
Timing Tolerances in Safety-Critical Software

Alan Wassyng�, Mark Lawford , and Xiayong Hu

Software Quality Research Laboratory, Department of Computing and Software,
McMaster University, Hamilton, Canada
{wassyng, lawford, huxy}@mcmaster.ca

Abstract. Many safety-critical software applications are hard real-time
systems. They have stringent timing requirements that have to be met.
We present a description of timing behaviour that includes precise defi-
nitions as well as analysis of how functional timing requirements interact
with performance timing requirements, and how these concepts can be
used by software designers. The definitions and analysis presented ex-
plicitly deal with tolerances in all timing durations. Preliminary work
indicates that some requirements may be met at significantly reduced
CPU bandwidth through reduced variation in cycle time.

Keywords: safety-critical, real-time, timing tolerances, requirements.

1 Introduction

Specifying, implementing and verifying real-time requirements for embedded
software systems can be a difficult and time consuming task. Hence real-time
systems have become an active area of research in the formal methods commu-
nity. Practical implementations have to worry about sampling rates, schedula-
bility, computation time, latency, and jitter, all of which involve tolerances in
some form when interfacing a physical plant and a software control system. In
this paper we make the case that several different types of tolerances need to
be fully specified at the requirements level in order to properly deal with the
timing tolerances that are inherent in the system implementation. These include
tolerances on functional timing requirements, and tolerances that allow for de-
viation from the idealized behaviour specified by the requirements models. This
work builds on analysis and definitions that were used in safety-critical software
applications over many years at Ontario Power Generation in Canada [9].

The extensive survey of formal methods for the specification and verification
of real-time systems in [1] contains references to over 200 publications. The
overwhelming majority of the cited works are dedicated to the specification and
validation of real-time requirements. Despite this intensity of research, relatively
little work has been done on formally modeling timing tolerances.

Recent work has begun to address the issue of timing tolerances required to
verify implementations of requirements modeled as timed automata with ASAP

� Partially supported by NSERC.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 157–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

�

158 A. Wassyng, M. Lawford, and X. Hu

semantics [2, 3]. Wulf, et al, consider the case of implementing a continuous-
time controller with a discrete-time system, assuming that there is a delay ∆
associated with the controller’s reaction to the environment. Both the controller
and the plant are first modeled as timed automata. Their control objective is to
ensure that the closed-loop system satisfies a safety property by avoiding bad
states. Provided that all control actions can be delayed by up to some fixed
∆ > 0 without violating the safety property, they say that the controller is “im-
plementable”. A PSPACE-complete decision procedure to test implementability
is described in [3], while [2] provides a semi-decision procedure to compute the
maximal reaction delay ∆ allowable by the implementation that still preserves
the correctness of the closed loop system. It further shows that the system is
implementable by a cyclic executive with loop time upper bound ∆L and a finite
precision clock with a resolution of ∆P , provided that ∆ > 3∆L + 4∆P . In this
work response allowance ra and sample interval ts correspond most closely to ∆
and ∆L in [2] and implicitly we assume a clock resolution of 1 time unit. Based
on our definitions, and using simple mathematical arguments, we are able to
come to a somewhat surprising result that allows some timing requirements to
be verifiably implemented at a significantly lower CPU bandwidth.

The remainder of this paper is organized as follows: Section 2 provides the
notation and definitions of terms and operators, and specifically differentiates
between functional and performance timing requirements. Section 3 describes
the relationship between the two performance timing requirements, while Sec-
tion 4 details the interaction of functional and performance timing requirements.
Conclusions are provided in Section 5.

2 Definitions

2.1 The Requirements Model

The requirements model we use is a finite state machine with an arbitrarily small
clock-tick. This enables us to straddle the time continuous and time discrete
domains. Many other models could be used and would require minimal changes
in the following definitions.

Stimuli are referred to as monitored variables, and responses are controlled
variables.

The finite state machine is assumed to describe idealized behaviour, i.e. re-
sults are produced instantaneously. If C(t) is the vector of values of all controlled
variables at time t, M(t) is the vector of values of all monitored variables at time
t, S(t) is the vector of values of all state variables at time t, we can define rela-
tions R (requirements) and NST (next state) as follows:

C(tk) = R(M(tk), S(tk))
S(tk+1) = NST(M(tk), S(tk)), for k = 0, 1, 2, . . .

(1)

where the time of initialization is t0, and the time between tk and tk+1 is an
arbitrarily small time, δt. It is almost always necessary to decompose the con-
struction of R and NST into a number of intermediate functions. NST in our

Timing Tolerances in Safety-Critical Software 159

f name

Condition1 result1
Condition2 result2

.
Conditionn resultn

≡
if Condition1 then f name = result1
else if Condition2 then f name = result2
else if ... then ...
else if Conditionn then f name = resultn

Disjointness: Conditioni ∧ Conditionj ⇔ False, ∀i, j = 1..n, i �= j, and
Completeness: Condition1 ∨ . . . ∨ Conditionn ⇔ True.

Fig. 1. Horizontal Condition Tables

formulations is usually trivial since we strive to keep state data at the require-
ments level to a very simple form, namely the previous values of intermediate
functions and variables.

2.2 Notation

Current time is denoted by tnow. We indicate elements of state data by sub-
scripting the identifiers. variable−n means the value of variable, n clock-ticks
prior to the current one.

Where possible, we use tabular expressions to define functions. We are con-
vinced that tabular expressions (function tables) are a superb notation for de-
scribing software functions. Disjointness and completeness criteria help us in
ensuring that the functional descriptions are unambiguous and complete [6].
There have been a number of publications on the semantics and usage of tabu-
lar expressions (e.g. [7, 8, 9]). The tabular expressions we use here are particular
simple (they are called horizontal condition tables). Fig. 1 presents an example
table together with its informal semantics.

2.3 Functional Timing Requirements

Functional timing requirements are timing requirements that are directly related
to the required behaviour of the application. Some of the more common func-
tional timing requirements are described below, and mathematical definitions
are provided.

Sustained Timing Requirements: A common functional timing requirement
is one that specifies that a condition must be sustained over a particular time
duration. For example, to filter out the effect of a noisy signal we may specify
that an event in which a sensor signal is above its setpoint should be sustained
for 300 ms before it can cause a “trip”. This means that the implementation
must guarantee that if the sensor event is sustained for less than 300 ms, the
trip must not occur. Similarly, if the sensor event is sustained for 300 ms or
longer, the trip must be generated. Without tolerances on the time duration,
these requirements would be impossible to meet.

Many of the concepts and analyses we present are best illustrated when ap-
plied to sustained timing requirements. For this reason we discuss this example
in detail.

160 A. Wassyng, M. Lawford, and X. Hu

time (ms)

notTrip
trip

setpoint

m_signal

0 100 200 300 400

Two compliant implementations

Sensor event in physical domain

250 - 350

notTrip
trip

notTrip
trip

c_result

c_result

c_result

One strange implementation

Fig. 2. Two Valid Implementations of a Sustained Timing Requirement

We can introduce tolerances on the time duration in the above example.
Assume that the sensor trip condition should be sustained for 300 ±50 ms.

Fig. 2 shows an implementation of the behaviour specified above for a con-
trolled variable c result and sustained condition m signal ≥ setpoint. The
strange behaviour in the top implementation is almost certainly not what the
specifier intended, but it may be compliant with its specification. How should
we interpret this specification? A logical interpretation is that c result should
not equal trip until m signal ≥ setpoint has been True for at least 250 ms, and
that c result must equal trip if m signal ≥ setpoint has been True for 350 ms.

The problem is: what happens in the range 250–350 ms? Fig. 2 shows an-
other two possible implementations that really would be compliant with this
requirement. The difference here is that for each event we have effectively re-
stricted ourselves to a single representative duration inside the specified range.
There are a number of important points to emphasize. i) The time duration

is measured from when the event started in the physical application domain. It
is not measured from the time it is detected. Since the requirements are (sup-
posed to be) developed by the domain experts, and should be independent of
any implementation, it does not make sense to define timing requirements with
reference to when events are detected. ii) Many different implementations are
valid. The behaviour in the dark shaded interval representing time in the in-
terval [250, 350] ms is not deterministic. It is vital that everyone has the same
understanding of what the requirement means. iii) Even though we have intro-
duced tolerances into the requirement, the requirement still describes idealized
behaviour understood within the constraints of the requirements model. For in-
stance, it does not take into account that processing time is not infinitely small,
and it makes no reference to how often the application samples the values of the
sensor.

Timing Tolerances in Safety-Critical Software 161

Condition

T

F

(Condition) Held for (d, δL, δR)

T

F

duration duration

d d

d+δR

d-δLd-δL

d+δR

time

Fig. 3. “Held for” Functional Timing Requirement

(Condition :bool) Held for (d: R
>0, δL, δR : R

≥0) :bool
where duration(Condition: bool): [d − δL, d + δR]

Event start time(Condition :bool) : R
≥0

Initially: duration = any value in [d − δL, d + δR]
Event start time−1 = 0
Condition−1 = False

duration Event start time

(Condition = True) & (Condition−1 = False)
Any value in
[d−δL, d+δR]

tnow

(Condition = False) OR (Condition−1 = True) No Change No Change

Held for

Condition = True
tnow− Event start time≥ duration True
tnow− Event start time< duration False

Condition = False False

Fig. 4. Formal Definition of “(Condition) Held for (d, δL, δR)”

To model sustained events, we developed an infix operator, (Condition)
Held for (d, δL, δR), which uses a duration defined by the constant time d (> 0),
with tolerances −δL, +δR, 0 ≤ δL < d, 0 ≤ δR. “Held for” is illustrated in Fig. 3,
and is defined formally using tabular expressions in Fig. 4. A critical concept is
that although duration can be any value in the interval [d− δL, d + δR], it must
be constrained so that duration has only a single value throughout an event. An
event in this case means that Condition changes from False to True. Without

162 A. Wassyng, M. Lawford, and X. Hu

this constraint, many different bizarre behaviours are possible, all of them clearly
not the intent of the function.

Periodic Timing Requirements: Periodic timing requirements are common
in hard real-time systems. To help us model periodic timing requirements we
developed a function, Periodic(Condition, d, δL, δR). This function (Periodic)
is True for 1 clock-tick at the instant that Condition changes from False to True,
and, as long as Condition remains True, the function is True again, some time
“period” after the most recent time it changed from False to True. The effective
period of the function is defined by the constant duration d (> 0), with tolerances
−δL,+δR, 0 ≤ δL < d, 0 ≤ δR. Periodic is illustrated in Fig. 5, and is defined
formally using tabular expressions in Fig. 6. A different kind of periodic function
is one that is synchronized with an external clock as illustrated in Fig. 7.

If the periodic functional requirement is synchronized with an external clock,
definitions equivalent to t mod period = 0 are useless when the period involves
tolerances. The requirement t mod 400±50 ms = 0 results in milli-second in-
tervals of [350-450], [700-900], [1050-1350], [1400-1800], [1750-2250], [2100-2700],
..., and after a relatively short time period the requirement does not constrain
behaviour much at all. A practical, formal specification of this periodic func-
tional requirement can be developed from ∀n : N · tn ∈ [n · d − δL, n · d + δR],
and is defined using tabular expressions in Fig. 8. This definition does not deal
explicitly with a consistent clock drift, but this could be included by specifying
d as a constrained function of time.

2.4 Performance Timing Requirements

Functional behaviour of the application is (typically) described using a model
that describes the ideal behaviour of the application. It totally ignores the fact
that an implementation cannot continuously monitor sensor values and requires
a finite, non-zero amount of time to process its results. To complete the descrip-
tion of the required behaviour, a requirements document must also specify the
performance tolerances that are allowed in meeting functional timing require-
ments. There are two different performance timing requirements, timing resolu-
tion and response allowance. These are defined and discussed in the following
two sections.

Timing Resolution: Each monitored variable has a timing resolution associ-
ated with it. The definitions for this interval are different for time continuous
and time discrete monitored variables.

The timing resolution (TR) for a time continuous monitored variable is the
minimum time duration of an initiating event dependent on that monitored
variable for which the application must guarantee that it will detect that event.
Thus, the TR is also an indication of the maximum time interval that the trip
computer can allow between successive sampling instances for that stimulus.

The TR for a time discrete monitored variable is the smallest time inter-
val separating two events dependent on that monitored variable, in which the
application must guarantee that it will detect both events.

Timing Tolerances in Safety-Critical Software 163

d d d

d

δL δL δLδR δR δR

Condition

Periodic(Condition, d, δL, δR)

T

T

F

F

δL δR

period period period period

time

Fig. 5. A Periodic Functional Timing Requirement

Periodic(Condition :bool, d :R>0, δL, δR : R
≥0) :bool

where period(Periodic−1: bool): [d − δL, d + δR]

previous pulse time(Condition :bool) : R
≥0

Initially: period = any value in [0, δR]; previous pulse time−1 = 0; Periodic−1 = False

period

Periodic−1 = True Any value in [d-δL, d+δR]
Periodic−1 = False No Change

Periodic previous pulse time

Condition =
True

Condition−1 = False True tnow

Condition−1 =
True

tnow ≥ previous pulse time−1 + period True tnow

tnow < previous pulse time−1 + period False No Change
Condition = False False No Change

Fig. 6. Formal Definition of “Periodic(Condition, d, δL, δR)”

These situations are illustrated in Fig. 9. Note that if a monitored variable
is used in determining the behaviour of two (or more) controlled variables, it
is probable that at least two different events (one on each controlled-monitored
variable path) are dependent on that monitored variable, and that the monitored
variable could have two different TRs associated with it. In general, we assign a
TR for each controlled-monitored variable pair in which the controlled variable
value can be affected by the value of the monitored variable.

164 A. Wassyng, M. Lawford, and X. Hu

timed d d

period period period

δLδR δL δLδR δR δR

SyncPeriodic(d, δL, δR)

T

F

0

Fig. 7. Synchronized Periodic Functional Timing Requirement

SyncPeriodic(d : R
>0, δL, δR : R

≥0) : bool
where n: N, and ∆ : R

Initially: n = 0; ∆ = any value in [0, δR]; SyncPeriodic−1 = False

∆ n

SyncPeriodic−1 = True Any value in [-δL, δR] n + 1
SyncPeriodic−1 = False No Change No Change

SyncPeriodic

tnow ≥ n·d + ∆ True
tnow < n·d + ∆ False

Fig. 8. Formal Definition of “SyncPeriodic(d, δL, δR)”

Response Allowance: The Response Allowance (RA) for a controlled-
monitored variable pair specifies an allowable processing delay. Each controlled
variable must have an RA specified for it. The RA applies to the controlled vari-
able and the particular monitored variable on which the controlled variable’s
behaviour depends. The RA is measured from the time the event actually oc-
curred in the physical domain, until the time the value of the controlled variable
is generated and crosses the application boundary into the physical domain.

Some important considerations:

1. The RA for the pair c-m is meaningless if c does not change its value in
response to a change in the value of m (the effect must be visible externally).

2. The time sequence of externally generated values of a controlled variable c
cannot be altered by consideration of the RAs for each c-m pair. For instance,
we cannot allow c to change from trip = True (evaluated at time t) to trip

Timing Tolerances in Safety-Critical Software 165

time

time

TR

TR TR

TR

k_setpoint

m_signal

M_signal M_signalM_signal

May miss
this event

Must detect
this event

May
miss
this

event
Must detect
this event

Timing Resolution for Time Continuous Monitored Variables

Timing Resolution for Time Discrete Monitored Variables

k_setpoint

Fig. 9. Timing Resolution

= False (evaluated at time t− δt, δt is an arbitrarily small positive number)
simply because the RA was large enough to allow this.

3 Relationship Between Response Allowance and Timing
Resolution

Consider the case where c, a controlled variable, depends solely on m, a mon-
itored variable. We must specify both a TR (value tr) and RA (value ra) for
the c-m pair. Now, in the implementation, let ts represent the sampling interval
used for m, and tp the processing time required to output c, measured from the
instant that the value of m was sampled. Then, if the implementation is to com-
ply with its timing requirements, it is clear that we must insist that ts+ tp ≤ ra.
Since tp > 0 and ts ≤ tr (it is permitted to equal ra), it follows that tr < ra.
So, unless there is a reason to use a more restrictive TR for m, we can assume
a default upper limit for TR equal to the RA for the c-m pair. This is the least
restrictive requirement that we can place on the software design. It leaves the
designer free to choose a sampling interval anywhere in the range [0, ra) as long
as the RA is satisfied.

In most real applications, the TR for a monitored variable would be de-
termined, initially, from a study of the possible transients associated with the
particular monitored variable. If the physically motivated TR is larger than the
associated RA then the TR would have to be constrained by the value of the
RA. If the physically motivated TR is smaller than the associated RA, then that
smaller value must be used as the specified TR.

The RA itself is always derived from consideration of the physical application.
In safety-critical applications, absolute compliance with the RA is clearly just
as important as compliance with any other requirement.

166 A. Wassyng, M. Lawford, and X. Hu

In the following section we see that both the TR and RA may need to be
modified once we consider the effect of functional timing requirements.

4 Interaction Between Functional and Performance
Timing Requirements

There are a number of interactions between functional and performance timing
requirements. Some of them affect the timing resolution by imposing restric-
tions on sampling intervals in the implementation. Other interactions force us
to consider exactly how to specify response allowances for controlled-monitored
variable pairs that are also involved in functional timing behaviours.

We use sustained events to illustrate these interactions.

4.1 Timing Resolution for Sustained Events

Given a sustained timing requirement we need to consider whether it is possible
to implement a design so that the requirement can be met. We can identify two
different categories of sustained events. The first one, as discussed in Section 2.3,
is where the behaviour depends on values of one or more monitored variables.
In this case the event is timed from the time at which the event was initiated
in the physical domain. The second kind is one in which the sustained event
depends only on the values of controlled variables (or is synchronized in some
way with an external clock). In this case the event is timed from the instant at
which the event is initiated within the software domain. This kind of event is
typically easier to deal with since the inherent uncertainty of when the event
actually occurred is removed from consideration.

The following two sections present analyses of these cases.

Sample Intervals for Events That Depend on Monitored Variables:
We know from earlier discussion (Section 2.3) that if we specify behaviour in the
form of (Condition) Held for (d, δL, δR), and duration ∈ [d − δL, d + δR],
then the requirement means that we cannot make the final decision as to whether
“Held for” generates True or False based on values that were sampled before we
are sure that d − δL time has elapsed since the event occurred in the physical
domain. We also cannot delay the decision past d + δR.

The situation is illustrated in Fig. 10. Let us assume that the sample intervals
are ts0, ts1, ts2, etc. Since our analysis has to hold for real industrial applications,
we do not assume a constant sample interval. We do assume that we can place
limits on the sample intervals. We call these limits ts min and ts max. Once
we have these limits, we know that ts min ≤ tsj ≤ ts max for each j ∈ {0..n}.
We will see later that any variation in sample intervals results in fewer feasible
implementations. If the event is detected at sample time 1, then we know that
the event must have occurred sometime between sample time 0 and sample time
1. We can now assume that Condition remains True at sample times 2, 3, ,..., n-
2. (If it does not remain True, we simply terminate the event and the “Held for”
value becomes False.)

Timing Tolerances in Safety-Critical Software 167

If we study the situation in Fig. 10, we see that the only way we can be certain
that we base our decision on values sampled in the time interval [d− δL, d+ δR]
is to ensure that we have at least two sample points inside that interval. It turns
out this is a necessary condition, but it is not sufficient.

ts0 ts1 ts2 tsn-1 tsn

δL + + δR

d − δL d + δR

0 1 2 3 n-2 n-1 n

Event detected at this time

event must
have

occurred in
this interval

sample times decision must be
made based on
values current at

this time

tsts0

decision must not be based on
values from this time interval

decision must be based on
values from this time interval

d
measured from earliest time event could have occurred

δRδL

Legend:

Fig. 10. Sample Intervals Required for Sustained Events

The earliest the event could have occurred is immediately after values were
sampled at sample point 0. The latest the event could have occurred is imme-
diately prior to sample point 1. We choose to measure all relevant times from
sample point 0, i.e. from the earliest time it could have occurred. Now we can
consider the two sample points in the interval [d − δL, d + δR] (assuming we
manage to get two samples in that interval). The later time in the interval (sam-
ple point n in Fig. 10) must be to the left of the d + δR boundary because the
times are measured from the earliest time the event could have occurred. So we
know that decisions based on values sampled at sample point n are not too late.
For it to be too early, the actual event would have had to occur immediately
prior to sample point 1. In this case, we should subtract ts0 from the time at
sample point n and check to see if the resulting time is less than d − δL. If all
sample intervals were equal, having two sample points in the interval would be
sufficient to prove that sample point n could not be too early. However, since
tsn ≤ ts max, there is a chance that (sample point n)− ts0 could lie outside the
interval, in which case the decision would be made based on values that are too
early. The following analysis copes with all the questions we have raised. Note
that we could have chosen to measure times from time of detection. The analysis
would have to be adjusted accordingly.
Case 1: 0 < ts max ≤ 1

2
(δL + δR): In this case it is easy to see that it is

always possible to implement the sustained event.
Case 2: 1

2
(δL + δR) < ts max ≤ (δL + δR): It may happen that the

hardware platform is not fast enough for us to arrange a sample interval that

168 A. Wassyng, M. Lawford, and X. Hu

always works as defined in Case 1. It is still possible to find sample intervals that
allow us to implement the sustained event.

It is crucial to realize that if ts max > 1
2 (δL+ δR) then the only way we can

ensure that two samples, ts max apart, fall in the duration interval, is if the last
sample point to the left of the interval is not “too close” to d − δL.
Let kmin = int(d−δL

ts max), and kmax = int(d−δL
ts min), where int(r) truncates r to an

integer.
kmin �= kmax implies that kmax · ts min ≤ d − δL and
kmax · ts max > d − δL, since kmax > kmin.

This means that there is always some combination of sample intervals such
that

∑k
j=1 tsj = d− δL− ε, where ε is arbitrarily small. This implies that there

are always sample intervals within the range [ts min, ts max] such that there
is only one sample point within [d − δL, d + δR]. Thus we can conclude that if
kmin �= kmax then there is no feasible implementation.
So, kmin = kmax is a necessary condition for a feasible implementation. Unfor-
tunately it is not sufficient. Let k = kmin = kmax. Then

∑k
j=1 tsj ≤ d − δL,

and
∑k+1

j=1 tsj ≥ d − δL, for any combination of sample intervals within
[ts min, ts max]. The worst case is when tsj = ts max for each j ∈ {1, 2, ..., k +
2}. So, a sufficient condition when kmin = kmax is that (k+2) ·ts max ≤ d+δR.

Case 3: (δL + δR) < ts max: The sustained event cannot be implemented.

Examples of Feasible Sample Interval Ranges for Sustained Events:
It is instructive to examine the ranges of sample intervals that result in feasible
implementations of sustained events that are dependent on monitored variables.
The analysis from Case 2 was implemented in a spreadsheet and graphs show-
ing the feasible sample intervals were generated (Fig. 11). Each graph lists [d-
δL, d+δR]. It also shows the nominal sample intervals as labels along the x-axis,
and lists the deviations as (−�,+r). So, for ts=50, with deviation (−3,+2) we
have ts min=47 and ts max=52. A deviation of (−0,+0) indicates a constant
sample interval (pretty much impossible to achieve).

Fig. 11 shows that in the case when duration ∈ [400 − 50, 400 + 60], rather
than requiring the code to run with every ts ≤ 50ms (a 20Hz or faster task),
it is possible to detect the event with every ts ∈ [74-1, 74+2] ms (roughly a
13.5Hz task). This represents an approximately 32% reduction in CPU time
required for the task! This pattern results in a positive cycle. Making execution
times more precise may present the opportunity to reduce the CPU load, which
in turn should make it easier to meet timing requirements. While scheduling
conflicts may be more difficult to resolve with the tighter constraints on a larger
ts, we note that the tolerances only restrict when the sample of input m must be
taken, not when output c must be updated, which is specified by the response
allowance.

Intuitively, when tolerances are allowed on the sample time (non-zero jitter),
it is more difficult to detect sustained conditions of longer duration with the
same precision. E.g., as the duration changes from [200-50, 200+60] to [300-50,
300+60] to [400-50, 400+60] in Fig. 11, the available sample times in [50,110]
are first significantly reduced then completely eliminated.

Timing Tolerances in Safety-Critical Software 169

Fig. 11. Feasible Sample Intervals for Various Durations and Tolerances

Sample Intervals for Events That Depend on Controlled Variables:
In this case the uncertainty as to when the event occurred has been removed.
Thus, any sample interval less than or equal to (δL + δR) suffices since we need
only a single sample point in the interval. Smaller sample intervals allow us to
define the boundaries of the interval more precisely, but any point in the interval
satisfies the requirement. However, larger sample intervals are also possible. For
instance, sample intervals in the range d − δL ≤ ts ≤ d + δR also work, giving
us two sample points, one at the start of the event and another in the desired
interval. We have called these “sample points”, however, it is more accurate
to term them “evaluation points”, since no monitored variable is sampled, the
current value of a controlled variable is simply used in a function evaluation. We
can see therefore, that this kind of sustained event is affected by specified RAs
rather than TRs. This is discussed further in Section 4.2.

170 A. Wassyng, M. Lawford, and X. Hu

Specifying Timing Resolution Affected by Sustained Events: We have
presented analyses that show how sample intervals must be restricted to be
able to implement sustained events. Since timing resolution specifies a maximum
sample interval for time continuous monitored variables, it is clear that sustained
events may affect the timing resolution we must specify for monitored variables
involved in those events.

The restrictions imposed on the sample intervals however, are not enforceable
by specifying a more or less restrictive timing resolution. If we look at Cases 1, 2
and 3 for the sustained events dependent on monitored variables, we see that all
sample intervals in Case 1 are feasible, there are disjoint ranges of feasible sample
intervals for specific events for Case 2, and no feasible sample intervals for Case
3. We can specify a timing resolution of (δL + δR) since we know that anything
greater than that results in an infeasible implementation, but in fact, this is not
sufficient. One way of dealing with this problem is to shift the responsibility of
determining exactly what sample intervals are feasible to the software design
phase.

In the case of sustained events that are not dependent directly on monitored
variables, timing resolution is not an issue since monitored variables cannot
directly affect the event.

4.2 Response Allowance for Sustained Events

There are two specific concerns related to specifying the response allowance
for variables involved in sustained events. The first is a general one. How do
we cope with specifying the RA for a sustained event so that it is clear what
the requirement allowance is for both the successful continuation of a sustained
event, as well as the cancellation of a sustained event. The second concern is
what restrictions must be placed on RAs so that the sustained event can be
implemented.

1. We begin by assuming that monitored variable m and controlled variable
c are involved in the sustained event. If the functional requirement does not
involve a sustained event the RA is based on a physical analysis of the required
behaviour. We call this rac−m. This is a suitable RA to use for the case when
the sustained event is canceled. In other words, given a sustained event speci-
fied by (Condition) Held for (d, δL, δR), if Condition changes from True to
False, the application must generate the value of c within rac−m measured from
the time the event occurred in the physical domain. Now what if the sustained
event is successful? We know that we have d + δR within which to determine
that fact (measured from the initiation of the event in the physical domain).
We also have some time in which to calculate the value of c. The problem
is that we do not know how much of rac−m to add to d + δR. One solution
is to add the entire rac−m, in spite of the fact that this “double counts” any
portion of rac−m that was allocated to detecting the event. We are examining
alternative strategies but this is the best we have to date. Thus, the RA for sus-
tained events is specified in the form: ratrue Held for (d, δL, δR)/rafalse.
This is interpreted as specifying a response allowance of ratrue when the

Timing Tolerances in Safety-Critical Software 171

event continues to completion (because of that “Held for” event), and rafalse

when the event is canceled. Example: an RA of 250 ms is specified for a c-
m pair, and the event “(f sentrip = e trip) Held for (k delay)” also in-
volves that pair, where k delay = 500 ms ± 25 ms. rac−m is documented
as: 775 ms Held for (k delay) / 250 ms. We could specify rac−m simply by
775 ms/250 ms, but the Held for (k delay) provides useful information.

2. In the case of a sustained event that depends on controlled variables, we
saw earlier that it is relatively easy to arrange that at least one evaluation point
lies in the interval of interest. Since the evaluation depends on the previous value
of a controlled value, the RA for that variable serves the same purpose as the
timing resolution does for monitored variables. Thus, to ensure that a “fresh”
value of the controlled variable is used in the evaluation, we specify that the
RA for that controlled variable must be no larger than d + δR. Of course, it
may already have been specified to be more restrictive than that by the domain
experts. In such cases the more restrictive value is used.

5 Conclusion

We have presented precise definitions for timing requirements that include tol-
erances on the time durations. Our analysis, based on these definitions, shows
that it is possible to specify and verify critical timing requirements using simple
mathematics that is accessible to both software engineers and domain experts.
These definitions and related analyses can form the basis of a comprehensive,
practical approach to specifying timing requirements in high reliability real-time
and embedded systems.

In many safety-critical applications, when operating at the limits of the avail-
able hardware, sampling faster is simply not an option. Thus in order to meet all
system deadlines, we may be forced into a situation where ts max > 1

2 (δL+δR)
for a given requirement. We have shown that it is still possible to find imple-
mentable sampling intervals that satisfy the relevant timing requirements. Our
analysis also demonstrates that even low jitter in the sampling can prevent our
being able to design an implementation that satisfies its timing requirements.

Acknowledgments

The work presented in this paper is based on the efforts of many current and
former employees and consultants of Ontario Power Generation Inc., and AECL,
including: Glenn Archinoff, Dominic Chan, Peter Froebel, Rick Hohendorf, David
Lau, Jeff McDougall, Greg Moum, Mike Viola, and Alanna Wong. We also ac-
knowledge and thank David Parnas. This work reflects the successful application
of many of his pioneering and fundamental ideas regarding software engineering.

172 A. Wassyng, M. Lawford, and X. Hu

References

1. Wang, F.: Formal verification of timed systems: A survey and perspective. Pro-
ceedings of the IEEE 92 (2004) 1283–1307

2. Wulf, M.D., Doyen, L., Raskin, J.F.: Almost asap semantics: From timed models
to timed implementations. In: HSCC04. Vol. 2993 of LNCS. (2004) 296–310

3. Wulf, M.D., Doyen, L., Markey, N., Raskin, J.F.: Robustness and implementability
of timed automata. In: FORMATS04,. Vol. 3253 of LNCS., Grenoble (2004) 152–166

4. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Transactions
on Programming Languages and Systems 16 (1994) 1543–1571

5. Shankar, N.: Verification of real-time systems using PVS. In Courcoubetis, C., ed.:
CAV ’93. Vol. 697 of LNCS., Elounda, Greece, Springer-Verlag (1993) 280–291

6. Parnas, D.L., Madey, J.: Functional documents for computer systems. Science of
Computer Programming 25 (1995) 41–61

7. Janicki, R., Khédri, R.: On a formal semantics of tabular expressions. Science of
Computer Programming 39 (2001) 189–213

8. Wassyng, A., Janicki, R.: Using tabular expressions. In: Int. Conf. on Software and
Systems Engineering and their Applications. Vol. 4., Paris (2003) 1–17

9. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of
formal methods in an industrial project. In Araki, K., Gnesi, S., Mandrioli, D.,
eds.: FME 2003. Vol. 2805 of LNCS., Springer-Verlag (2003) 133–153

	Introduction
	Definitions
	The Requirements Model
	Notation
	Functional Timing Requirements
	Performance Timing Requirements

	Relationship Between Response Allowance and Timing Resolution
	Interaction Between Functional and Performance Timing Requirements
	Timing Resolution for Sustained Events
	Response Allowance for Sustained Events

	Conclusion

