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Abstract

In many Discrete-Event Systems (DES) both state and event information are of importance to

the systems designer. Logics such as Ostroff’s RTTL allow for the specification and verification

of a system’s state-event behavior. To make realistic problems amenable to analysis, a designer

must typically decompose the system into subsystems (modules) and use algebraic abstraction

(quotient systems) to obtain hierarchical system models that preserve the properties to be veri-

fied. In this paper we use state-event observational equivalence to perform model reduction for a

subclass of formulas of state-event linear temporal logics, with particular attention being paid to

a discrete time temporal logic that is a simplification of RTTL. The reduction technique allows

limited use of immediate operators.
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1 INTRODUCTION

In this paper we utilize algebraic state-event structures to model systems together with state-

event temporal logics as a means of specification. The main contribution of the paper is a com-

positionally consistent model reduction technique for a class of “state-event stuttering invariant”

temporal formulas. In particular, the method provides a means of “weak” model reduction for

a discrete time temporal logic that is a simplification of Ostroff’s RTTL [17]. We begin by jus-

tifying our choices of state-event and discrete time settings before outlining the sense in which

our model reduction technique is both weak and compositionally consistent.

While it is possible to represent systems using only state information or only event informa-

tion, there are many applications where the use of both state and event information is quite

natural. In our state-event setting, the use of labeled transition relations permits the appli-

cation of synchronous composition operators, thereby allowing interacting modules to perform

synchronous execution of shared events such as ticks of a global discrete clock [17]. The tick

events provide concurrent systems with a uniform notion of time, without the restrictiveness

of the clock driven models such as [8] where one transition is one time step. An example use

of tick events is Ostroff’s RG2 graphs [18] that are employed for model checking Real-Time



Temporal Logic (RTTL) properties. RG2 graphs use event information to reduce infinite state

timed systems to finite state systems while preserving the relative timing of state changes and

event outputs through the use of “tick” transitions. Discrete time models are sufficiently accu-

rate in many instances, particularly when dealing with digital control systems that sample their

inputs (eg. [13]). In [13] the authors argue that discrete time models such as Ostroff’s Timed

Transition Models (TTMs) [17] allow for a straight forward application of well known process

algebraic equivalences such as observation (bisimulation) equivalence from Milner’s CCS [16].

On the other hand continuous time extensions of CCS such as [21] lack the abstracting power

of a congruence relation like weak observation congruence [16] due to technical difficulties asso-

ciated with their continuous time semantics. The addition of event information is also crucial

for performing synchronous composition of systems and thereby performing supervisory con-

trol through the disablement of controllable events opening up the possibility of exploiting the

synthesis techniques of the supervisory control community [20] to meet temporal specifications.

While symbolic model checking techniques have proven effective for some very large systems

[5], these systems typically come from the digital hardware domain and have a great deal of

regularity in their state transition structure that can be exploited by the symbolic techniques to

obtain compact representations of large systems. To model check large systems lacking in sym-

metry or larger digital hardware systems, one must also perform some sort of model reduction.

In model reduction to facilitate the verification process, or even make the problem tractable, a

reduced model is obtained such that if the reduced model satisfies the temporal formulas under

investigation then the original system satisfies the temporal formulas. If the model checking of

a formula on the reduced model provides a definitive answer regarding the satisfaction of the

formula in the original system, we say the reduction technique is exact. If this model reduction

technique is performed so that the mutual satisfaction of formulas is only guaranteed for an

explicit finite set of formulas, we say that the method is a formula specific model reduction

technique. But if, as in this paper, the method always guarantees the mutual satisfaction of a

class of temporal formulas, we refer to the technique as being formula independent. In addition

to preserving the truth values of a particular class of temporal formulas, the model reduction

technique presented here is “compositionally consistent” in the sense that for any formula from

a defined class of formulas, the composition of two reduced models satisfies the formula iff the

composition of the two original systems satisfies the formula.

Our comparison of previous works with the work at hand will also make distinctions between

“strong” and “weak” model reduction techniques. In a strong reduction technique, a single

transition in the original system model results in a single transition in the reduced model. In

weak model reduction techniques, a single transition may be used by the reduced model to

represent a finite sequence of transitions in the original system model. The result is that weak

model reduction techniques tend to achieve a greater reduction in state size at the expense

of preserving the truth values of fewer formulas and requiring greater computational effort to

compute the reduced system. In concurrent systems built from interacting modules, we are

interested in specifying a module’s observable behavior or “interface” with other systems. If two

modules produce identical behavior at their interfaces and differ only in their internal behavior,

then they should satisfy the same interface specification. While many temporal logics have been

successfully used to specify systems’ behaviors, straight forward application of temporal logics

is often too discriminating with respect to the internal actions of concurrent systems. Since we

want to reason about observed events and changes in the system’s state output, we define a class



of state-event stuttering invariant formulas which is similar to the stuttering invariant formulas

of [15] with some key differences as a result of our state-event setting.

Methods based upon abstract interpretations such as [2], [7], provide examples of strong,

formula specific model reduction. Although they are “strong” techniques, these methods can

provide a significant reduction in state size by an appropriate choice of abstraction. The devel-

opment of the abstract model can be an iterative process, with the mapping between concrete

and abstract domains being refined when there is insufficient information at the abstract level to

determine the truth value of one of the formulas of interest. The creation of these abstractions

typically requires some insight from the systems designer.

All of the above formula dependent techniques suffer from an inability to guarantee composi-

tional consistency. Hence, to verify a composition of systems using these methods, one is forced

to compute the composition of the original systems and then perform model reduction for the

specific formulas on the (generally much larger) composite system.

For the logic CTL∗, a super set of linear and branching temporal logics, strong bisimulation

preserves the truth values of the standard satisfaction relation for all formulas [4],[11]. Strong

bisimulation equivalence is often too strong to provide a significant reduction in the state size

of the model. While this deficiency spawned the formula specific reductions described above,

it also has lead to formula independent methods that achieve greater reduction at the price of

preserving the truth values of a smaller class of formulas.

The formula independent methods of model reduction are typically based upon the algebraic

equivalences derived from the work of Hoare [10] and Milner [16]. In [12], Kaivola and Valmari

provide a method of “weak” model reduction for a nexttime-less linear temporal logic based

upon failure equivalence [10]. As one might expect, the algorithm is worst case exponential. The

paper [12] deals with state based models that are converted into event oriented models by labeling

transitions with the changes they cause in the states (similar to [13]). Though this equivalence

should work in a compositional setting, no parallel composition operators are considered. The

labeling of transitions by state changes makes it unclear how one would define such a parallel

composition operator. This is in contrast to the state-event setting of [9] where the separation of

state values and event labels provides the standard event synchronization parallel composition

operators. In [9] Graf and Loiseaux provide conditions under which abstractions preserving

safety properties expressible in a fragment of the branching time µ-calculus are compositionally

consistent. Their underlying model of state-event systems, which is equivalent to the State-

Event Labeled Transition Systems (SELTS) used in this paper, permits synchronous products

of systems. Their “strong” abstraction does not deal with fairness properties.

In our work we provide a method of “weak”, compositionally consistent model reduction for

state-event systems that preserves a class of safety and fairness properties related to systems’

observed behaviors. The state-event equivalence relation we use for our form of formula indepen-

dent model reduction is an extension of Milner’s weak observation (bisimulation) equivalence.

Kaivola and Valmari rejected weak observation equivalence for model reduction on the grounds

that it did not necessarily preserve fairness properties due to its inability to distinguish di-

vergences (infinite sequences of unobservable events). This is not a problem for logics such as

Ostroff’s RTTL which has the requirement that an (observable) tick of the global clock must

occur infinitely often in any legal computation.

In the next section we use SELTS to model modules that can be combined via parallel com-

position operators to create new modules and systems. We also define a simple (real-time) state-

event temporal logic that can be used for system specification and review the strong and weak



state-event equivalences of [14]. Section 3 demonstrated how strong state-event equivalence can

be used as the basis of a strong, compositionally consistent and computationally efficient model

reduction technique for our entire logic. Section 4 obtains a weak model reduction technique

for the subclass of state-event stuttering invariant formulas. While achieving greater reduction

through the restriction of the formulas to be preserved, the reduced models of this section are

still computable in polynomial time.

2 PRELIMINARIES

2.1 State-Event Labeled Transition Systems

SELTS extend Labeled Transition Systems (LTS) by adding a state output map. In our temporal

logic setting the state output will be the set of atomic propositions satisfied by a state. While

Kripke structures are generally used as the underlying model for temporal logic model checkers

[6] and are ultimately the model we would employ in any model checking algorithms, considering

structures that are extended by transition labels has two main benefits of incorporating system

component timing information and synchronization information as described in the introduction.

Definition 1 A State-Event Labeled Transition System (SELTS) is a 5-tuple Q = 〈Q,

Σ, RΣ, q0, P 〉 where Q is an at most countable set of states, Σ is a finite set of elementary actions

or events, RΣ = {
α
→ : α ∈ Σ} is a set of binary relations on Q, q0 ∈ Q is the initial state and

P : Q → P(AP ) is the state output map.

In the above definition if α ∈ Σ and q, q′ ∈ Q, then q
α
→q′ means that the SELTS can move

from state q to q′ by executing elementary action α. Any transition relation
α
→ ∈ RΣ can be

viewed as a function αQ : Q → P(Q), where P(Q) is the power set of Q. The function αQ

maps q to the set of states reachable from q via a single α transition in the SELTS Q. When

the SELTS to which we are referring is obvious from the context, we will simply write α(q).

For simplicity we assume Q 6= ∅ and |Q| is finite. This assumption is justified since we intend

to perform model reduction for finite state model checking. AP, AP1, AP2, . . . represent sets of

atomic propositions. The state output map takes each state to the set of atomic propositions

satisfied by the state (ie. P (q) ⊆ AP ).

We now define a synchronous composition operator to provide a mechanism for constructing

large systems consisting of interacting subsystems. In this version of the paper we deal with a

strictly event base synchronization operator. The synchronous composition operator we use here

is a straight forward extension to the SELTS setting of the parallel composition operator of [16].

Definition 2 Given SELTS, Qi = 〈Qi, Σi, R
i
Σ, qi0, Pi〉 with Pi : Qi → P(APi) for i = 1, 2

such that AP1 ∩ AP2 = ∅ and a set of events Σs ⊆ Σ1 ∩ Σ2, the Σs-synchronous product

of Q1 and Q2 is given by: Q1|[Σs]|Q2 := 〈Q1 × Q2, Σ1 ∪ Σ2, RΣ1∪Σ2
, (q10, q20), P 〉, where P :

Q1 × Q2 → P(AP1 ∪ AP2) is defined by P ((q1, q2)) = P1(q1) ∪ P2(q2) and the elements of

RΣ1∪Σ2
= {

α
→ : α ∈ Σ1∪Σ2} are binary relations over Q1×Q2 defined as follows: (q1, q2)

α
→(q′1, q

′

2)

iff

(i) α ∈ Σs, and qi
α
→q′i in Qi for i = 1, 2, or



(ii) α 6∈ Σs, q1
α
→q′1 in Q1 and q2 = q′2, or

(iii) α 6∈ Σs, q2
α
→q′2 in Q2 and q1 = q′1.

We now introduce some notation to aid in our discussion of generated and observed state-

event sequences. We define Σ− := Σ ∪ {−} and S := Q × Σ−. For s = (q, α) ∈ S, in addition to

the set of atomic proposition found in P (q) we associate the atomic proposition η = α. We refer

to η as the (next) transition variable. The computations of the SELTS Q will then be a subset of

the union of the set of all finite, non-empty, state-event sequences S+, and the set of all infinite

state-event sequences Sω. We also introduce the notation |σ|, which for σ = s0s1s2 . . . sn ∈ S+

is defined as |σ| = n and for σ ∈ Sω, |σ| = ω.

Definition 3 Given a SELTS Q, the set of computations of Q, denoted M(Q), is the largest

subset of S+ ∪ Sω such that for all σ ∈ M(Q), σ = s0s1 . . . sn = (q0, α0)(q1, α1) . . . (qn,−) ∈ S+

or σ = s0s1 . . . = (q0, α0)(q1, α1) . . . ∈ Sω and

(i) Initialization: q0 is the initial state of Q.

(ii) Succession: 0 ≤ i < |σ| implies αi ∈ Σ and qi+1 ∈ αQ(qi) (ie. qi
α
→iqi+1 in Q).

(iii) Diligence: αi = − iff i = |σ| and for all α ∈ Σ, αQ(qi) = ∅.

In Definition 3 conditions (i) and (ii) guarantee, respectively, that the computation starts

in the system’s initial state and the change from one state to the next via the given event is

possible in Q. (iii) states that the only finite sequences in M(Q) terminate in a state where no

transitions are possible and hence the final “event” of the state-event sequence is denoted by −.

(iii) differs from [15] since there is no idling transition in our setting. We allow finite sequences

of states to be computations and modify our definition of temporal semantics accordingly [1].

2.2 Temporal Logic of State-Event Sequences

We now give a brief summary of temporal logic and refer the reader to [15],[17],[1] for the full de-

tails. Following [17], the state-event sequences defined above will play the role of state sequences

in [15]. RTTL, as an example of a state-event temporal logic, is based upon Manna-Pnueli tem-

poral logic with additional proof rules for dealing with real-time (tick event) properties. To allow

us to express simple real-time properties we add a bounded until operator.

State formulas and state-event formulas are arbitrary boolean combinations of atomic pred-

icates such that state formulas do not include any transition predicates such as η = α while

state-event formulas may include such predicates. Neither contain any temporal operators. For

a state formula Fs and a state q, we use the standard inductive definition of satisfaction and

write q |= Fs when Fs is true in state q. Similarly the definition of satisfaction can be extended

to any state-event pair s ∈ S and any state-event formula Fse.

In the following inductive definition of temporal state-event formulas we will consider an

arbitrary (possibly finite) state-event sequence σ = s0s1 . . . = (q0, α0)(q1, α1) . . .. Henceforth σk

will be used to denote the k-shifted suffix of σ, sksk+1 . . . = (qk, αk)(qk+1, αk+1) . . ., when it

exists (ie. when |σ| ≥ k). For each α ∈ Σ we use the notation #α(σ, i) to denote the number

of α transitions that occur between the q0 and qi of the state-event sequence σ. If |σ| < i then

#α(σ, i) is undefined.



Definition 4 For temporal formulas F, F1, F2 and state-event sequence σ, the satisfaction

relation is defined as follows:

• If F ∈ AP is an atomic predicate, then σ |= F iff s0 |= F (ie. F ∈ P (q0))

• If F := η = α, then σ |= F iff (α0 = α)

• σ |= F1 ∨ F2 iff σ |= F1 or σ |= F2

• σ |= ¬F iff σ 6|= F

• σ |= ©F iff σ1 exists and σ1 |= F

• σ |= F1UF2 iff σ |= F2 or ∃k > 0 such that σk is defined, σk |= F2 and ∀i, 0 ≤ i < k, σi |= F1.

• σ |= F1U
α
[l,u]F2 iff σ |= F2 or ∃k > 0 such that σk is defined, σk |= F2 and ∀i, 0 ≤ i < k, σi |= F1

and l ≤ #α(σ, k) ≤ u.

The “next” operator © and “until” operator U are typically used to define additional opera-

tors (eg. the “eventually” operator 3F , denotes (true)UF , and the “henceforth” operator 2F ,

denotes ¬3¬F ). As an example temporal formula, consider F := 2©true. F is satisfied only by

those σ such that |σ| = ω. The Uα
[l,u] operator is just the until operator subject to the restriction

that for a formula F1U
α
[l,u]F2, F2 must become true after the lth occurrence of α and before the

(u + 1)th occurrence of α. In systems in which time is represented by discrete tick events the

U tick
[l,u] operator can be used to specify that a system meets hard time bounds. For example, any

system satisfying the formula (true)U tick
[0,2](η = β) will produce a β event before 3 time units have

passed.

Definition 5 Given a SELTS Q and a temporal formula F , we say that F is Q-valid, written

Q |= F , iff for all σ ∈ M(Q), σ |= F .

Fairness

Typically when a given transition structure is used as the model for a system, a designer

specifies some fairness constraints which a computation must satisfy if it is to be considered a

“legal” computation of the system. For example, all systems in RTTL have the fairness constraint

that the tick event must occur infinitely often (23(η = tick)); the system must not stop the

clock or permit an infinite number of non-tick transitions to occur between successive clock

ticks. Given a specification as a temporal formula F , one is not interested in verifying that all

the computations of the transition structure satisfy F but rather that all the legal computations

satisfy F . That is Q |= ¬Ffair ∨ F , where Ffair is the conjunction of all fairness constraints.

This method assumes that the set of legal computations considered is non-empty.

2.3 State-Event Equivalence

In this subsection we will summarize the results of [14]. State observations are provided by

the state output map P : Q → P(AP ). We assume that any change in the truth values of the

atomic predicates can be seen by an external observer, thus two states q, q′ ∈ Q produce the same

output observation precisely when P (q) = P (q′). Denote the set of all equivalence relations on

Q by Eq(Q). Any state output map P : Q → P(AP ) induces an equivalence relation ker(P ) ∈

Eq(Q), the equivalence kernel of P , given by (q1, q2) ∈ ker(P ) if and only if P (q1) = P (q2).

Eq(Q) becomes a complete lattice under the operations of relational intersection ∧ and union

of relational products ∨.



When each θ ∈ Eq(Q) is associated with the partition of Q corresponding to the cells of θ, the

lattice of equivalence relations is isomorphic to the poset lattice of partitions of Q with the partial

order θ1 ≤ θ2 iff each cell of θ1 is a subset of a cell of θ2. Thus we can talk interchangeably about

equivalence relations and partitions. When talking about partitions θ1 ∧ θ2 ∈ Eq(Q) (θ1 ∨ θ2)

is the coarsest (finest) partition finer (coarser) than both θ1 and θ2. We will denote the trivial

partitions {{q} : q ∈ Q} = inf(Eq(Q)) and {Q} = sup(Eq(Q)) by ∆ and ∇ respectively.

Strong State-Event Equivalence

In the strong state-event observational setting it is not only the state output sequences that are

important, but also the connecting events (relations). This is illustrated by the following three

sequences and their images under a state output map P : Q → P(AP ). Here r1, r2 ∈ P(AP ).

q11
τ
→q12

α
→q13

q21
α
→q22

τ
→q23

q31
τ
→q32

α
→q33











P
7→











r1
τ
→r1

α
→r2

r1
α
→r2

τ
→r2

r1
τ
→r2

α
→r2

(1)

Later τ will be used to denote unobservable events but for now we assume that all τ transitions

are observable. The first output sequence differs from the other two in the second state output

while the second and third differ in the ordering of their connecting relations or “events”. Thus

no two of these sequences of states and connecting events produce identical output sequences.

The class of compatible partitions plays the role of congruences for nondeterministic relations.

Definition 6 (cf.[3]) Given a SELTS Q = 〈Q,Σ, RΣ, q0, P 〉, a partition θ ∈ Eq(Q) is a com-

patible partition for Q if for all α ∈ Σ, whenever q, q′ are in the same partition block (cell) Ci,

then for any block Cj of θ, α(q) ∩Cj 6= ∅ iff α(q′) ∩Cj 6= ∅. The set of all compatible partitions

for the SELTS Q will be denoted by CP (Q).

From the above definition we see that for θ ∈ CP (Q) if (q, q′) ∈ θ and q
α
→q1 then there exists

q′1 such that q′
α
→q′1 and (q1, q

′

1) ∈ θ. In [14] it is shown that CP (Q) is not closed under the ∧

operation of Eq(Q) but is closed under the ∨ operator of Eq(Q). Thus for any F ⊆ CP (Q),

there is a unique supremal element θ∗ := sup(F) and θ∗ ∈ CP (Q). We are now in a position to

characterize a strong state-event observer for any given SELTS.

Definition 7 Given a SELTS Q = 〈Q,Σ, RΣ, q0, P 〉, the strong state-event observer, θs(Q) is

defined to be θs(Q) = sup{θ ∈ CP (Q) : θ ≤ ker(P )}.

When Q is clear from the context we will simply write θs for θs(Q). θs is the coarsest compatible

partition of Q that is finer than the equivalence kernel of P . Thus θs represents the minimum

information one needs about the current state to be able to predict all possible future state and

event outputs.

In [3], Bolognesi et al. provide an O(m log n) algorithm, where m is the size of RΣ (the number

of related pairs) and n = |Q|, for computing Milner’s strong observation equivalence ∼ for finite

state Labeled Transition Systems. The algorithm is based upon the RCP (Relational Coarsest

Partition problem) with an initial partition equal to ∇ = {{Q}}. This algorithm is easily adapted

to computing θs without any change in complexity (assuming ker(P ) is provided) by allowing



the initial partition for the RCP to be ker(P ). This close connection with ∼ leads us to write

q ∼se q′ when (q, q′) ∈ θs and say that q is strong state-event observation equivalent to q′.

Like congruences, compatible partitions can be used to construct quotient systems.

Definition 8 Given a SELTS Q := 〈Q,Σ, RΣ, q0, P 〉, for θ ∈ CP (Q) such that θ ≤ ker(P ), we

define the quotient system of Q by θ, Q/θ, as follows: Q/θ := 〈Q/θ, Σ, RΣ/θ, q0/θ, Pθ〉. Here

q0/θ denotes the cell of the partition θ containing q0 and Q/θ denotes the set of all cells of θ.

For α ∈ Σ, the transition relations of RΣ/θ are defined as αQ/θ(q/θ) = αQ(q)/θ = {q1/θ ∈ Q/θ :

q1 ∈ αQ(q)}. Pθ : Q/θ → P(AP ) is the unique map such that Pθ ◦ θ(q) = P (q).

Strong state-event observation equivalence can be extended to a relation ∼se between two

SELTS having disjoint state sets. This is done by forming the union of the transition systems

underlying LTS and the union of the original systems’ state output maps. The two SELTS are

then strongly state-event equivalent iff their initial states are strongly state-event observationally

equivalent in the union system.

As in [1], we obtain the result that when Q is reachable, Q/θs is the unique (up to isomorphism)

minimal state SELTS for which Q ∼se Q/θs. The equivalence of a system with its quotient system

together with the following result regarding the synchronous composition of equivalent systems

provides us with the means for performing strong, compositionally consistent, model reduction.

Lemma 1 Given SELTS Qi, i = 1, 2 and Ri, i = 1, 2. If Qi ∼se Ri, i = 1, 2 then for all Σs such

that |[Σs]| is defined (Q1|[Σs]|Q2) ∼se (R1|[Σs]|R2).

Weak State-Event Equivalence

Many Discrete Event Systems are event- rather than time-driven. In this case what is impor-

tant is the sequence of changes in the outputs, ignoring intermediate states and events that do

not generate any new outputs. Before applying this point of view in our state event setting, we

review how it is applied in the event setting of Milner’s weak observation equivalence. Again,

(event) observation equivalence becomes the special case of our setting in which ker(P ) = ∇.

Consider a LTS Q := 〈Q,Σ, RΣ, q0〉. In the style of [3], we assume there is a “silent event”

τ ∈ Σ that represents unobservable actions. We then define the set of observable actions to be

Σo := Σ − {τ}. This leads to some new relations on Q. Letting ε represent the empty string

(over Σ), we say that q moves unobservably (from an event perspective) to q′, written q
ε
⇒q′, iff

there exist q0, q1, . . . , qn ∈ Q, n ≥ 0, such that q = q0
τ
→q1

τ
→ . . .

τ
→qn−1

τ
→qn = q′. By convention,

for any q ∈ Q, q
ε
⇒q. For α ∈ Σo we can then say that q moves to q′ while producing event α,

written q
α
⇒q′, iff there exist q1, q2 ∈ Q such that q

ε
⇒q1

α
→q2

ε
⇒q′.

In the weakly observable setting the actions q
α
→q′ and q

α
⇒q′ are indistinguishable since both

produce the single event output α. For a given Q, these double arrow relations can be used

to define a new transition system, Q′ := 〈Q,Σ, R′

Σ, q0〉, where R′

Σ is defined as follows. For all

α ∈ Σo, αQ′

(q) = {q1 ∈ Q : q
α
⇒q1 in Q} and τQ′

(q) = {q1 ∈ Q : q
ε
⇒q1 in Q}.

Two states are weakly observation equivalent in Q, written q ≈ q′, iff the states are strongly

observation equivalent (q ∼ q′) in Q′ so ≈:= sup(CP (Q′)). Then ≈ represents the minimum

information you need about Q to know what choices of future observable events are possible.

We now generalize weak observation equivalence to our state-event setting. Given a SELTS

Q := 〈Q,Σ, RΣ, q0, P 〉, assume that the special event τ represents unobservable events. When



a τ transition occurs, it does not produce an output event, though it may cause a change in

the state output. For instance, if q
τ
→q′ and P (q) = P (q′) then there is no noticeable change in

the system output. If, on the other hand, q
τ
→q′ and P (q) 6= P (q′) then although no event is

seen to take place, a change in state output takes place when τ occurs. This leads us to define,

for the given SELTS Q, an unobservable move from q to q′, written q ⇒se q′ iff there exist

q0, q1, . . . , qn ∈ Q, n ≥ 0, such that q = q0
τ
→q1

τ
→ . . .

τ
→qn−1

τ
→qn = q′ and for all i = 0, 1, . . . , n

P (qi) = P (q) = P (q′)

Thus the relation ⇒se is the transitive closure of the τ relation within each cell of ker(P ).

By convention q ⇒se q always holds. While the ⇒se relation captures a relation which is in-

distinguishable from the case when q
τ
→q′ and P (q) = P (q′), we now wish to define a relation

which captures both this case and the case when q
τ
→q′ and P (q) 6= P (q′). We say that q moves

to q′ without an event output, written q
ε
⇒seq

′, iff q = q′, or there exist q1, q2 ∈ Q such that

q ⇒se q1
τ
→q2 ⇒se q′. Note by definition q

ε
⇒seq. The relation

ε
⇒se is the transitive closure of

τ
→

subject to the restriction that at most one boundary of the partition ker(P ) is crossed. If q
ε
⇒seq

′,

then no output events are generated and there is at most one change in the state output.

We now define a relation similar to
ε
⇒se except that it produces exactly one event output.

For α ∈ Σo, we say that q moves to q′ producing event output α, written q
α
⇒seq

′ iff there exist

q1, q2 ∈ Q such that q ⇒se q1
α
→q2 ⇒se q′. We emphasize that if a boundary of ker(P ) is crossed

when q
α
⇒seq

′, then it is only crossed by the α transition.

Consider the state event sequences (1) at the start of this subsection from the point of view

that only output (observable) events and changes in the state output are important. The first

two sequences are indistinguishable. In both sequences the event α and the state output change

from r1 to r2 occur simultaneously. Hence q11
α
⇒seq13 and q21

α
⇒seq23 and in both cases at the

output it appears as r1
α
→r2. In the case of the third string, the state output changes with the

unobservable transition τ and then the event α occurs. Thus q31
ε
⇒seq32

α
⇒seq33 but not q31

α
⇒seq33

and so at the outputs the third sequence appears as r1
τ
→r2

α
→r2. From a control point of view it

is important that an observer distinguish the first two sequences from the third. Assume that

r2 is a bad state output we wish to avoid and α is a controllable event that can be disabled as

in [20]. Disabling α prevents state output r2 from occurring in the first two sequences of (1) but

not in the third sequence!

With the above examples in mind, we are ready to define weak state-event observers.

Definition 9 Given a SELTS Q = 〈Q,Σ, RΣ, q0, P 〉, the weak state-event observer is given by

θw(Q) := sup{θ ∈ CP (Q′

se) : θ ≤ ker(P )}. Here Q′

se := 〈Q,Σ, R′

Σ, q0, P 〉 where R′

Σ is defined as

follows. For all α ∈ Σo, q
α
→q′ in Q′

se iff q
α
⇒seq

′ in Q and q
τ
→q′ in Q′

se iff q
ε
⇒seq

′ in Q.

θw always exists and is unique. Note that in Q′

se the transition relations are dependent upon

the SELTS state output map P so θw is not just Milner’s observation equivalence with a different

initial partition. When ker(P ) = ∇ then θw is ≈, Milner’s weak observation equivalence, since

Q′

se becomes Q′. Similar to strong state-event equivalence, when (q, q′) ∈ θw for a given Q, we

will write q ≈se q′, read “q is weak state-event observationally equivalent to q′”. The O(n3)

algorithm (n = |Q|) for computing Milner’s weak observation equivalence of finite state LTS

given in [3] can be easily adapted to provide an O(n3) algorithm for θw.

θw is the coarsest compatible partition of Q′

se that is finer than the equivalence kernel of P .

Thus for (q, q′) ∈ θw we have P (q) = P (q′) so q and q′ produce the same current state output.

Also q′ can generate state and event outputs that are indistinguishable from those produced



from q. θw represents the minimum information one needs about the current state to be able to

predict all possible future changes in state and future event outputs.

Since the weak state-event observer for a SELTS Q is just the strong state-event observer for

Q′

se, we are able to state similar results about weak quotient systems. In defining weak quotient

systems we use the intuition that in the weakly observable setting the actions q
α
→q′ and q

α
⇒seq

′

are indistinguishable.

Definition 10 Given an SELTS Q := 〈Q,Σ, RΣ, q0, P 〉, for θ ∈ CP (Q′

se) such that θ ≤ ker(P ),

Q//θ := Q′

se/θ is the weak quotient system of Q by θ.

Again we can extend weak state-event observation equivalence to a relation ≈se between

SELTS by forming the union of disjoint SELTS. When Q is reachable, Q//θw is a minimal state

SELTS such that Q//θω ≈se Q. Since weak observation equivalence ignores differences resulting

from unobservable τ transitions, below in the weak state-event version of Lemma 1 we require

that τ is not part of the synchronization set.

Lemma 2 Given SELTS Qi, i = 1, 2 and Ri, i = 1, 2. If Qi ≈se Ri, i = 1, 2 then for all Σs such

that τ 6∈ Σs we have (Q1|[Σs]|Q2) ≈se (R1|[Σs]|R2).

3 STRONG STATE-EVENT MODEL REDUCTION

In this section we assume that while we have perfect event information (all events including

τ events are observable), only partial state information is provide via the state output map.

The main result of this section is that strongly state-event equivalent systems satisfy the same

temporal formulas and hence we can use a systems strong state-event quotient system to verify

system properties. The compositional consistency of this model reduction technique then follows

immediately from the fact that strong state-event equivalence is a precongruence for the SELTS

|[Σs]| synchronous composition operator. While the results obtained in this section follow easily

from the truth preserving properties of strong bisimulation equivalence, the technique employed

in this section will be utilized in following section on weak state-event model reduction.

Unless stated otherwise, we henceforth assume that we are dealing with a SELTS Q =

〈Q,Σ, RΣ, q0, P 〉 where state output map P : Q → P(AP ), and AP is the set of atomic pred-

icates of interest. Given a computation σ, the strongly observed computation generated by σ is

given by applying P to the state of each state event pair in the computation. This provides a

map from sequences over Q×Σ− to sequences over P(AP )×Σ−, P∼ : Q×Σ− → P(AP )×Σ−.

That is, P∼((q0, α0)(q1, α1) . . . (qn, αn) . . .) = (P (q0), α0)(P (q1), α1) . . . (P (qn), αn) . . .. For C, a

set of computations, define P∼(C) := {P∼(σ) : σ ∈ C}.

Lemma 3 Let Qi = 〈Qi, Σ, Ri
Σ, qi0, Pi〉, i = 1, 2 be SELTS. If Q1 ∼se Q2 then P∼

1 (M(Q1)) =

P∼

2 (M(Q2))

The systems in Figure 1 demonstrate that the converse Lemma 3 is false. The transition

systems are shown with the state outputs generated by their respective state output maps P1

and P2 next to each state. The initial states of the two transition systems are marked by entering

arrows. In this case P∼

1 (M(Q1)) = P∼

2 (M(Q2)) = {r1
α
→r1

β
→r2

δ
→r2

δ
→ . . . , r1

α
→r1

β
→r2

γ
→r2

γ
→ . . .}



ββ

αα
α

β

γ

β

r2

r2

r1 r1

r1

r1

r2

r1

Q2Q1

r2
δ

γδ

Figure 1 Counter example to converse of Lemma 3.

but, as can be easily verified, Q1 6∼se Q2. By extending Hoare’s failure equivalence to a state-

event failure equivalence in a manner similar to the way that (event) observation equivalence was

extend to state-event observation equivalence, one obtains an equivalence which relates the two

systems of Figure 1. Unfortunately the computation of failure equivalence is PSPACE-complete

making it unlikely that an efficient algorithm could be found to compute any extension to

the state-event setting. On the other hand strong state-event equivalence is O(n log m) making

state-event equivalence preferable as a practical model reduction technique.

As an immediate consequence of Lemma 3, we obtain the following result.

Theorem 1 Given two SELTS as above, if Q1 ∼se Q2 then for any temporal formula F , we

have Q1 |= F iff Q2 |= F .

The above theorem allows us to use a system’s strong state-event quotient system to reason

about the state output and event behavior of the system since Q ∼se Q/θs. Lemma 1 together

with Theorem 1 then guarantees that strong state-event equivalence can be used for composi-

tionally consistent model reduction of SELTS for all formulas in state-event temporal logic.

4 WEAK STATE-EVENT MODEL REDUCTION

We now turn our attention to the case with only partial event observations in addition to the

partial state observations provided by the state output map. We assume that all unobservable

transitions are labeled by τ . We want to reason about the sequences of observed events and

changes in state output. To this end we define a projection from computations to weakly observed

computations similar to the strong projection of the previous section. This time we delete a state-

event pair from the strongly observed computation if the event is an unobservable τ transition

and the state output remains unchanged in the next state. Since weak state-event equivalence

ignores system information regarding sequences of unobservable events that do not cause state

changes, the equivalence can only be used for model reduction with a restricted set of temporal

formulas. This restricted class, which we will call the class of State-Event Stuttering Invariant

(SESI) formulas, is characterized as those formulas that are satisfied by a computation iff the

projected computation satisfies the formula. We identify a set of SESI formulas, including some



formulas making use of immediate operators (©, η =). The main result of the section states that

weakly state-event equivalent systems satisfy the same subset of SESI formulas.

4.1 Weakly Observed Computations and Weak Satisfaction

In [15] the authors use a state-based projection operator to develop a state-only version of weak

satisfaction. They define the reduced behavior of a computation σ via a two step process that

amounts to first applying P∼, the strong computation projection of the previous section, and

then replacing uninterrupted sequences of identical “states” with a single copy of the state. In

our case we are dealing with sequences of state-event pairs rather than just sequences of states.

We cannot simply apply P∼ and then replace subsequences of uninterrupted state-event pairs

by a single state-event pair since in this case important information relating state changes and

event observations would be lost. Consider the three state-event sequences shown below where

tick is the event representing the passage of one second on the global clock.

(q0, τ)(q0, τ)(q0, tick)(q0, α)(q1, tick) . . .

(q0, τ)(q0, tick)(q0, tick)(q0, α)(q1, tick) . . .

(q0, tick)(q0, τ)(q0, tick)(q0, τ)(q0, α)(q1, tick) . . .

If we assume that the state output map is the identity map, then following [15] the first and sec-

ond sequences would result in the same reduced computation: (q0, τ)(q0, tick)(q0, α)(q1, tick) . . .,

while the third sequence is its own reduced computation. This would lead us to believe that in

the first two cases the system delays for one second and then changes state from q0 to q1 via an

α transition when, in fact, the second and third computations do not make the α transition for 2

seconds. While we want our projection operator to distinguish the first case from the other two,

the second and third computations differ only by unobservable transitions that do not change

the state output. Upon rewriting the three sequences in terms of the notation of weak state-event

observation equivalence, the differences and similarities in observed behaviors become apparent:

q0
τ
→q0

τ
→q0

tick
→ q0

α
→q1

tick
→ . . .

q0
τ
→q0

tick
→ q0

tick
→ q0

α
→q1

tick
→ . . .

q0
τ
→q0

tick
→ q0

τ
→q0

tick
→ q0

α
→q1

tick
→ . . .















P
7→















q0
tick
⇒seq0

α
⇒seq1

tick
⇒se . . .

q0
tick
⇒seq0

tick
⇒seq0

α
⇒seq1

tick
⇒se . . .

q0
tick
⇒seq0

tick
⇒seq0

α
⇒seq1

tick
⇒se . . .

To an external observer the second and third computations would produce the same observed

state-event sequence: (q0, tick)(q0, tick)(q0, α)(q1, tick) . . .. The projection defined below has the

effect of replacing all the state-event pairs making up a q1
α
⇒se transition with a single state-event

pair q1
α
→.

Definition 11 Given a SELTS Q with state output map P : Q → P(AP ) and σ = q0
α0→q1

α1→ . . .,

σ ∈ M(Q), the weakly observed behavior of σ is denoted by P≈(σ) and defined inductively as:

P≈(q0) = P (q0)

P≈(q0
α0→q1

α1→ . . . qn
αn→qn+1) =

{

P≈(q0
α0→q1

α1→ . . . qn), if αn = τ ∧ P (qn) = P (qn+1)

P≈(q0
α0→q1

α1→ . . . qn)
αn→P (qn+1), otherwise



τ
β βα α

Q2Q1

r r r r

Figure 2 Q1 ≈se Q2 but P
≈

1 (M(Q1)) 6= P
≈

2 (M(Q2))

For C a set of computations, we define P≈(C) := {P≈(σ) : σ ∈ C}.

Example 1 In this example we consider the weak state-event observations generated by a SELTS

with identity state output map P := IQ where IQ : Q → Q.

σ1 = (q0, τ)(q0, α)(q0, τ)(q1, τ)(q1, β)(q2, α) . . . = q0
τ
→q0

α
→q0

τ
→q1

τ
→q1

β
→q2

α
→ . . .

P≈(σ1) = q0
α
→q0

τ
→q1

β
→q2

α
→ . . . = (q0, α)(q0, τ)(q1, β)(q2, α) . . .

σ2 = (q0, τ)(q0, τ)(q0, τ) . . . = q0
τ
→q0

τ
→q0

τ
→ . . .

P≈(σ2) = q0 = (q0,−)

In P≈(σ1) all the τ transitions are eliminated except for the q0
τ
→q1 transition since this τ

transition can be inferred from the external observer’s observation of a state change from q0 to

q1 without any observed event. In this case we say that τ is an implicitly observed transition.

The computation σ2 is initially observed to be in state q0 and then produces no state change

or event observations. This is reflected in P≈(σ2) as (q0,−), the observed state output with no

defined transition. Thus an infinite state-event sequence can result in a finite weakly observed

sequence.

As the basis of weak state-event model reduction, we would like to obtain a result similar

to Lemma 3 which stated that strongly state-event equivalent systems result in the same set

of strongly observed computations. In this case we have to be careful with our treatment of

the unobservable transitions that are erased by the weak projection. Consider the two weakly

state-event equivalent systems shown in Figure 2. Here r ∈ P(AP ) is the same state output

for all the systems’ states. In this case P≈

1 (M(Q1)) = {r
α
→r

β
→r

β
→r

β
→ . . .} but P≈

2 (M(Q1)) =

{r, r
α
→r

β
→r

β
→r

β
→ . . .}. The above systems agree upon their trajectories that produces an infinite

number of observations. It is the infinite sequence of unobservable τ ’s that Q2 can produce that

causes the discrepancy. This observation is formalized in the following Lemma.

Lemma 4 Given two SELTS, Qi = 〈Qi, Σ, Ri
Σ, qi0, Pi〉, where Pi : Qi → P(AP ), i = 1, 2, if

Q1 ≈se Q2 then P≈(M(Q1)) ∩ (P(AP ) × Σ)ω = P≈(M(Q2)) ∩ (P(AP ) × Σ)ω.

The above lemma states that weakly state-event equivalent systems produce identical infinite

sequences of observations, though equivalent systems may disagree on sequences that produce

finite observations. In RTTL and the simplified real-time state-event logic presented here, the

fairness constraint 23(η = tick) guarantees that the clock ticks infinitely often in all legal

computations (ie. all legal computations result in infinite sequences of observations). Thus if

we can identify a subclass of formulas with truth values that are only dependent upon the

observations a computation produces, the above lemma will allow us to use weak state-event

equivalence to perform model reduction for the subclass.



As a first step towards obtaining a subclass of temporal formulas with truth values that are

dependent upon the weakly observed computations, we will define weak satisfaction. While our

main interest in introducing weak satisfaction is to obtain a subclass of formulas for weak state-

event model reduction, weak satisfaction also provides a means of specifying behavior of weakly

projected computations and hence of specifying the behavior of the system at its outputs or

interface with other modules.

Definition 12 Given a SELTS Q and a temporal formula F , a computation σ ∈ M(Q) is said

to weakly satisfy F , written σ |=≈ F , iff P≈(σ) |= F . The SELTS Q weakly satisfies F , written

Q |=≈ F , iff P≈(M(Q)) |= F .

Example 2 For σ1 and σ2 as in Example 1 we have σ1 |=≈ η = α∧q = q0 while σ2 6|=≈ 2©true.

In the case of σ1 we are stating that the first observed action of the computation is an α transition

that does not change the state output. In the case of σ2 we are stating that the computation

does not produce an infinite number of observations. A computation σ weakly satisfies 2© true

if the weak projection of the computation is an infinite sequence. Thus σ |=≈ 2© true becomes

a concise way of say that σ produces an infinite number of observations.

Theorem 2 Given two SELTS, if Q1 ≈se Q2 then for any temporal formula F we have Q1 |=≈

¬(2 ¦ η = tick) ∨ F iff Q2 |=≈ ¬(2 ¦ η = tick) ∨ F .

The implication of the above theorems is that weak state-event equivalence can be used

to perform model reduction for any real-time state-event temporal logic formula provided the

satisfaction relation of interest is weak satisfaction. In general we are interested in performing

model reduction for the standard satisfaction relation |=. In the following subsection Theorem 2

will be the key to developing model reduction results for the subclass of SESI formulas under

the standard satisfaction relation.

4.2 State-Event Stuttering Invariance and Model Reduction

We now consider those formulas with truth values that are robust with respect to unobservable

τ transitions, ie. those formulas which have the property that for all computations σ

σ |=≈ F iff σ |= F (2)

We call such formulas State-Event Stuttering Invariant (SESI). Equation (2) provides the link

relating satisfaction to weak satisfaction that will be used to extend Theorem 2 to standard

satisfaction of SESI formulas. We now try to identify some SESI formulas before providing a

formal statement that allows us to build more general SESI formulas.

Let Fs be a state formula. Then σ |=≈ Fs iff σ |= Fs since P≈ does not affect the value of the

initial state output. The case for general state-event formulas is complicated by references to the

(next) transition variable η. Considering Example 1 we see that σ1 |= (η = τ) but σ1 |=≈ (η = α)

(ie. the first transition of the computation is a τ transition but the first transition of the weakly

observed computation is an α event). This difference results from the weak state-event projection



operator deleting all τ transitions that do not cause any change in the state output. The formula

¦(η = α) states that eventually an α transition occurs so clearly for any α 6= τ , σ |= ¦(η = α)

iff σ |=≈ ¦(η = α) since P≈ does not erase any non-τ transitions. With a similar argument one

can also show that for p ∈ AP and α ∈ Σ − {τ}, the formula 2[(η = α) → ©p], stating that in

the state following an α transition p always holds, is SESI. Such “base” formulas can be used to

build up more complex temporal formulas as outlined below.

Lemma 5 Let σ be a computation and F, F1, F2 be SESI formulas. Then for α ∈ Σ−{τ}, k ∈ N

we have ¬F , F1 ∨ F2, F1UF2 and F1U
α
[l,u]F2 are all SESI formulas.

From the above discussion we see that all non-immediate formulas, formulas composed solely

of state predicates together with the ∨,∧,U ,Uα
[l,u] operators (ie. that do not contain the next

operator © or next transition variable η) are SESI. Additionally, a formula of the form 2 ¦ (η =

tick) is SESI since ¦(η = tick) is SESI and 2F = ¬ ¦ F . We can now extend Theorem 2 to

provide results about |= for formulas that belong to the subclass of SESI formulas.

Theorem 3 Let F be an SESI formula. If Q1, Q2 are SELTS such that Q1 ≈se Q2 then Q1 |=

¬(2 ¦ η = tick) ∨ F iff Q2 |= ¬(2 ¦ η = tick) ∨ F .

Recalling from Section 2 that Q ≈se Q//θw, where Q//θw is the weak state-event quotient

system of Q, Theorem 3 allows us to model check SESI formulas on a system’s quotient system

and infer the result for the original system. Additionally, Lemma 2 guarantees that our model

reduction technique is compositionally consistent.

5 CONCLUSION

The main result of the paper is the development of a weak, compositionally consistent model

reduction technique for a simple linear, discrete time temporal logic similar to RTTL [17]. The

method is applicable to the subclass of State-Event Stuttering Invariant (SESI) formulas, which

includes some formulas containing immediate operators.

The compositional consistency of the method is significant in that it allows one to avoid com-

puting massive synchronous products before performing model reduction, by first doing model

reduction on the component subsystems and then forming their synchronous product. Typically

synchronous products grow as the product of the subsystem’s state spaces so state reductions of

subsystems have a multiplicative effect. In [19] this method’s compositional consistency has been

applied to a simple industrial real-time controller software verification problem, achieving close

to an order of magnitude reduction in the time required to model check the system requirements.
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