
Correct Safety Critical Hardware Descriptions
via Static Analysis and Theorem Proving

Nicholas Moore, Mark Lawford
McMaster Centre for Software Certification, McMaster University,

1280 Main St. W, Hamilton, Ontario, L8S 4K1 Canada
{ moorenc, lawford }@mcmaster.ca

Abstract—We propose a new method for embedding
Bluespec SystemVerilog descriptions in PVS’s higher-
order proof logic. In contrast to previous embeddings,
our approach accepts a greater subset of BSV and pro-
vides a far greater degree of automation. Our custom
software tool transforms the action-oriented semantics
of BSV to a state-centric Kripke structure, enabling
automated theorem proving. We demonstrate our ver-
ification technique by applying it to one of the function
blocks of the IEC 61131-3 standard for PLCs.

I. Introduction

Industrial processes everywhere are facing the challenges
of aging equipment. Field Programmable Gate Array
(FPGA) based control systems are being adopted to re-
place aging hardware, increasing performance, reducing
power consumption, and increasing flexibility. However,
safety critical applications must still meet regulatory re-
quirements, including formal verification. We propose a
methodology for the verification of FPGA designs in Blue-
spec SystemVerilog (BSV) [1] using the Prototype Veri-
fication System (PVS) [2]. We show that logical models
mechanically extracted from BSV designs may demon-
strate consistency between the original BSV description
and formal requirements specifications. Model extraction
is performed automatically by a translation tool. A case
study of our proposed method is presented.
Preliminary information will be presented in §II. In §III

we describe our translation algorithm. We describe the
proof process in §IV, including the use of tabular spec-
ifications to automatically generate proof sub-goals. We
present our translation tool BAPIP (Bluespec And PVS
Interlanguage Processor) in §V, and discuss its structure,
extensibility and applicability. We present our case study
in §VI, examining a successfully verified FPGA based
PLC function block. Finally, we discuss related research
in §gVII and future work in §VIII.

II. Preliminaries

A. BSV
Bluespec SystemVerilog is a hardware description lan-

guage (HDL) that originated as a Haskell library [3]. BSV
designs can be produced more quickly and with fewer
bugs than less abstract languages such as Verilog, which it
compiles to [3]. Unlike other HDLs, BSV modules interact
via atomic transactions, implemented as method calls.

Bluespec modules are composed of submodules and
actions. Actions control how submodules interact, where
memory elements such as registers are also submodules.
BSV considers register read and write operations to be
methods of register submodules, though syntactic sugar is
still provided. There are two types of actions: rules, which
are executed (or “fire”) when permitted by the action
arbitration mechanism, and methods, which are invoked
by a module’s parent module. Actions are composed of a
guard and an set of statements, where a guard is a Boolean
expressions that controls action execution. Actions may
execute once per clock cycle, must execute completely, and
all the statements in an action execute concurrently and
independently. Each memory read returns the previous
clock cycle’s value, so race conditions are avoided.
Action arbitration is complex, and merits special at-

tention. On any given clock cycle, all actions are either
active or inactive. Rules have their guards evaluated every
clock cycle to decide whether they are active. Methods are
active only if invoked by the supermodule. Once invoked,
methods are treated as actions of the highest precedence.
Active actions must succeed in arbitration in order to fire.
If there exist no conflicts between active actions, all active
actions fire. Two actions are in conflict if the intersection
of the sets of registers they write to is non-empty. If there
are conflicts and action precedence has been specified, the
action with higher precedence will pre-empt the action
with lower precedence. If no precedence is specified, the
action which fires will be selected arbitrarily.
Consider a module containing two rules (A and B)

which write to the same register, and have guards which
are not mutually exclusive. When scheduling these rules,
if both rules are active, the BSV arbitrator will make a
deterministic but unpredictable scheduling decision. How-
ever, if a descending urgency attribute is added which
states that A has higher priority than B, A will pre-empt
B. B will now fire only if A cannot.
To logically model BSV descriptions, we first consider

memory-holding submodules to contain some value at
every point in time, which we refer to as state. We
also consider actions a system of transitioning between
different states. Therefore, BSV descriptions may be de-
scribed logically as Kripke structures as proposed by [4].
We formally define a Kripke structure K = (S, S0, T, L)

2017 IEEE/ACM 5th International FME Workshop on Formal Methods in Software Engineering

978-1-5386-0422-9/17 $31.00 © 2017 IEEE

DOI 10.1109/FormaliSE.2017..11

58

where S is the set of program states, S0 is the initial
state, T ⊆ S × S is a left-total transition relation and
L : S → 2AP where AP is a set of atomic propositions.
In BSV it is mandatory to initialize declared state ele-

ments. This arrangement of memory comprises the initial
state S0. Rules and methods, along with the action arbi-
tration semantic, create the state transition function. This
logical approximation of BSV descriptions is of central
importance to the PVS embedding presented in [4] and
forms the logical framework for our own translation.

B. PVS
Prototype Verification System (PVS) is an open source

emacs plugin developed by SRI International [5]. It con-
sists of a specification language and interactive proof
environment, providing both high mechanization and the
expressive power of higher order logic. The proof envi-
ronment automatically generates sub-goals and counter-
examples, and produces highly legible proofs. In the past,
PVS has been used to successfully verify safety critical
embedded systems, such as the AAMP5 avionics micro-
processor [6], and shutdown systems for the Darlington
nuclear power plant [7]. Use of PVS to verify our BSV
modules will be presented in §IV.
C. Comparison with Previous Approaches
The BSV training materials present two semantics for

the execution of BSV modules, a timed semantic for hard-
ware clock cycles, and an untimed semantic for execution
steps [8], [9]. Under the untimed semantics one action
executes atomically per execution step [8]. The action
is selected arbitrarily, but deterministically. The timed
semantics, discussed in §II.A, relate untimed steps to
hardware clock cycles by iterating the untimed semantics
until no actions remain which are eligible for execution.
Richards and Lester [4] first presented the logical model

of BSV descriptions presented in §II.A. Their embedding
of BSV in PVS attempted to minimize the syntactic differ-
ence between BSV and PVS, in order to facilitate manual
translation between BSV and PVS. As a result, they
present as transition predicates the disjunction of monadic
representations of all actions in a module. This approach
avoids modelling BSV’s action arbitration semantics, al-
lowing them to prove theorems for one transition during
which any combination of rules can be invoked. While it
is possible to prove certain types of theorems in this man-
ner [4], this approach includes many possible execution
patterns which are precluded by the original hardware
description. The untimed semantics are not accurately
modelled, because multiple actions may execute under
universal disjunction, and the timed semantics are not
accurately modelled, as no attempt is made to replicate
the exclusionary properties of action arbitration. If the
transition is a relation, a single pre-state may have many
equally valid post-states. Our approach is to enforce the
constraint of BSV descriptions until a single transition

function may be obtained. As a result, our transition pred-
icates map to hardware clock cycles, allowing us to assert
claims regarding timing characteristics and the behaviour
of the hardware synthesized from a BSV description.

III. The Semantic Encoding of BSV in PVS

We propose BAPIP, a translation tool encoding the
translation presented in this section. The product of this
encoding is a set of four PVS theories: type definition,
state, transition, and top-level theories. The generation of
these theories is described below. See [10] for full code
examples of our case study.

A. Generating a Type Definitions Theory

BAPIP currently supports BSV type synonyms and
enumeration types, and Int, UInt, and Bit types are
included by default. Data types in BSV with declared
bit-widths become sub-ranged integer types in PVS. Due
to similar syntax, BSV type synonyms and enumerations
require only minor syntactic alteration. While it is possible
to include enumeration types in type classes in BSV, these
distinctions are unnecessary for PVS’s logical encoding.

BSV
〈type synonym〉 typedef 〈BSV type〉 〈name〉 ;
〈enumeration〉 ::= typedef enum { 〈e-list〉 } 〈name〉 ;

| typedef enum { 〈e-list〉 } 〈name〉 deriving (
〈typeclass list〉) ;

PVS
〈type synonym〉 ::= 〈name〉 : type = 〈PVS type〉
〈enumeration〉 ::= 〈name〉 : type = {

〈enumeration list〉 }

B. Generating a State Theory

The state declared for each module in a BSV module
creates a record type in PVS. Instantiated submodules
are fields of the state record, typed with the state type of
the submodule being instantiated. A module instantiation
predicate is also provided to initialize modules (see §IV).
In §II.A, interpretation of BSV descriptions as Kripke
structures was discussed. The state record type corre-
sponds to S in our Kripke model, and the instantiation
predicate corresponds to S0.

59

BSV
Reg#(Int#(16)) foo <- mkReg(5);
Reg#(Bool) bar <- mkReg(False);

PVS
MyModule : type =

[# foo: Int(16)
, bar: bool #]

MyModule_var : var MyModule

mkMyModule (MyModule_var) : bool
= MyModule_var‘foo = 5
AND MyModule_var‘bar = False

The code segments above illustrate the conversion from
BSV state declarations to a PVS state record and instan-
tiation predicate.

C. Generating a State Transition Theory
To generate state transition predicates, BSV’s rule-

centric semantics must be transformed into register-centric
update expressions. While it is possible to organize BSV
hardware descriptions such that each action is mutually
exclusive, this can be an impractical limitation. Allowing
the action arbitrator to resolve conflict arbitrarily is also
undesirable in safety critical applications. BAPIP there-
fore exposes conflicts unaddressed by manual precedence
assignment. The descending urgency and preempts at-
tributes manually assign precedence, and must be used
to resolve conflicts, or BAPIP will not continue model
extraction.
Algorithmically, for each module and submodule all ac-

tions are collected. Each action performs write operations
on certain registers, the names of which are collected.
Action precedence is applied to produce, for each action, a
list of actions which pre-empt it, and a list of actions it pre-
empts. Guard expressions for each action are augmented
with pre-emption information. For each register, a list of
actions writing to it is produced. A binary if-statement
tree is generated that re-creates the pre-emption structure,
including expressions being written to the register. From
here, data is marshalled into “transition tables,” as defined
by the following Haskell data structure:

data TransitionTable
= TransSubModule Name [TransitionTable]
| TransRegister Name TransTree deriving (Show)

data TransTree = Stem Guard TransTree TransTree
| Leaf Expression deriving (Show)

Transition tables map to record update syntax, and
sub-tables for submodules correspond to nested record
updates. The transition predicate itself accepts at least
two arguments, a pre state and a post state, as well as any

arguments required by top-level method calls. The transi-
tion predicate is formulated as a test of equality between
the post state and an updated pre state. If this predicate
is used as an antecedent during theorem construction, it
asserts the existence of a transition between the states
used as arguments. The transition theory also contains
functions which access state records in the same manner
as the declared BSV access methods, which may be used
to reference module output values.

BSV
(* descending_urgency =

"auto_stop, inc" *)

rule auto_stop (foo == 5);
bar <= false;

endrule

rule inc (bar);
foo <= foo + 1;

endrule

method Action start() if (!bar);
bar <= true;
foo <= 0;

endmethod

PVS
MyModule_t (pre, post) : bool =

(post = pre with
[foo := if (bar AND

(NOT (foo == 5)))
then pre‘foo + 1
else pre‘foo

endif
, bar := if (foo == 5)

then False
else pre‘bar

]
)

MyModule_t_start
(pre, post) : bool =

(post = pre with
[foo := if (NOT bar)

then 0
else if (bar AND

(NOT (foo == 5)))
then pre‘foo + 1
else pre‘foo

endif
, bar := if (NOT bar)

then True
else if (foo == 5)

then False
else pre‘bar

]
)

The above is an example transition, using the registers
presented in §III.B. There are two rules, auto stop and

60

inc, as well as a method start. A descending urgency rela-
tionship is declared, specifying that auto stop has higher
priority than inc. This module will wait for start() to be
invoked, at which point foo is reset. It will be incremented
every subsequent clock cycle until reaching a value of 5.
The start() method can only be invoked if bar is false.
Two transition predicates are produced:

MyModule t start and MyModule t. These are
transitions during which start() is invoked and not
invoked respectively. If start() is not invoked, the value
of foo is incremented if the guard of inc is true and
the guard of auto stop is false. This is because inc is
lower priority, and will not fire if it is pre-empted by the
higher priority rule auto stop. On the other hand, bar
is written to only by auto stop, the highest priority
rule, and therefore the state of inc’s guard is irrelevant to
the value bar receives. The transition in which start()
is invoked is the same transition, but with one additional
action entering arbitration. start() behaves like a rule,
but enters arbitration with the highest priority, therefore
potentially blocking the execution of both other rules.

D. Generating the Top-Level Theory
Some elements of the logical framework used by Pang

et al. [11] have been adapted for BAPIP, such as the
“tick” type. When parameterized by the hardware clock
period, “tick” organizes inputs and states into a timeline.
By making state and input variables functions from “tick”
to some other type, a specific value of “tick” (i.e., a
specific point in time) produces the value of the input or
state at that time. This, in combination with functions
allowing traversal of the timeline, allows us to relate state
transitions to real time, a typical requirement of formal
analysis of safety critical systems.

IV. Proving the Correctness of BSV

Implementations

In order to prove the correctness of a BSV description,
we must show that it conforms to its formal requirements,
and we must demonstrate consistency. Consistency here
being used in the same manner as [12]. In order to avoid
the “False implies everything” problem, we must show
that, for all pre-states, there exists some post state. If
this is true, then the transition predicate we take as an
antecedent can never be false by means of having no
viable post state. Consistency is equivalent to the left-total
property expressed in §II.A.
To construct a theorem determining functional cor-

rectness, we must invoke our transition predicate as an
antecedent. It is also necessary to know what constitutes
correct behaviour. In our case studies, the modules we
implement have formal tabular requirements expressed in
PVS. Requirements may be used to manually construct a
set of pre and post condition pairs in the style of Hoare
Logic. For each pair of pre and post conditions, a theorem
(or sub-theorem) may be constructed, using pre conditions

Fig. 1: The LIMITS ALARM function block, as de-
scribed by the IEC61131-3 specification

as antecedents and post conditions as consequents. If a
proof exists for each pair, we have demonstrated that the
module under examination conforms to its requirements.
However, this process may become tedious for large mod-
ules. We also present a method for using PVS to generate
the necessary pre and post conditions automatically from
tabular requirements expressed in PVS.
The theorems evaluating functionality have been proven

by the (grind :defs explicit) proof strategy. This
variant of (grind) limits redundant term rewriting. Spe-
cific proof times, are discussed in §V.
Proving consistency theorems requires minimal user

interaction. In addition to generating the consistency the-
orems, BAPIP also generates proofs of these theorems
using PVS’s ProofLite proof scripting extension [13]. Con-
sisting of the sequential skolemization, instantiation of
the existentially quantified post state, and invocation of
(grind), these proofs need only be installed using the
emacs command install-prooflite-script. They may
be verified by invoking the interactive proof environment
for the corresponding theorem and re-running the existing
proof.

V. Case Study: Limits Alarm

Limits Alarm is a variation of the Hysteresis block,
which triggers an alarm if the value being tested exceeds
either an upper or a lower limit. It is composed of two
hysteresis blocks, one which tests the upper threshold,
the other testing the lower threshold. The Limits Alarm
block has three corresponding output signals for the high
threshold (QH), the low threshold (QL), and the global
alarm signal (Q). The FBD implementation of Limits
Alarm presented in [14] is shown in Fig. 1, as well as
the tabular specifications reproduced in Fig. 3, which
originally appeared in [11]. This block is commonly used
to make binary decisions based on analog data streams,
and features prominently in control systems such as the
classical thermostat example, and safety critical control
applications.
The Limits Alarm function block is constructed from

two Hysteresis blocks as shown in Fig. 1. Hysteresis is
a common behaviour of threshold-style control systems,

61

Condition Q
XIN1 > (XIN2 + EPS) True

(XIN2 − EPS) ≤ XIN1 ≤ (XIN2 + EPS) NC
XIN1 < (XIN2 − EPS) False

assuming EPS > 0

Fig. 2: Hysteresis Tabular Specification

where the threshold value for activating some behaviour
is higher than the threshold for deactivation by some
“hysteresis”. This stabilizes the response against noise,
preventing rapid oscillations between active and inactive
states that could damage physical systems and actuators.
The IEC 61131-3 [14] specification describes a standard
behaviour for hysteresis software components used in
programmable logic controllers. This behaviour has been
formalized in the tabular expressions in Fig. 2. These
tabular expressions originally appeared in [11].
In this specification, XIN1 is the data being tested,

XIN2 is the threshold value being tested for, and EPS
is the hysteresis margin. Values for XIN1, XIN2, and
EPS are passed into the module via an input method,
which also calculates the resulting value of Q, and registers
it in memory. The value is then available to be read via
an access method on the subsequent clock cycle. Though
the IEC 61131-3 [14] specifies Real data types for XIN1,
XIN2, and EPS, both real and integer versions of the
block were developed as separate BSV modules, and both
were proven consistent with the tabular expression. The
integer version is available at [10].
Here, X is the signal under test, H is the high threshold,

L is the low threshold, and EPS is the hysteresis margin.
This block, expressed in BSV, may be found at [10].
Some concessions to implementation were made during the
development of the correctness proof for this block. The
integer implementation of this block highlights a disparity
between the way Limits Alarm and Hysteresis handle
thresholding. In the case of Hysteresis, the deadband is
X ± EP S

2 , with X + EP S
2 being the upper limit, and

X − EP S
2 being the lower. In Limits Alarm, H is the upper

limit of the upper threshold, and the lower limit of the
upper threshold is H − EPS. In order to use a Hysteresis
block to produce this effect, the threshold value it is given
must be H − EP S

2 , and the hysteresis margin must be
EP S

2 , critically introducing division operators. For real
data types this poses no problem, as real division is not
subject to round-off error. Integer division, on the other
hand, does introduce round-off error. In order to prove
our integer implementation, it was necessary to revise our
requirements such that they reflected this. Some algebraic
simplifications were reversed to re-introduce integer round-
off errors to the specifications.
Another concession to practicality was the clock cycle on

which the global alarm Q was available. The global alarm
Q, from a black box perspective, must be available on the

clock cycle following the setting of the module’s inputs via
the input method. As expressed by Pang et. al. in PVS, the
Q tabular specification requires values of QH and QL as
inputs. Since these are calculated values, and not inputs to
the module, they do not become available until one clock
cycle has elapsed. Up to this point, it has been typical to
rewrite the tabular specifications slightly such that they
apply to the output value on the following clock cycle. For
Q, the tabular specification applies to the same clock cycle
that it’s inputs occur in. In the implementation, this is
achieved by allowing the access method for Q to directly
access QH and QL, calculate Q, and return that value.
This bypasses the need to calculate and store the value
of Q within the Limits Alarm module itself. During the
developement of this case study, incorrect synchronization
was the primary source of proof failure.
The model of our BSV implementation of the Limits

Alarm block, as extracted by BAPIP, was proven con-
sistent with the tabular specification presented in Fig. 3.
Translation of the module took an average of 26.4ms. The
proof strategy employed was PVS’s “grind,” and the proof
took an average of 1.51s on an ASUS G46V (quad-core
Intel i5-3230M at 2.60GHz, 8GB RAM). Our proof of
consistency for the Hysteresis block took an average of
0.088s to discharge. The reason for the discrepancy be-
tween the Hysteresis time of 0.422s and the Limits Alarm
time of 0.088s is that, while more complex, automatic
proof strategies were employed earlier in the Limits Alarm
proof, this as opposed to the Hysteresis proof, which was
done more completely by hand, and as a result is a longer
proof. All PVS files, including translator output, theorems,
and proofs are available at [10].

VI. Tool Support: A Monadic BSV-to-PVS

Translator

The semantic transformation of BSV into PVS, de-
scribed in §III, has been implemented in the BAPIP
software tool. The tool is written in Haskell, using the
Parsec parser-combinator library. BAPIP is a command-
line tool developed for use in a Linux/Unix environment.
Parsec was selected over Happy [15] as a parsing library

for this project for a number of reasons. Unlike Happy,
Parsec allows seamless integration with Haskell functions,
making it more flexible. This increased flexibility allowed
for more advanced parsing algorithms, such as custom
permutation parsing. Fig. 4 is a structural overview of the
current BAPIP translator.
BAPIP has two modes, “BSV2PVS” and “BSV2BSV.”

The primary purpose of “BSV2BSV” mode is to test the
BSV parser, but could be used for future expansion of the
translation algorithm.

A. Applicability of Results
While we further the goal of automatic verification of

BSV descriptions, it is important to discuss the limitations
of this methodology. For example, the module we wish to

62

Condition QH
X > H True

(H − EPS) ≤ X ≤ H NC
X < (H − EPS) False

Condition QL
X < L True

L ≤ X ≤ (L + EPS) NC
X > (L + EPS) False

Condition Q
QL ∨ QH True

¬(QL ∨ QH) False
assuming (EPS/2) > 0

Fig. 3: Limits Alarm Tabular Specification for QH, QL, and Q

BSV Input
Files

BSV Parser

BSV Concrete
Syntax Tree

BSV
Generator

BSV
Output

BSV2PVS

PVS Concrete
Syntax Tree

PVS
Generator

PVS
Output

Fig. 4: BAPIP Architectural Overview

verify must be implemented in Bluespec SystemVerilog.
Fortunately, Logical Equivalence Checkers (LECs) can
address this deficiency. LECs are off-the-shelf tools which
analyze two hardware descriptions for black-box logical
equivalence. Our verified implementation of the Hysteresis
function block, a submodule of the Limits Alarm function
block discussed in our case study, has been successfully
LEC checked against an independent implementation in
VHDL. Our proof of correctness of the BSV block is trans-
ferable to the VHDL implementation via the transitivity
of logical equivalence.
The automated model extraction performed by BAPIP

is not total over Bluespec SystemVerilog. It is our posi-
tion that the subset of Bluespec SystemVerilog for which
our software operates can express meaningful hardware
descriptions. Improvements are also planned which will
expand the expressivity of the accepted subset of BSV.
It is also important to note that the translation is not
injective into PVS, so a future reverse translation for the
purposes of round-trip engineering would not be able to
exactly reconstruct the original BSV file. This could be
remediated by using the original BSV source to supple-
ment deficiencies. The reverse translation would also only
operate on the set of PVS files that are generatable by the
translator, not general PVS specifications.
Bluespec cannot exactly duplicate all functionality ex-

pressible in lower-level hardware description languages.
The Bluespec compiler adds hardware elements to create
properties such as rule scheduling and atomicity, but lower

level descriptions do not have these restrictions. It is
therefore possible for a hardware description in a lower-
level language to conform to the requirements set out by
Pang et. al. [11], and contain implementation details that
can not be replicated in BSV.
For the purposes of deciding formal logical equivalence,

however, implementation details of this kind are not a
problem, as logical equivalence is defined by two modules
producing the same output for the same input (i.e., black-
box equivalency). LEC checking is not perfect, however,
and can produce false negatives [16]. In such cases, con-
straints can be placed on the design to ignore failing states,
but always at the risk of introducing a false positive test
of equivalence.

VII. Related Works

FPGA and ASIC designs are increasing being used
in safety-critical applications. Significant scientific effort
has been directed toward the mathematical verification of
these design languages.
Blech and Biha [17], [18] propose formal semantics

for SFC, FBD, LAD and IL, and implement a partial
automation tool for translation into COQ, with the goal of
certified compilation/interpretation. While this technique
would only require a certified PLC language to HDL
compiler to complete the tool-chain, the actual proving
of formalized properties in COQ is non-trivial, and best
performed by someone familiar with the system, despite
a degree of automatic tactic generation. In contrast, the
BAPIP process is intended to require no more training
in formal methods than is required to create formal re-
quirements for the modules under examination. Another
hardware verification strategy targeting COQ, though
not PLC languages, is Featherweight Synthesis (Fe-Si)
[19]. Similarly to BAPIP, this tool translates a subset of
Bluespec SystemVerilog to a proof environment, in this
case COQ. Similarly to [17], verification is dependant on
the advanced skills required to operate in a dependently
typed proof environment. Fe-Si is presented as a proof-
of-concept, and expansion to a more practical subset of
BSV is cited as a goal of the project. Vijayaraghavin
et. al. present a prototype embedding of Bluespec in
COQ [20], similarly to the Richards and Lester paper on
which our embedding in PVS is based. They present a far
more complex example than Richards and Lester, a multi-
core shared memory system, and indicate that they are
working on a software tool for automating this translation
process. The example they present is beyond the current

63

capability of our technique, but automatic verification of
such complex systems is a long-term goal of the project.
A similar scheme to [4] has been proposed by Oliver

[21], with one interesting inversion. The proposed syntactic
transformation originates in the proof language B and
terminates in Bluespec SystemVerilog. Similarly to [4] this
is a proposed transformation only, and no translation tool
has yet been implemented based on this specification.
Singh and Shukla also present a verification framework for
BSV [22]. Focusing on the satisfaction of temporal prop-
erties, the SPIN model checker is employed to determine
whether a BSV implementation faithfully implements a
corresponding semantic.
Efforts by the McMaster Centre for Software Certifica-

tion have also contributed to the production of pre-verified
PLC function block libraries for FPGA-based platforms.
Specifically, Pang et. al. present a formalization of the
requirements of the PLC function blocks of the IEC61131-
3 specification [14], using tabular expressions in PVS
[11]. Certain ambiguities, assumptions and inconsistent
implementations within the IEC61131-3 specification are
also discussed.

VIII. Conclusion

We have demonstrated a semi-automated toolchain for
the verification of BSV hardware descriptions against
function requirements in the form of tabular expressions,
as well as associated consistency theorems. The BAPIP
software tool allows the automated translation of BSV pro-
grams into the specification logic of PVS, and a technique
for using the generated PVS theories is clearly elaborated.
This application of traditionally software-oriented tech-
niques to hardware description also highlights a growing
grey-area between software and hardware.
By leveraging the methodologies presented here, the

application of formal methods to modern hardware design
becomes more feasible. Future work will focus the creation
of a formally verified library of IEC-61131-3 compliant
function blocks targeting FPGAs, as well as verifying more
complex examples.

IX. References

[1] “bluespec.com :: View forum - software releases,”
2017, http://bluespec.com/forum/viewforum.php?
f=17&sid=93b12aca2328a68dcc72c17ec094ca27.

[2] “Pvs specification and verification system,” 2017,
http://pvs.csl.sri.com.

[3] R. Nikhil, “Bluespec system verilog: efficient, correct rtl from
high level specifications,” in Proceedings of the Second ACM and
IEEE International Conference on Formal Methods and Models
for Co-Design, 2004. IEEE, 2004, pp. 69–70.

[4] D. Richards and D. Lester, “A monadic approach to automated
reasoning for bluespec systemverilog,” Innov. Syst. Softw. Eng.,
vol. 7, no. 2, pp. 85–95, Jun. 2011. [Online]. Available:
http://dx.doi.org/10.1007/s11334-011-0149-0

[5] S. Owre, J. M. Rushby, and N. Shankar, “Pvs: A prototype veri-
fication system,” in Automated Deduction-CADE-11. Springer,
1992, pp. 748–752.

[6] S. P. Miller and M. Srivas, “Formal verification of the aamp5
microprocessor: A case study in the industrial use of formal
methods,” in Industrial-Strength Formal Specification Tech-
niques, 1995. Proceedings., Workshop on. IEEE, 1995, pp.
2–16.

[7] A. Wassyng, M. S. Lawford, and T. S. Maibaum, “Software
certification experience in the canadian nuclear industry: lessons
for the future,” in Proceedings of the ninth ACM international
conference on Embedded software. ACM, 2011, pp. 219–226.

[8] “Training resources - learning bluespec,” 2017,
http://wiki.bluespec.com/Home/Training-Resources.

[9] BluespecTMSystemVerilog Reference Guide, Bluespec Inc.,
2012.

[10] N. Moore, “BAPIP project homepage,” 2017, http://www.cas.
mcmaster.ca/∼moorenc/bapip.html.

[11] L. Pang, C.-W. Wang, M. Lawford, and A. Wassyng, “Formal-
izing and verifying function blocks using tabular expressions
and pvs,” in Formal Techniques for Safety-Critical Systems.
Springer, 2013, vol. 419, pp. 125–141.

[12] A. Camilleri, M. Gordon, and T. F. Melham, Hardware ver-
ification using higher-order logic. University of Cambridge,
Computer Laboratory, 1986.

[13] C. A. Muñoz, “Batch Proving and Proof Scripting in PVS,”
2007. [Online]. Available: http://shemesh.larc.nasa.gov/people/
cam/publications/NASA-CR-2007-214546.pdf

[14] IEC, 61131-3 Ed. 3.0 en:2013: Programmable Controllers —
Part 3: Programming Languages. International Electrotechni-
cal Commission, 2013.

[15] “Happy: The parser generator for haskell,” 2017,
http://www.haskell.org/happy/.

[16] M. Turpin, “Solving verilog x-issues by sequentially comparing
a design with itself. you ll never trust unix diff again!” SNUG,
2005.

[17] J. O. Blech and S. O. Biha, “On formal reasoning on the
semantics of plc using coq,” arXiv preprint arXiv:1301.3047,
2013.

[18] ——, “Verification of plc properties based on formal semantics in
coq,” in Software Engineering and Formal Methods. Springer,
2011, vol. 7041, pp. 58–73.

[19] T. Braibant and A. Chlipala, “Formal verification of hardware
synthesis,” in Computer Aided Verification. Springer, 2013,
vol. 8044, pp. 213–228.

[20] M. Vijayaraghavan, A. Chlipala, N. Dave et al., “Modular
deductive verification of multiprocessor hardware designs,”
in International Conference on Computer Aided Verification.
Springer, 2015, pp. 109–127.

[21] I. Oliver, “A demonstration of specifying and synthesising hard-
ware using b and bluespec,” in Forum on Design Languages
FDL’06, 2006.

[22] G. Singh and S. K. Shukla, “Verifying compiler based refinement
of bluespecTMspecifications using the spin model checker,” in
Model Checking Software. Springer, 2008, pp. 250–269.

64

