-Event Bisimulation and Equivalence

In this section, we first briefly justify our discrete time setting and choice of equivalence, then give the
definitions of strong and weak state-event equivalence together with their model reduction properties and
finally describe the theories and templates that formalize the equivalences in PVS.

Discrete time models such as TTMs are sufficiently accurate in many instances, particularly when
dealing with digital control systems that sample their inputs. In [15] the authors argue that discrete time
models such as TTMs allow for a straight forward applicationof well known process algebraic equiva-
lences such as observation (bisimulation) equivalence from Milner’s CCS [21]. State-event equivalences
of SELTS were introduced in [14] and used as the basis for equivalence of TTMs in [13]. Here we use an
equivalent state-event bisimulation (a generalization of(event) bisimulations [29, 21]) characterization
of the state-event equivalences rather than the homomorphism based characterization of [14, 13].

4.1. Strong State-Event Equivalence and Model Reduction

In this section and the following, letQi = 〈Qi, Q,Σi,Σ, RΣi
, qi0, psi, pai〉, i = 1, 2 be SELTSs where

psi : Qi → Q andpai : Σi → Σ.

Definition 4.1. A relationS ⊆ Q1×Q2 is astrong state-event bisimulationfor Q1 andQ2 iff (q1, q2) ∈
S implies
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(i) ∀α1 ∈ Σ1, wheneverq1
α1→ q′1 then∃q′2 ∈ Q2, α2 ∈ Σ2 such that(q2

α2→ q′2 and(q′1, q
′
2) ∈ S and

ps1(q
′
1) = ps2(q

′
2) andpa1(α1) = pa2(α2)).

(ii) ∀α2 ∈ Σ2, wheneverq2
α2→ q′2 then∃q′1 ∈ Q1, α1 ∈ Σ1 such that(q1

α1→ q′1 and(q′1, q
′
2) ∈ S

andps1(q′1) = ps2(q
′
2) andpa1(α1) = pa2(α2)).

We say that the SELTS arestrongly state-event equivalent, denotedQ1 ∽se Q2, iff there exists a strong
state-event bisimulationS for Q1 andQ2 such that(q10, q20) ∈ S.

For finite state systemsQ1 and Q2, it is possible to compute the largest state-event bisimulation by
solving a version of the Relational Coarsest Partition problem. Further, similar to the results of [8] for
the event only case, abstractions based upon strong state-event equivalence preserve truth values under
parallel composition [13, 14].

4.1.1. Strong State-Event Model Reduction

We are assuming that only partial state information is provided via the state output map and for the partial
event information provided by the event output map all eventoutputs are observable. In this setting, one
of the main results of [13, 14], restated below, is that strongly state-event equivalent systems satisfy the
same temporal formulas.

Theorem 4.1. Given two SELTS as above, ifQ1 ∼se Q2 then for any temporal formulaF , we have
Q1 |= F iff Q2 |= F .

4.2. Weak State-Event Equivalence and Model Reduction

In some cases, strong equivalence is more discriminating than we would like because it “observes”
unobservable transitions. Therefore we will introduce weak state-event equivalence.

Given SELTSQ1 andQ2 as defined above, assume the special eventτ represents unobservable events
in their common event output setΣ. If an actionα ∈ Σi maps toτ ∈ Σ throughpai, we considerα to
be an unobservableτ transition. In this case, whenα happens, it does not produce an observable event
output, though it may produce an observable change in the state output. Forq, q′ ∈ Qi, if pai(α) = τ

then whenq
α
→ q′ andpsi(q) = psi(q

′), there is no change in the state output, but ifpsi(q) 6= psi(q
′),

there is a change in state output even though no event output is observed!
The unobservable state invariant transitive closurefor a given SELTSQi is defined as the rela-

tion ⇒se such that forq, q′ ∈ Qi, q⇒seq
′ iff q = q′ or for somen > 0, ∃q0, q1, . . . , qn ∈ Qi and

α0, α1, . . . , αn−1 ∈ Σi such that

(i) q = q0
α0→ q1

α1→ · · ·
αn−2

→ qn−1
αn−1

→ qn = q′, and

(ii) psi(qj) = psi(q) = psi(q
′), for j = 0, 1, . . . , n, and

(iii) pai(αj) = τ , for j = 0, . . . , n− 1.

Thus the unobservable state invariant transitive closure is the reflexive and transitive closure within
each cell of the equivalence kernel of the state output map ofthe union of transition relations that produce
the silent event outputτ .



90 M. Lawford, V. Pantelic, H. Zhang / Towards Integrated Verification of Timed Transition Models

We useq
β
⇒se q′, whereβ ∈ Σi, to denoteq⇒seq1

β
→ q2⇒seq

′, whereq, q′, q1, q2 ∈ Qi for a
given SELTSQi. It will be used in our definition ofweak state-event bisimulation. The definition uses
event output maps in addition to the state output maps used originally in [13]. Formally,weak state-event
bisimulationis defined as follows.

Definition 4.2. A relationS ⊆ Q1×Q2 is a weak state-event bisimulation forQ1 andQ2 iff (q1, q2) ∈ S

implies

(i) ∀α1 ∈ Σ1, wheneverq1
α1→ q′1 then

• (∃q′2 ∈ Q2, α2 ∈ Σ2 where q2
α2⇒se q′2 and (q′1, q

′
2) ∈ S and ps1(q′1) = ps2(q

′
2) and

pa1(α1) = pa2(α2)), OR

• (∃q′2 ∈ Q2 whereq2⇒seq
′
2 and(q′1, q

′
2) ∈ S andps1(q′1) = ps2(q

′
2) andpa1(α1) = τ)

(ii) ∀α2 ∈ Σ2, wheneverq2
α2→ q′2 then

• (∃q′1 ∈ Q1, α1 ∈ Σ1 where q1
α1⇒se q′1 and (q′1, q

′
2) ∈ S and ps1(q′1) = ps2(q

′
2) and

pa1(α1) = pa2(α2)), OR

• (∃q′1 ∈ Q1 whereq1⇒seq
′
1 and(q′1, q

′
2) ∈ S andps1(q′1) = ps2(q

′
2) andpa2(α2) = τ)

The two SELTS are said to beweakly state-event equivalent, denotedQ1 ≈se Q2, iff there exists a weak
state-event bisimulation forQ1 andQ2 such that(q10, q20) ∈ S.

4.2.1. Weak State-Event Model Reduction

We now define a projection from computations to weakly observed computations that deletes a state-
event pair from a computation if the event output is an unobservable τ transition and the state output
remains unchanged in the next state (i.e. there is no way to observe whether we remain in the current
state or take the transition to the next state). Since weak state-event equivalence suppresses system
information regarding sequences of unobservable events that do not cause state changes, the equivalence
can only be used for model reduction with a restricted set of temporal formulas. This restricted class,
which we will call the class of State-Event Stuttering-Invariant (SESI) formulas, is characterized as those
formulas that are satisfied by a computation iff the projected computation satisfies the formula.

In [20] the authors use a state-based projection operator todevelop a state-only version of weak
satisfaction. They define thereduced behaviorof a computationσ via a two step process that amounts
to first applyingps to each state in the sequence and then replacing uninterrupted sequences of identical
states with a single copy of the state. In our case we are dealing with sequences of state-event pairs
rather than just sequences of states. We cannot simply applyps × pa to each of the state-event pairs in
the sequence and then replace subsequences of uninterrupted state-event output pairs by a single state-
event output pair since in this case important information relating state changes and event observations
would be lost.
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Consider the three state-event sequences shown below wheretick is the event representing the pas-
sage of one second on the global clock.

(q0, τ)(q0, τ)(q0, tick)(q0, α)(q1, tick) . . .

(q0, τ)(q0, tick)(q0, tick)(q0, α)(q1, tick) . . .

(q0, tick)(q0, τ)(q0, tick)(q0, τ)(q0, α)(q1, tick) . . .

If we assume that the output mapsps andpa are the identity map on their respective domains, then
following [20] the first and second sequences would result inthe same reduced computation:

(q0, τ)(q0, tick)(q0, α)(q1, tick) . . .

while the third sequence is its own reduced computation. This would lead us to believe that in the first
two cases the system delays for one second and then changes state fromq0 to q1 via anα transition
when, in fact, the second and third computations do not make the α transition until after 2 seconds.
While we want our projection operator to distinguish the first case from the other two, the second and
third computations differ only by unobservable transitions that do not change the state output. Upon
rewriting the three sequences in terms of the notation of weak state-event observation equivalence, the
differences and similarities in observed behaviors becomeapparent:

q0
τ
→q0

τ
→q0

tick
→ q0

α
→q1

tick
→ . . .

q0
τ
→q0

tick
→ q0

tick
→ q0

α
→q1

tick
→ . . .

q0
τ
→q0

tick
→ q0

τ
→q0

tick
→ q0

α
→q1

tick
→ . . .















7→















q0
tick
⇒seq0

α
⇒seq1

tick
⇒se . . .

q0
tick
⇒seq0

tick
⇒seq0

α
⇒seq1

tick
⇒se . . .

q0
tick
⇒seq0

tick
⇒seq0

α
⇒seq1

tick
⇒se . . .

To an external observer the second and third computations would produce the same observed state-
event sequence:(q0, tick)(q0, tick)(q0, α)(q1, tick) . . .. The projection defined below has the effect of
replacing all the state-event pairs making up an observed transitionq1

α
⇒se, with a single state-event pair

q1
α
→. The following weak state-event sequence projection operator produces a system’s weakly observed

computations.

Definition 4.3. Given a SELTSQ with state output mappa : Q → P(AP ), ps : Σ → Σ′ andσ =
(q0, α0)(q1, α1) . . ., σ ∈ M(Q), theweakly observed behaviorof σ is denoted, with a slight abuse of
notation, by≈ (σ) which is defined inductively as follows:

≈ (q0) = ps(q0)

≈ (q0
α0→q1

α1→ . . . qn
αn→qn+1) =

{

≈ (q0
α0→q1

α1→ . . . qn), if pa(αn) = τ ∧ ps(qn) = ps(qn+1)

≈ (q0
α0→q1

α1→ . . . qn)
pa(αn)
→ ps(qn+1),otherwise

ForC a set of computations, we define≈ (C) := {≈ (σ) : σ ∈ C}.

Example 4.1. In this example we consider the weak state-event observations generated by an SELTS
with identity output mapsps := idQ andpa := idΣ.

σ1 = (q0, τ)(q0, α)(q0, τ)(q1, τ)(q1, β)(q2, α) . . . = q0
τ
→q0

α
→q0

τ
→q1

τ
→q1

β
→q2

α
→ . . .

≈ (σ1) = q0
α
→q0

τ
→q1

β
→q2

α
→ . . . = (q0, α)(q0, τ)(q1, β)(q2, α) . . .

σ2 = (q0, τ)(q0, τ)(q0, τ) . . . = q0
τ
→q0

τ
→q0

τ
→ . . .

≈ (σ2) = q0 = (q0,−)
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In ≈ (σ1) all theτ transitions are eliminated except for theq0
τ
→q1 transition since thisτ transition can

be inferred from the external observer’s observation of a state change fromq0 to q1 without any observed
event. In this case we say thatτ is an implicitly observed transition. The computationσ2 is initially
observed to be in stateq0 and then produces no state change or event observations. This is reflected
in ≈ (σ2) as(q0,−), the observed state output with no defined transition. Thus an infinite state-event
sequence can result in a finite weakly observed sequence. This is why the effort was made earlier to
extend the definition of temporal operators to finite as well as infinite sequences, allowing us to define
weak satisfaction of temporal formulas below. We now consider those formulas with truth values that
are robust with respect to unobservableτ transitions.

Definition 4.4. Given a state-event temporal formulaF over the set of atomic predicatesAP , we say that
F is State-Event Stuttering-Invariant(SESI) if for all SELTSQ with state output mapP : Q→ P(AP ),
for all computationsσ ∈ M(Q), the following equation holds:

σ |= F iff ≈ (σ) |= F (1)

Formulas composed solely of state predicates together withthe∨,∧,U ,Uα
[l,u] operators (i.e. that do

not contain the next operator© or next transition variableη) are SESI. Additionally, a formula of the
form �♦(η = tick) is SESI since♦(η = tick) is SESI and�F = ¬♦¬F . The following theorem
from [13, 14] allows us to model-check SESI formulas on a system’s quotient system or other reduced
equivalent systems and infer the result for the original system.

Theorem 4.2. Let F be an SESI formula. IfQ1,Q2 are SELTS such thatQ1 ≈se Q2 then Q1 |=
¬(�♦η = tick) ∨ F iff Q2 |= ¬(�♦η = tick) ∨ F .

Similar to the results for strong state-event equivalence,abstractions based upon weak state-event equiv-
alence preserve truth values of SESI formulas under parallel composition [13, 14].

4.3. PVS Theories for State-Event Equivalences

A TTM can always be expanded to a (possibly infinite state) SELTS so we do not need to give another
definition of equivalence for TTMs. We use the same definitionas for SELTSs. Here we only briefly
outline how the equivalences are formulated in PVS. A detailed description is provided in [32] and
complete files are available online1.

The theorystatetrans provides a parameterized definition of ofstate invariant transitive closure.
We use this definition in the theorysesim, which gives one direction in the definitions of strong and weak
state-event bisimulations. The theorysebisim imports the theorysesim twice to give both directions
in the definition of the bisimulation. The predicatewsebisim? identifies weak state-event bisimula-
tions and is used to create theWsebisim predicate subtype of weak state-event bisimulations. Similar
definitions are provided for strong state-event equivalence.

In a similar fashion to the TTM templates of section 3.2 the PVS template for state-event bisimula-
tion provides a straightforward environment for specifying state-event bisimulation in PVS. The template
provides the option for the user to import reachability or other invariants to help in verifying the bisimu-
lation relation. Then we define the event typeA which is the common event type for the two structures.

1http://sqrl.mcmaster.ca/∼lawford/papers/FI05
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In our setting of weak equivalence,tau in PVS (representing theτ event) is always included in this
set of events. The state typestate (also called the state output) is the common state type for the two
structures. We also need to instantiate the functionspS1, pS2, pA1, pA2. PredicatesIs tau?, dd1 and
dd2 identify the unobservable events and the transition relations of the two structures. By importing the
theorysebisimwith concrete parameters from our specification, we get all the definitions for state-event
bisimulation. The user supplies a relationRR and its type is specified asWsebisim (Sebisim) if it is a
weak (strong) state-event bisimulation between the two structures. The user will be required to prove the
Type Correctness Condition automatically generated by PVSto confirm thatRR is a weak (strong) state-
event bisimulation. Finally, the lemmaweakequi (strongequi) must be proved to confirm that the two
initial states are related byRR, so that we can say the two structures are weakly (strongly) state-event
equivalent.

5. Verification of a Real-time Controller

The Delayed Reactor Trip (DRT) system was first described in [15]. It is a typical example from the
process control industry. Below we describe the system and its TTM models of its specification and
implementation and refer the reader to [13, 15] for the details of how these models were obtained and
validated. What is new in this work is the PVS models of these TTM and the verification of their
equivalence using PVS.2

When the reactor pressure and power exceed acceptable safety limits in a specified way, we want
the DRT control system to shut down the reactor. Otherwise, we want the control system to be reset to
its initial monitoring state. The desired action for the Delayed Reactor Trip system has the following

Reactor Power

Reactor Pressure
Trip Relay StateReactor Trip 

     System

Figure 5. Block Diagrams for the DRT

informal description: if the power exceeds the power threshold PT and the pressure exceeds the delayed
set point DSP, then wait for 3 seconds. If after 3 seconds the power is still greater than PT, then open
the relay for 2 seconds. The old implementation of the DRT using timers, comparators and logic gates is
show in Figure 6.

T imer1

AND
AND

RelayTimer2

Power

Pressure

Figure 6. Analog Implementation of the Delayed Reactor TripSystem

2Complete files for this example are available for download fromhttp://sqrl.mcmaster.ca/∼lawford/papers/FI05.



94 M. Lawford, V. Pantelic, H. Zhang / Towards Integrated Verification of Timed Transition Models

The hardware implementation is almost a direct translationof the above informal specification: When
the reactor power and pressure exceed PT and DSP respectively, the comparators cause Timer1 to start.
Timer1 times out after 3 seconds, sending a signal to one input of the second AND gate. The other input
of the second AND gate is reserved for the output of the power comparator. The output of the second
AND gate causes Timer2 to start if the power exceeds its threshold and Timer1 has timed out. Once
Timer2 starts, it runs for 2 seconds while signaling the relay to remain open.

The new DRT system is to be implemented on a microprocessor system with a cycle time of 100ms.
The system samples the inputs and passes through a block of control code every 0.1 seconds.

5.1. Formalizing the DRT Specification

By modeling the specification as a TTM (Figure 7), we can clarify the ambiguities in the informal
specification and ensure that the input/output actions are completely determined. In order to verify the
correctness of the microprocessor system, the DRT specification is put in a form that closely resembles
the microprocessor system. Atick of the global TTM clock is assumed to be 100 ms, the scan periodof
the microprocessor. We assume proper filtering of the input signals and a sufficiently high sample rate.
Thus the enablement conditions of a transition must be satisfied for at least one clocktick before the
transition can occur. The transitions(µ, α, ρ1, ρ2, γ) have lower and upper bounds of 1, exemplifying
this filtering assumption.

In the TTM, if the power and pressure exceed their corresponding thresholds, then the transitionµ is
enabled. Afterµ occurs, the system waits in activityb for 29 ticks (2.9 seconds) before proceeding to
activity c. In activity c, the power level is checked again. If the power is still too high then the system
opens the relay via transitionα, otherwise the system resets via transitionρ1 to go back to activitya and
monitor power and pressure again. After transitionα the system waits in activityd for 19 ticks (1.9
seconds) and then proceeds toe. At e, as an added safety feature [13], the system checks the powerlevel
again. If the power still exceeds the threshold, the system returns to activitya with the relay still open
via transitionγ, otherwise the system resets toa via ρ2 while closing the relay. We model the pressure
and the power as two separate simple TTMs (Figure 7).

With the help of the theories and template we defined in section 3, formalization of the TTM spec-
ification in PVS is very straightforward. We just follow the TTM representation of the specification in
Figure 7 and input all the information into the template which we discussed in section 3.2.

We define the internal state as a record type:s internal state: TYPE = [# Relay:bool,

Power:bool, Pressure:bool #]. To validate the PVS formalization, we formulated an invariant
describing properties of the specification at all the reachable states. By proving the invariant, we confirm
that our ideas about the TTM’s behavior are correct. Later, by including the invariant in the definition of
weak equivalence, we narrow down the state space needed by PVS to verify weak equivalence [32].

5.2. Formalizing the DRT Implementation

For the microprocessor DRT implementation each time the microprocessor passes through the block
of code (originally represented by the pseudocode in [15]),it performs one of the group of opera-
tions identified in the TTM model by a transition name. The TTMfor the implementation is ob-
tained by replacing the “TTM for Specification” in Figure 7 with that shown in Figure 8, resulting in
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a b c d e

ws

wr pr

ps

TTM for Specification

TTM for Power TTM for Pressure

Θ := (x = a ∧Relay = CLOSED ∧ Power = LO ∧ Pressure = LO)

µ ω29 α

ρ2, γ

ω19

ρ1

T := {

V := {x,Relay, Power, Pressure}

ω19 := (True, [ ], 19, 19)

ω29 := (True, [ ], 29, 29)

µ := (Power = HI ∧ Pressure = HI, [ ], 1, 1)

ws := (Power = LO, [Power : HI], 1,∞)

wr := (Power = HI, [Power : LO], 1,∞)

pr := (Pressure = HI, [Pressure : LO], 1,∞)

γ := (Power = HI, [ ], 1, 1)

ρ2 := (Power = LO, [Relay : CLOSED], 1, 1)

ρ1 := (Power = LO, [ ], 1, 1)

α := (Power = HI, [Relay : OPEN ], 1, 1)

ps := (Pressure = LO, [Pressure : HI], 1,∞) }

Figure 7. TTM for the DRT specification -SPEC‖POWER‖PRESSURE
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Where

Θ:=(x = a ∧Relay = CLOSED ∧ Power = LO ∧ Pressure = LO

eµ1
:= (Power = HI ∧ Pressure = HI ∧ c1 = c2 = 0)

γ, ρ1, ρ2)
Selfloop(µ1, µ2, α, β,

V := {x,Relay, Power, Pressure, c1, c2}

c1 = 0, c2 = 0)

µ1 := (eµ1
, [c1 : c1 + 1], 1, 1)

µ2 := (c1 = 0 ∧ 1 ≤ c2 ≤ 19, [c2 : c2 + 1, Relay : OPEN ], 1, 1)

α := (Power = HI ∧ c1 ≥ 30, [c1 : 0, c2 : c2 + 1, Relay : OPEN ], 1, 1)

ρ1 := (Power = LO ∧ c1 ≥ 30, [c1 : 0], 1, 1)

ρ2 := (Power = LO ∧ c1 = 0 ∧ c2 ≥ 20, [c2 : 0, Relay : CLOSED], 1, 1)

∨(1 ≤ c1 ≤ 29)

T := {

γ := (Power = HI ∧ c1 = 0 ∧ c2 ≥ 20, [c2 : 0], 1, 1) }

Figure 8. TTM for DRT implementation -PROG

PROG‖POWER‖PRESSURE. Since it directly models a cyclic executive, all the transitions for the mi-
croprocessor DRT implementation are modeled as selfloops.

As the microprocessor scans through the code each cycle (100ms), it picks out one of the labeled
sections of code. The section picked is the one whose TTM model transition enablement condition
is satisfied. The microprocessor then loops back to the beginning and re-evaluates all the enablement
conditions in the next cycle. So each transition, except forthose which simulate the power or pressure,
has a lower and upper time bound of 1.

Formalization and validation of the implementation in PVS is similar to that of the specification. This
time the internal state is given in the TTM template as:internal state: TYPE=[# Relay:bool,

Power:bool, Pressure:bool, c1:nat, c2:nat #]. We use the two variablesc1 andc2 to count
the time requirements ofω29 andω19 respectively in the specification. As can be seen in Figure 8,we
do not haveω19 andω29 in the set of actions. Note that the actionsµ1, α, µ2, ρ1, ρ2 andγ all have
enablement conditions involvingc1 and/orc2.

As with the DRT specification, the verification of an invariant for the DRT implementation gives us
confidence that the TTM is doing what we want and narrows down the state space needed by PVS to
verify weak equivalence.

5.3. Weak Equivalence Verification

With the help of the theories and template described in section 4, we can define weak equivalence be-
tween the specification and implementation in PVS. The functionsps1 andps2 map their respective state
records to the system inputs and output: Power, Pressure andRelay. In the event output functionspa1
andpa2, tick is mapped to itself to preserve timing information and all other actions are mapped to
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unobservableτ events.
We need to prove the Type-correctness condition (TCC) automatically produced by this definition

in PVS. By proving the TCC which requires the relationRR to be a type ofWsebisim, we conclude
that the relationRR is a weak state-event bisimulation between these two TTMs. By proving the lemma
weakequi which implies that the two initial states are related byRR, we conclude these two TTMs are
weakly equivalent.

The current equivalence proof takes slightly less than 48 minutes of CPU time on a dual 2.4 GHz
Xeon machine with 4 GB of RAM running RedHat Linux 9.0. Constructing the actual proof took con-
siderably longer and required effort to decompose the proofinto several lemmas to deal with memory
limitations. This represents an initial brute force effortto complete the proof. With the further develop-
ment of custom bisimulation proof strategies it should be possible to reduce the time and effort required
for similar proofs to a more reasonable level. The integration of the new Integrated Canonical Solver
(ICS) [6] decision procedures in PVS and the planned capability to export from SAL (the Symbolic
Analysis Library) model-checking environment into PVS [7]may provide a means for more efficient
analysis of large TTM verification. The TTMs could be first debugged in SAL and then exported to PVS
for equivalence verification where the ICS decision procedures can be used.

5.4. Model Checking the DRT

In [12, 15] the DRT verification problem was deemed to be solved, in effect, as soon asprog was veri-
fied to be weakly state-event equivalent tospec. While the equivalence verification process proved to be
useful (an error in the original pseudocode was found and fixed in [12]), the problem with such equiv-
alence verification techniques is that while the implementation has been verified, its correct operation
still depends upon the abstract specification model correctly capturing the desired system properties.
An equivalent implementation is only as good as its specification. How can one verify that the original
specification was correct? Is there any guarantee that the equivalence used in the verification process
preserves the relevant system properties?

For the DRT we will attempt to state some desired system properties as SESI temporal logic formu-
las. By verifying the temporal logic specification formulason the DRT specification employingSPEC
using model-checking, the satisfaction preserving properties of weak state-event equivalence will guar-
antee that the property holds in any equivalent implementation. To validate the results, each temporal
logic formula that is model-checked on the specification will also be model-checked on the equivalent
implementation. Verification of the detailed implementations provides some empirical confirmation of
the correctness of Theorem 4.2, and also illustrates the computational benefits of using reduced models
for verification purposes.

5.4.1. Refining the Reactor Model

Before model-checking our DRT design we complete our model of the reactor system interacting with
our controller model (SPECor PROG) by adding the subsystem in Fig. 9 to model the reactor’s shut-
down relay state. We assume thatRELAY ’s activity variablexRELAY represents the current state of
the reactor’s relay. Any change to the value of the variableRelay by SPEC (or PROG) causes an
“instantaneous” change inXRELAY (i.e. before the next clocktick, providedRelay’s value remains at
the new value) so that afterρo or ρc occursXRELAY = Relay.
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closed open

RELAY
ρo

ρc

RELAY Transition Table

Θ := xRELAY = closed ∧Relay = CLOSED

ρo := (Relay = OPEN, [ ], 0, 0)

ρc := (Relay = CLOSED, [ ], 0, 0)

Figure 9. RELAY - TTM model of the shutdown relay.

Although RELAY provides the possibility of non-Zeno behavior, an infinite number of succes-
sive non-tick transitions, this would require non-Zeno behavior of the input variableRelay. In both
SPEC andPROG, all TTM transitions have lower time bounds≥ 1 and so each can only perform a
finite number of transitions between successive clockticks. Thus the composite system is guaranteed
to have an infinite number ofticks in all computations and hencecontrol‖plant |= �♦(η = tick)
for CONTROL∈ {SPEC,PROG}. Therefore we may drop the¬�♦(η = tick) disjunction that oc-
curs in Theorem 4.2 since it is false for all computations ofCONTROL‖PLANT where PLANT =
POWER‖PRESSURE‖RELAY.

5.4.2. Model-Checking Details

In the following model-checking results we will say that a real-time temporal logic formulaF has been
model-checked or verified for a given timed system when, in fact, we have verified an untimed temporal
logic formulaF ′ on the untimed system that incorporates timer variables andadditional TTM transitions
to “observe” the timed property. The construction ofF ′ and the TTM transitions to be added to the
system before it is translated into SAL input can be difficult. Often the untimed model-check will fail to
capture precisely the desired real-time behavior but may verify something close enough to the original
real-time behavior to suit the designer’s purposes. Below we assume that the untimed model-checks are
“close enough” when stating that a timed property has been verified by the untimed model-check. In the
absence of a powerful model-checking tool for RTTL, the “untimed” model-checks will have to suffice
to illustrate our model reduction theory.

The TTMs of the plant and controller systems were translatedfrom PVS into SAL as described in
section 3.3. All of the model checking results below are for the a beta version of SAL 2.4 running on
a dual 2.4 GHz Xeon machine with 4 GB of RAM running Linux kernel version 2.6.6. The model-
checking results are shown in Table 1 whereexec.time is the time (in seconds) from invoking the
checker to termination of the process, including compilingthe symbolic transition relation, whereas
verif.time only includes the time to verify the particular formula after the symbolic representation of
transition system has been constructed.
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5.4.3. Verification of System Response

This subsection demonstrates that specification models andformulas do not always embody the prop-
erties one initially thinks they capture. The first propertywe would like to check for our specification
module, and hence the implementation module, is correct response to stimulae from the plant. The infor-
mal DRT system requirements may be restated in a form more suggestive of a Temporal Logic translation
as:

Henceforth, ifPower andPressure simultaneously exceed their threshold values for at
least 2ticks and 30ticks laterPower exceeds its threshold for another 2ticks, then within
30 to 32ticks open the reactor relay for at least 20ticks.

In the rephrased informal specification we have added “at least 2ticks” requirements to ensure that the
DRT has time to react to the changes to its input.

We call our temporal logic translation of this formula the System Response formula,FRes:

�[�<2(Power ≥ PT∧ Pressure ≥ DSP) ∧ ♦30�<2Power ≥ PT

→ ♦[30,32]�<20xRELAY = open]

The first� operator with the square braces around the rest of the formula says that the property contained
within holds in the initial state of the computation and at all later points (all suffixes) of the computation.
For a formulaF , ♦[30,32]F is shorthand notation fortrue U[30,32]F which translates directly as “eventu-
ally after at least 30 but no more than 32ticks,F is true”. ♦30F and�<2F are used to denote♦[30,30]F

and¬♦[0,1]¬F . We can paraphrase�<2F as “From now until 2ticks have occurred,F holds”.
The SAL model checker does not explicitly support the simplereal-time temporal logic described in

section 2.3. Thus in order to verify the real-time aspects ofFRes we will add the timer variableTr to the
system to time how longRELAY = open. We assume that initiallyTr = 0. The operation functions
of ρo andρc become[cd(Tr , 20)] and[stop(Tr)] respectively. Herecd(Tr, 20) in the operation function
of ρo has the effect of initializingTr to a value of 20 wheneverxRELAY changes fromclosed to open.
Tr will then count down with eachtick until it reaches a value of 0 or is halted at its current value via
the stop(Tr) operation. Thus ifTr = 0 andxRELAY = open, the reactor relay has been open for 20
ticks. The addition of theTr operations toRELAY will allow the untimed system to “observe” the
�<20xRELAY = open part ofFRes. The rest of the formula will be dealt with in the untimed system by
an additional “property observer” TTMRES (see Figure 10) that will run in parallel with the rest of the
system.

WhenPower andPressure simultaneously exceed their threshold values, theψstart transition of
RES starts the timerTw counting down from 32. IfPower or Pressure drop below their threshold
values before twoticks of the the clock have occurred (i.e. beforeTw = 30) thenψstop1 occurs, stopping
timerTw. If Tw counts down to 30 then�<2Power ≥ PT ∧Pressure ≥ DSP is true. Transitionψcont

occurs to “observe” this fact. We then wait to check the powerwhen0 ≤ Tw ≤ 2 (30 to 32ticks after
Power andPressure first exceeded their threshold values). If during that timePower < PT , then the
♦30�<2xRELAY Power ≥ PT conjunct in the antecedent ofFRes is violated soRES resets viaψstop2,
stoppingTw. On the other hand, ifRES is in activity c andTw = 0, then♦30�<2Power ≥ PT is true
and previously�<2Power ≥ PT ∧ Pressure ≥ DSP was true sinceψcont occurred to bring us toc
in the first place. Thus we will approximate the antecedent ofFRes by Tw = 0 ∧ xRES = c. Combining
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stop2

cont

stop1
32 ≥ Tw ≥ 30 30 ≥ Tw

b ca start

RES Transition Table

Θ := xRES = a ∧ Power = LO ∧ Pressure = LO ∧ Tw = 0

ψstart := (Power ≥ PT ∧ Pressure ≥ DSP, [cd(Tw, 32)], 0, 0)

ψstop1 := (Power < PT ∨ Pressure < DSP, [stop(Tw)], 0, 0)

ψstop2 := (Power < PT ∧ 0 ≤ Tw ≤ 2, [stop(Tw)], 0, 0)

ψcont := (Tw = 30, [ ], 0, 0)

Figure 10. RES – TTM Observer forFRes used in creating untimed formulaF ′

Res.

the above observations we have the untimed formulaF ′
Res that we will model-check with SAL:

�[(Tw = 0 ∧ xRES = c) → ♦(xRELAY = open ∧ Tr = 0)]

Now that we have the formulaF ′
Res without timed operators we translate our system with the addi-

tional counter variables and property observer TTM into SALinput and model-checkF ′
Res in place

of propertyFRes. The results of attempting to verifyingF ′
Res with appears in Table 1. We conclude

SPEC‖PLANT 6|= FRes andPROG‖PLANT 6|= FRes. The computational results are summarized in Ta-
ble 1. The counterexample computation generated by SAL reveals why our system specification model,
implementation model, and indeed the original hardware implementation, all fail to satisfy this property.

While Timer 1 is running (SPECis in activity b or PROG has a non-zero value ofc1), the system
is effectively ignoring its inputs. Consider the possible input timing diagram in Figure 11.Power and

T T + 20

Power

Pressure

T + 30 T + 32T + 2 T + 10

Figure 11. Input sequence generating a counter example toFRes

Pressure simultaneously exceeding their threshold values at timeT will cause Timer 1 to start but
at timeT + 30, Power = LO so theRelay = open “signal” is not sent and the system goes back
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to monitoring its inputs. However, while Timer 1 was running, at T + 2 Power andPressure also
exceeded their threshold values and 30ticks later at timeT + 32 Power is exceeding its threshold.
Because Timer 1 was already running atT + 2 in response to the conditions at timeT , it is unable to
respond to the conditions atT + 10. The system therefore has no way of knowing that it should check
the value ofPower at timeT + 32 and consequently open the relay.

While it is possible to design a relatively simple software implementation that does satisfyFRes

through the use of registers as bit arrays, for illustrativepurposes we will assume that we are trying
to design a software system that provides similar input/output behavior to the original system. In this
caseFRes is an inappropriate temporal logic specification. Changingthe antecedent ofFRes to require
that the DRT controller be in its initial state (i.e. neithertimer is running) whenPower andPressure
exceed their threshold values, we can alterFRes to obtain a formula capturing the behavior of the original
system. We call this new property the Initialized System Response formula,FIRes:

�[ΘCONTROL ∧ �<2(Power ≥ PT∧ Pressure ≥ DSP) ∧ ♦30�<2Power ≥ PT

→ ♦[30,32]�<20XRELAY = open]

HereΘCONTROL := ΘSPEC or ΘCONTROL := ΘPROG depending on whether we are model-checking
controlSPECor controlPROG.

The untimed formulaF ′
Res used in place ofFRes can be used as the untimed formulaF ′

IRes to model-
check in place ofFIRes provided we modify the property observer TTMRES. We add theΘcontrol

conjunct to the enablement condition ofψstart to obtain the new property observer TTMIRES. Thus
the new enablement condition forψstart is ΘCONTROL ∧ Power ≥ PT ∧ Pressure ≥ DSP .

The results of model-checkingF ′
IRes with its observer system are also contained in Table 1. They

show that both the specification and implementation satisfyF ′
IRes.

The above pair of model checking results have helped us to gain a deeper understanding of the
behavior of our system and, by the agreement of results for the use ofSPECandPROGas the control,
have illustrated Theorem 4.2. We will have more to say about the results regarding the space (number of
states) and time requirements in section 5.4.5.

5.4.4. Verification of System Recovery

In the original hardware implementation a signal to open thereactor relay is only sent during the 2
seconds that Timer 2 is running. As an added safety feature inour microprocessor design,SPECwas set
up to continue sending theXRelay = open signal untilPower was no longer exceeding its threshold.
Since the DRT is but one of many reactor control systems operating in the actual reactor, a reasonable
requirement might be that the closed-loop system “recover”in a timely fashion after theRelay = OPEN
signal has been sent for at least 20ticks (2 seconds) andPower returns to normal operating levels. An
informal statement of this property might be:

Henceforth ifxRELAY = open for the next 20ticks and after the 20thtick Power < PT

for at least 2ticks, then before the 22ndtick XRELAY = closed.

We translate this statement into the System Recovery formulaFRec:

�[(�<20XRELAY = open ∧ ♦20�<2Power = LO) → (♦<22XRELAY = closed)]
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As we did forFRec, we can use the addition of the timerTr to RELAY to check the subproperty
�<20XRELAY = open. Again the remainder of the formula will be handled by a property observer
TTM. Figure 12 containsREC, the TTM property observer forFRec.

runw

ψstop

ψstart

stopw

REC Transition Table

Θ := xREC = stop ∧ Tw = 0 ∧ xRELAY = closed ∧ Power = LO

ψstart := (xRELAY = open ∧ Tr = 0 ∧ Power < PT, [cd(Tw, 2)], 0, 0)

ψstop := (xRELAY = closed ∨ Power ≥ PT, [stop(Tw)], 0, 0)

Figure 12. REC – TTM Observer forFRec used in creating untimed propertyF ′

Rec.

The transitionψstart occurs once the reactor relay has been open for 20ticks (xRELAY = open ∧
Tr = 0) andPower is LO (Power < PT ). It starts timerTw counting down from an initial value of
2. If Power becomes HI or the reactor relay closes, transitionψstop takes place, immediately stopping
the timerTw and returningREC to activity stop. Thus ifREC is in activity run andTw = 0 then the
reactor relay has been open for 20ticks, and subsequentlyPower has been LO for more than 2 clock
ticks. This is a violation ofFRec. Therefore we can reduce model-checking the timed propertyFRec to
model-checking the untimed safety propertyF ′

Rec:

�¬(Tw = 0 ∧ xREC = run)

ThusF ′
Rec says that it is never the case thatTw = 0 when TTMREC is in activity run.

While it seems plausible that our currentSPECandPROGwill force the closed loop system to satisfy
FRec, model-checking proves the contrary (see Table 1). The counterexamples generated by SAL show
that theγ transitions ofSPECandPROGare at the root of the closed-loop systems’ failures to meet the
recovery specification.

Consider the TTMSPECin Figure 7 Activity e is where the value ofPower is reevaluated after
Relay = OPEN has been true for the required 20ticks in activity d. If Power ≥ PT thenSPEC
returns to activitya via transitionγ, leavingRelay = OPEN. The system can now only “recover” by
returning to activitye when shortly afterPower returns to an acceptable level and then executing aρ2

transition that setsRelay = CLOSED.
Removal of theγ transition will ensure thatSPEC remains at activitye until Power < PT . If

Power is less thanPT while SPEC is in e, then before two clockticks ρ2 occurs, settingRelay =
CLOSED, and thereby ensuring satisfaction ofFRec. With the removal ofγ, the only way thatSPEC
can entera whenRelay = OPEN is viaρ2. We will also delete theγ from PROG. Call the revised
systems formed by the elimination of theirγ transitionsSPECr andPROGr, respectively. While the
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new systems are smaller and perhaps agree more closely with the designer’s intuition of how the system
should behave, changing the systems brings into question their equivalence and the satisfaction of the
Initialized Response formulaFIRes, while creating the possibility that the closed-loop system will now
satisfyFRec.

From Table 1 we see thatSPECr‖PLANT |= FRec andPROGr‖PLANT |= FRec. Further model-
checks also confirm thatSPECr‖PLANT|= FIRes andPROGr‖PLANT|= FIRes. This mutual satisfac-
tion of FRec andFIRes by SPECandPROGwas not merely accidental. It was forced by Theorem 4.2
becauseSPECr ≈se PROGr. Given the simple structure of the systems and the one-to-one correspon-
dence betweenγ transitions inSPECandPROG, the PVS proof ofSPEC≈se PROGcan be modified to
provide a proof ofSPECr ≈se PROGr, though this has not yet been attempted in PVS.

5.4.5. Model-Checking Concurrent Controllers

So far we have typically seen a factor of 1.5-2 times improvement in both the total model-checking ex-
ecution time and states and a 2-3 times improvement in verification time, by using the abstractSPEC
model instead of the fullPROGmodel. If this were always the case it would be hard to justifythe addi-
tional complexity of the equivalence verification in PVS or the possibility of using anO(n3) algorithm
for weak state-event equivalence model reduction computation. More significant gains from our model
reduction technique can be made when there are multiple controllers running in parallel. Each controller
module is identical. Therefore, because of the compositional consistency of weak state-event equivalence
for TTM modules, the model reduction computation or proof need only be performed once for a single
controller module. The reduction can be used for each controller module added to the system providing
a multiplicative effect in the reduction of the state size without any additional computational or manual
effort. To illustrate the preceding concept, this section extends the basic DRT closed-loop system to the
case when we have a redundant controller.

Two copies of our revised DRT controllers are run in parallelwith the plant. The enablement condi-
tions of the plant’sRELAY transitions are changed to accommodate the additional controllers and the
plant module’s interface is modified accordingly. We attempt to verify FIRes andFRec for compositions
of the reduced and unreduced revised DRT models. The resultsbegin to demonstrate that the real ben-
efits of compositional model reduction are realized when multiple reduced models are composed. The
TTMs SPECr andPROGr can have their transitions and internal and output variables subscripted by
integersi = 1, 2 to avoid transition label and variable name conflicts. In interfacing the plant with the
two controllers we assume that the plant will only change thestate of the reactor relayxRELAY when
both controllers are in agreement. To accomplish this we modify the RELAY TTM of Figure 9. The
results of model-checking are shown in Table 1.

We see that for the systemcontrol1‖control2‖PLANT2 the verification of propertyFIRes for the
reducedcontroli := SPECri

case required roughly an order of magnitude less time and space to obtain
the same result as model-checking the detailed implementation controli := PROGri

case.
The results of the model-check for the somewhat simpler propertyFRec show a definite improvement

in the time and space required to decide the property using the reduced models. The answer is some-
what unexpected. While operating in the single control environment bothSPECr andPROGr result in
closed loop systems that satisfyFRec but when run concurrently with another control, the closed-loop
system fails to satisfyFRec. The counterexamples generated by SAL show that controllers can get out
of synchronization from theire states. IfPower < PT while Pressure ≥ DSP then the following
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state-event sequence can occur inSPECr1
‖SPECr2

‖PLANT2:

(LO,HI, e, e)
tick
→ (LO,HI, e, e)

ρ21→(LO,HI, a, e)
ws
→(HI,HI, a, e)

tick
→ . . .

The 4-tuples represent the value of the variables(Power, Pressure, xSPECr1
, xSPECr2

). We see that
oncePower = LO for one tick, moduleSPECr1

reacts, but beforeSPECr2
can react,ws occurs setting

Power = HI and disablingρ22
. The two systems are now out of synchronization and the situation

deteriorates from there to a point where the reactor relay, once opened for more than 20ticks will in
some cases not close even ifPower < PT for up to 19ticks! At first one might think the failure of the
2 controller system to satisfyFRec is the result of the lower time bounds of 1 on the reactor transitions
wr,ws, pr andps but putting reactor outputs through a low pass filter to increase the lower bounds up to
at least 19 would still fail to eliminate all possible counterexamples.

Formula control result exec.time verif.time states

FRes - System Response SPEC fail 508 308 75759

PROG fail 915 530 141147

SPECr fail 244 139 50490

PROGr fail 415 215 93490

FRec - System Recovery SPEC fail 55 3 931

PROG fail 100 10 1656

SPECr pass 44 2 920

PROGr pass 80 6 1632

SPECr1||SPECr2 fail 320 56 53846

PROGr1||PROGr2 fail 652 58 105076

FIRes - Initialized System SPEC pass 100 13 3167

Response PROG pass 300 24 6102

SPECr pass 77 4 1095

PROGr pass 150 43 3748

SPECr1||SPECr2 pass 347 67 58927

PROGr1||PROGr2 pass 3117 2039 1088245

Table 1. Summary of SAL model-checking results of control||PLANT

For all of the results in the above table, properties checkedwere specified in LTL logic and model-
checked using SAL’s symbolic model-checker.

5.4.6. Model-checking with UPPAAL

UPPAAL is a toolbox for verification of real-time systems. Systems are modeled as networks of timed
automata extended with bounded integer variables, structured data types, and channel synchronization
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[5]. In contrast to TTMs discrete model of time, UPPAAL uses acontinuous time model. The query
language of UPPAAL is a subset of CTL (Computation Tree Logic). UPPAAL model checker employs
‘on-the-fly’ search technique and automatically generatescounterexamples, that can be imported into the
simulator with graphical visualization [11].

We translated the DRT’s TTMs into the UPPAAL timed automata and model-checked the response
and recovery properties. As one might have expected, the real-time model-checking tool, UPPAAL
proved to be much more efficient than our direct implementation of TTMs in the general purpose SAL
model-checker. All the properties were checked in less than5 seconds (results are in the Table 2), except
for theFIRes property, for which the verification took 100 seconds forSPECr1||SPECr2, and 260 seconds
for PROGr1||PROGr2 system. The current version of UPPAAL does not offer the information on the size
of the state space generated during verification so this information is missing from the table.

However, translation of the TTMs into the timed automata of UPPAAL turned out to be much more
time consuming compared to modeling in SAL. The similar syntax for PVS and SAL input files made
the task of translating the instantiated PVS templates for the TTMs into SAL input files straightforward.

Formula control result exec.time

FRes - System Response SPEC fail 0.2

PROG fail 1

SPECr fail 0.3

PROGr fail 0.3

FRec - System Recovery SPEC fail 0.15

PROG fail 0.4

SPECr pass 0.5

PROGr pass 1

SPECr1||SPECr2 fail 2.3

PROGr1||PROGr2 fail 0.1

FIRes - Initialized System SPEC pass 2.5

Response PROG pass 6

SPECr pass 1.5

PROGr pass 4

SPECr1||SPECr2 pass 100

PROGr1||PROGr2 pass 260

Table 2. Summary of UPPAAL model-checking results of control||PLANT
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6. Conclusion

The paper gives the definitions of strong and weak state-event equivalences for SELTSs and TTMs in
PVS. It also provides the beginnings of a unified modeling environment for SELTSs and TTMs in PVS
and SAL which allows the user to specify and verify TTMs more easily. Further, it illustrates the use of
the TTM modeling environment and describes how the TTM and equivalence theories have been used to
formalize and verify the correctness of an industrial real-time controller.

The model-checking results applied to the same illustrate the correctness of Theorem 4.2. Weakly
state-event equivalent systems did satisfy the same formulas on all their computations in which time
advances. The benefits of compositionally consistent weak model reduction have been partially demon-
strated by the multiple controller model-checking results.

The superior counter example generation features of the SALmodel-checker were particularly use-
ful in debugging the system. The counter examples from the failed model-checks of the DRT system
illuminated system behavior that otherwise may not have been considered in the system design. The
model-checking in turn benefited from the compositionally consistent equivalence verification technique
as it provided a means of compositionally consistent model reduction. In the case of the DRT design,
the combination of equivalence verification and model-checking were mutually beneficial, leading to a
better design than would have been achieved by the application of either method in isolation.

6.1. Limitations and Future Research

Currently in our modeling environment, composition of TTMsmust be done manually by the user before
entry into the TTM template. By formalizing TTM compositionin PVS and SAL we should be able to
use these tools to compose the TTMs and prove properties of composite TTMs.

The equivalence proof for the DRT was done interactively. Itrequired significant user interaction.
In the future, we plan on developing prover strategies to largely automate the proof procedure. Closer
integration with PVS’s new decision procedures and alternate algebraic formulations of the equivalence
should reduce the effort required to produce equivalence proofs. We should note that the theories are
designed so that alternative equivalence relations can be easily applied. Further, the theorem proving
capabilities of PVS can allow us to verify infinite state systems and the equivalence of whole classes
of systems (e.g., for parameterized time bounds or even operation functions). We believe that tighter
integration of the theorem prover and model checker may offer the best solution. Plans for a SAL to PVS
export capability outlined in [7] hold out significant hope in this regard.

The significantly faster performance of UPPAAL on a subset ofthe temporal logic verification in-
dicates that integration of the theorem proving capabilities of PVS with a specialized real-time model-
checker would allow the verification of significantly largerproblems, at a cost of a more difficult trans-
lation between the prover and the model-checker.
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A. Instantiated ttm decls.pvs for M in Fig. 1
ttm_decls: THEORY

BEGIN

ttm_lib: LIBRARY = "../ttm_lib"

IMPORTING time_thy, actions

activity: TYPE = {a,b,c,d,e}

internal_state: TYPE = [# u:int, v:int #] % * User *

ac: VAR nt_action

W: VAR internal_state

lower_bound(ac):time = CASES ac OF

alpha: zero, % * User *

beta: two, % * User *

gamma: two % * User *

ENDCASES

upper_bound(ac):time = CASES ac OF

alpha: one, % * User *

beta: infinity, % * User *

gamma: two % * User *

ENDCASES
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enabled_state (ac, w):bool = CASES ac OF

alpha: (w‘u>=0), % * User *

beta: True, % * User *

gamma: (w‘v>=0) % * User *

ENDCASES;

graph (ac, sa:activity):bool = CASES ac OF

alpha: (sa = a), % * User *

beta: (sa = b), % * User *

gamma: (sa=a or sa=b) % * User *

ENDCASES

IMPORTING ttm[activity,internal_state, nt_action,

lower_bound, upper_bound,enabled_state, graph]

s: VAR states

enabled (ac, s):bool =

IF (not (tick?(ac))) THEN enabled_general(ac,s) & enabled_time(ac,s)

ELSE enabled_tick(s) ENDIF

trans (ac, s):states = IF tick?(ac) THEN s WITH [action_time:= update_clocks(s)]

ELSE s_tmp WITH [action_time:=reset_clocks(ac,s_tmp)]

WHERE s_tmp = CASES ac OF

alpha: s WITH [ activity:=b, basic:=s‘basic WITH[u:=s‘basic‘u+s‘basic‘v]], % * User *

beta: s WITH [activity:=d, basic:=s‘basic WITH [u:=s‘basic‘u+1, v:=s‘basic‘v-1]], % * User *

gamma: s WITH [activity:=IF (s‘activity=a) THEN c % * User *

ELSIF (s‘activity=b) THEN e ELSE s‘activity ENDIF] % * User *

ENDCASES

ENDIF

start (s):bool = (s=(# activity:=a,basic:= (# u:=0, v:=1 #), % * User *

action_time:=(LAMBDA (ac:nt_action): zero) #) ) % * User *

IMPORTING ttm_lib@machine[states,action,enabled,trans,start]

END ttm_decls

B. SAL translation of ttm decls for M in Fig. 1
ttm_decls: CONTEXT =

BEGIN

activity: TYPE = {a, b, c, d, e};

uvtype: TYPE = [0..2];

action: TYPE = DATATYPE

tick,

alpha,

beta,

gamma

END;

internal_state: TYPE = [# u: uvtype, v: uvtype #];

nt_action: TYPE = {ac: action | ac /= tick};

t1: CONTEXT = time_thy;

cs: CONTEXT = states{activity, nt_action, internal_state, time_thy!time;};

lower_bound (ac:nt_action): t1!time =

IF ac = alpha THEN t1!zero

ELSIF ac = beta THEN t1!two

ELSIF ac = gamma THEN t1!two

ELSE t1!zero

ENDIF;

upper_bound (ac:nt_action): t1!time =

IF ac = alpha THEN t1!two

ELSIF ac = beta THEN t1!infinity

ELSIF ac = gamma THEN t1!two

ELSE t1!zero

ENDIF;

% preconditions

enabled_state (si:cs!states1): bool =

IF si.nta = alpha THEN si.is.u >= 0

ELSIF si.nta = beta THEN TRUE

ELSIF si.nta = gamma THEN si.is.v >= 0

ELSE FALSE

ENDIF;

graph(si:cs!states2): bool =

IF si.nta = alpha THEN si.x = a

ELSIF si.nta = beta THEN si.x = b

ELSIF si.nta = gamma THEN si.x = a OR

si.x = b

ELSE FALSE
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ENDIF;

t: CONTEXT = ttm{activity, internal_state, nt_action; lower_bound,

upper_bound, enabled_state, graph};

enabled(ac:action,s:cs!states): bool =

IF(not (tick?(ac))) THEN t!enabled_general(ac,s)

AND t!enabled_time(ac,s)

ELSE t!enabled_tick(s)

ENDIF;

examplettm: MODULE =

BEGIN

GLOBAL s: cs!states

INITIALIZATION

s = (# activ := a,

basic:= (# u := 0, v := 1 #),

action_time:=(LAMBDA (a:nt_action): t1!zero)#)

TRANSITION

[

enabled(tick, s) --> s’ = s WITH .action_time := t!update_clocks(s)

[]

enabled (alpha, s) --> s’ = ((s WITH .activ := b) WITH

.basic.u := s.basic.u + s.basic.v) WITH

.action_time:= t!reset_clocks(alpha,

(s WITH .activ := b) WITH .basic.u := s.basic.u + s.basic.v)

[]

enabled(beta, s) --> s’ = (((s WITH .activ := d)

WITH .basic.u := s.basic.u + 1)

WITH .basic.v := s.basic.v - 1)

WITH .action_time:= t!reset_clocks(beta,

((s WITH .activ := d) WITH .basic.u := s.basic.u + 1)

WITH .basic.v := s.basic.v - 1)

[]

enabled(gamma, s) --> s’ = IF s.activ = a THEN

(s WITH .activ := c) WITH .action_time:= t!reset_clocks(gamma,

s WITH .activ := c)

ELSE

(s WITH .activ := e) WITH .action_time:= t!reset_clocks(gamma,

s WITH .activ := e)

ENDIF

]

END;

END


