
1 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

Researchers have responded to these prob-
lems by studying methods of formal correct-
ness verification for programs. In theory, we
now know how to prove programs correct
with the same degree of rigor that we apply to
mathematical theorems. In reality, this is
rarely practical and even more rarely done.
Most research papers on verification make
simplifying assumptions (for example, a 1:1
correspondence between variables and vari-
able names) that aren’t valid for real pro-
grams. Proofs of realistic programs involve
long, complex expressions and require pa-
tience, time, and diligence that developers
don’t think they have. (Interestingly enough,
they never have time to verify a program be-
fore release, but they must take time to re-
spond to complaints after release.) Inspection
methods can be more effective than informal
reviews and require less effort than formal

focus
Inspection’s Role in
Software Quality
Assurance

D
espite more than 30 years’ effort to improve software quality,
companies still release programs containing numerous errors.
Many major products have thousands of bugs. It’s not for lack of
trying; all major software developers stress software quality as-

surance and try to remove bugs before release. The problem is the code’s
complexity. It’s easy to review code but fail to notice significant errors.

guest editors’ introduction

David L. Parnas, University of Limerick

Mark Lawford, McMaster University

proofs, but their success depends on having a
sound, systematic procedure. Tools that sup-
port this procedure are also important.

The Workshop on Inspection in Software
Engineering (WISE), a satellite event of the
2001 Computer Aided Verification Confer-
ence (CAV 01), brought together researchers,
practitioners, and regulators in the hope of
finding new, more effective software inspec-
tion approaches. Submissions described how
practitioners and researchers were performing
inspections, discussed inspections’ relevance,
provided evidence of how refinement of the
inspection process and computer-aided tool
support can improve inspections, and ex-
plained how careful software design could
make inspections more effective. The best
ideas from the workshop have been distilled
into pairs of articles appearing in linked spe-
cial issues of IEEE Software and IEEE Trans-
actions on Software Engineering.

Why two linked special issues?
As guest editors, we had a specific goal

when we proposed the joint special issues to
the publications’ editorial boards. We had ob-
served that the practitioners habitually neglect
the kind of research found in TSE on the
(sometimes correct) assumption that it’s irrele-
vant to them. On the other hand, researchers
tend to write for each other and to lose con-
tact with the realities that practitioners must
face. The linked issues try to narrow this gap.
Some contributors to WISE were practitioners
who explained what they’re doing and what
problems they encounter. Others were re-
searchers trying to discover and verify (either
mathematically or experimentally) some fun-
damental facts. We thought that these re-
searchers should write articles that explained
to practitioners why the problems they were
studying were relevant to practice. We also
thought that the practitioners could communi-
cate to researchers what inspecting a program
is actually like. In addition, we asked that the
purpose of each paper in one publication be
explained to the readers of the other.

To summarize:

� The Software articles aim to make practi-
tioners aware of research ideas that they
might be able to apply. These articles don’t
communicate the research results as com-
pletely as a normal research paper would.

� The TSE papers do communicate the re-
search results. We considered a paper to
make a valid contribution if it showed
how to apply known results to the prob-
lem of inspecting software for suitability
(fitness for use). The papers are intended
for people who are willing to read de-
tailed, careful research papers.

We intend that each TSE paper and its corre-
sponding Software article have little overlap.
One reports results; the other explains how to
use those results and perhaps what research is
still needed.

We hope that future guest editors will emu-
late and improve the linked-special-issues ap-
proach for other topics important to both
practitioners and researchers. After all, con-
necting theory with practice is the essence of
any type of engineering.

What we mean by inspection
By inspection we mean a systematic ap-

proach to examining a program in detail. Such
an examination’s goal is to assess the quality
of the software in question, not the quality of
the software development process.

In general, inspection means examining a
product by following a prescribed, systematic
process that aims to determine whether the
product is fit for its intended use. For exam-
ple, many jurisdictions require vehicle safety
inspections. (Some advocates of specific ap-
proaches to software inspection assume that
their method defines “inspection.” In fact, the
word was well defined much earlier.) They leg-
islate a list of parts that must be examined,
measurements that must be made, and so on,
and criteria for passing the inspection. The
word “inspection” usually implies that the
process is described in documents (for exam-
ple, checklists and printed forms) that explain
exactly what the inspectors must do. These
documents try to ensure that each inspection
is so careful and so complete that an inspec-
tion’s failure to reveal any defects justifies hav-
ing great confidence that the product will per-
form as required.

An inspection process, while systematic
and tightly prescribed, isn’t mechanical; the
process description guides the inspectors but
isn’t so prescriptive that a machine could per-
form inspections without human involvement.
Success depends on the inspectors understand-

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 1 7

Connecting
theory with

practice is the
essence of any

type of
engineering.

ing the product and the underlying technolo-
gies, knowing how to use the appropriate
tools, and having considerable experience do-
ing related work.

Because the inspectors, like all of us, have
limits on their ability to handle details, the key
to inspection of any complex product is a pol-
icy of divide and conquer—that is, examining
small parts of the product in isolation, while
ensuring that

� Nothing is overlooked
� The inspected components’ correctness

implies the whole product’s correctness

The inspection’s organization as a set of
discrete steps must assure that each step is
simple enough to carry out reliably and that
one step can be carried out without detailed
knowledge of the others. Inspection can be
time consuming. Moreover, no inspection
process is perfect. Inspectors might take short-
cuts, might inadequately understand what
they are doing, and might identify a product
as acceptable when it isn’t. Nonetheless, a
well-designed inspection process can find er-
rors that other methods would miss and can
engender great trust.

Inspection’s benefits
Industry widely employs testing and the re-

search community widely advocates formal
verification as methods for improving soft-
ware quality. Inspection falls somewhere be-
tween the two. Formal verification has yet to
catch on with software practitioners, while in-
spection in one form or another has been
widely adopted by industry and advocated by
leading software practitioners (for example,
see Stuart Ball’s Embedded Microprocessor
Systems: Real World Design, Newnes, 2000,
pp. 16–24). This difference in acceptance has
three main causes:

� You can inspect the code itself, not just
abstract models of it.

� Inspection doesn’t require as substantial a
training investment as verification.

� Inspection doesn’t require the time and the
formula manipulation ability that verifica-
tion of typical programs does.

Inspection seeks to complement testing.
Testing helps detect errors, and formal verifi-

cation helps determine mathematical correct-
ness, but you can have error-free (mathemati-
cally correct) code that’s hard to understand
and difficult to maintain. In addition to find-
ing errors in code and related software docu-
ments, inspection can also help determine
whether coding style guidelines are followed,
comments in the code are relevant and of ap-
propriate length, naming conventions are clear
and consistent, the code is easy to maintain,
and so on. Although these issues are irrelevant
to theorem provers, model checkers, and au-
tomated testing tools, they are crucial to the
cost of building and maintaining large soft-
ware products.

You don’t need to wait until code is com-
plete to reap inspection’s benefits. Early in-
spection of a document that states system re-
quirements can help insure that the correct
system is built. In our experience, even when a
product’s formal verification uses mathemati-
cal requirements, they might not accurately
capture the designer’s or customer’s intent. In-
spection of a requirements document helps as-
sure that the requirements are capturing the
right thing.

Inspection’s future
Although many companies now do inspec-

tion, they can do better. The Software articles
in this issue provide insights into how soft-
ware practitioners can improve their inspec-
tions’ effectiveness and applicability today.
The TSE research papers provide the theoreti-
cal underpinnings of these suggested improve-
ments and offer insights into how we could
further improve inspections in the future. The
TSE articles are evidence that inspection con-
tinues to be an active area of academic research.

Refining software inspection
One way that researchers and practitioners

are addressing current inspection techniques’
limitations is by refining inspection methods
to make them more appropriate for a particu-
lar setting. Such refinement will help inspec-
tors focus on the most important problems in
the sea of details.

In “Practical Code Inspection Techniques for
Object-Oriented Systems: An Experimental
Comparison,” Alastair Dunsmore, Marc Roper,
and Murray Wood propose three techniques for
inspecting OO systems and provide preliminary
data on their relative effectiveness.

Early inspection
of a document

that states
system

requirements
can help insure
that the correct
system is built.

1 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Reading can be a rudimentary form of in-
spection. In “Prioritized Use Cases as a Vehi-
cle for Software Inspections,” Thomas Thelin,
Per Runeson, and Claes Wohlin combine use
cases and operational-profile testing to assess
software from a user’s viewpoint. They then
use an experimental evaluation to compare
their method’s effectiveness to that of another
well-established reading technique.

Although these papers differ in their con-
clusions, they illustrate how customizing the
inspection process to the task at hand can pro-
vide benefits.

Systems with real-time requirements and
concurrent activities

Software systems that must deal with a va-
riety of ongoing activities (for example, device
management, user interactions, and external-
event monitoring) are generally less trustwor-
thy than purely sequential programs. Concur-
rency introduces a form of nondeterminism
into the system—external events, which hap-
pen at unpredictable times, determine the in-
ternal events’ order. (We consider a system to
be nondeterministic when the information
available to the observer or assessor is insuffi-
cient to determine the system behavior. In such
cases, a system should be designed to handle
all possible behaviors.) When nondeterminism
is present, an assessor’s inability to remain
aware of all possible sequences makes inspec-
tion more difficult. Nondeterminism also
makes testing more difficult because a test se-
quence might cause an error in one case but
not in another.

One potentially worthwhile approach to
quality assessment of systems with real-time
requirements in the presence of concurrency is
to restrict the design to place it in a class that’s
easier to analyze. In what’s likely the special
issues’ most controversial article, “Making
Software Timing Properties Easier to Inspect
and Verify,” Jia Xu advocates handling con-
current real-time systems through a prerun-
time scheduling approach. He asks designers
to accept strong restrictions on their work to
make the inspector’s job easier.

Tool-supported software inspection
We organized WISE as a satellite event of

CAV 01 partly because we believe that com-
puter-aided inspection and formal verification
techniques have the greatest potential to im-

prove inspection. Many opportunities exist for
tools to improve inspection efficiency and ac-
curacy, ranging from tools that support the in-
spection process’s workflow and bookkeep-
ing, to integrated computer-aided verification
techniques that let inspectors ask the impor-
tant questions and delegate some of the me-
chanical details to model checkers, theorem
provers, and other tools. In “Tool Support for
Fine-Grained Software Inspection,” Paul An-
derson, Thomas Reps, Tim Teitelbaum, and
Mark Zarins explain how to use their
CodeSurfer tool to make inspection of com-
plex software systems more manageable.

I n May of this year, a Soyuz TMA-1
spaceship carrying a Russian cosmonaut
and two American astronauts landed

nearly 500 km off course after the craft unex-
pectedly switched to a ballistic reentry trajec-
tory. Preliminary indications are that the prob-
lem was caused by software in the guidance
computer in the new, modified version of the
spaceship. That same week, Microsoft’s Pass-

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 1 9

A. Aurum, H. Petersson, and C. Wohlin, ”State-of-the-Art: Software In-
spections after 25 Years,” Software Testing Verification Reliability, vol.
12, no. 3, Sept. 2002, pp. 133–154.

M.E. Fagan, “Design and Code Inspections to Reduce Errors in Program
Development,” IBM Systems J., vol. 15, no. 3, 1976, pp. 182–211.

T. Gilb and D. Graham, Software Inspection, Addison-Wesley, 1993.

P. Johnson, The WWW Formal Technical Review Archive, 1999, http://
www2.ics.hawaii.edu/~johnson/FTR.

D.L. Parnas and D.M. Weiss, “Active Design Reviews: Principles and
Practices,” J. Systems and Software, vol. 7, 1987, pp. 259–265. Also
published in Software Fundamentals: Collected Papers by David L.
Parnas, D.M. Hoffman and D.M. Weiss, eds., Addison-Wesley, 2001,
Chapter 17.

D.L. Parnas, “Inspection of Safety Critical Software Using Function
Tables,” Proc. IFIP 13th World Computer Congress, vol. 3, North-
Holland, 1994, pp. 270–277. Also published in Software Fundamen-
tals: Collected Papers by David L. Parnas, D.M. Hoffman and D.M.
Weiss, eds., Addison-Wesley, 2001, Chapter 19.

Further Reading

port online information repository system was
found to have a major security flaw that let an
attacker access a user’s personal information
simply by knowing the user’s email address
and constructing an appropriate URL.

These are just the latest examples of soft-
ware quality lapses that are shaking the pub-

lic’s confidence that software can be used to
build safe, secure systems. In response, both
software practitioners and software re-
searchers must improve software’s reputation;
the only way to do that is to improve software
quality. Inspection is one way to do this. Still,
we need further research to find more practi-
cal, effective inspection approaches and to
measure their effectiveness. We hope that these
special issues of Software and TSE motivate
others to take up this increasingly important
challenge.

Acknowledgments
We thank all the 2001 Workshop on Inspection in

Software Engineering participants, particularly those
who submitted articles for consideration in the spe-
cial issues. The special issues wouldn’t have been pos-
sible without the reviewers’ understanding and invalu-
able feedback to the editors and authors. Finally, we
thank John Knight, Steve McConnell, and Warren
Harrison for encouraging the linked-special-issues
idea, and the IEEE Software and IEEE Transactions
on Software Engineering editorial staffs for their
support and understanding.

2 0 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

About the Authors

David L. Parnas is the director of the Software Quality Research Laboratory, a Science
Foundation Ireland Fellow, and a professor of software engineering at the University of Limer-
ick. He is also on leave from McMaster University. He is interested in most aspects of computer
system design. He received his PhD in electrical engineering from Carnegie Mellon University
and is licensed as a professional engineer in Ontario, Canada. He is a fellow of the Royal Soci-
ety of Canada and of the ACM, a senior member of the IEEE, and a member of the IEEE Com-
puter Society. Contact him at the Dept. of Computer Science and Information Systems, Univ. of
Limerick, Limerick, Ireland; david.parnas@ul.ie.

Mark Lawford is an assistant professor in McMaster University’s Department of Comput-
ing and Software, where he is helping to develop and teach the software engineering programs.
His research interests include discrete-event systems and the practical application of formal
methods to real-time systems. He received his PhD in electrical and computer engineering from
the University of Toronto. He is a member of the IEEE Control Systems Society and the IEEE
Computer Society. Contact him at the Software Quality Research Laboratory, Dept. of Computing
and Software, McMaster Univ., 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

