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Many safety-critical computer systems are required to monitor and control physical 
processes. The four-variable model, which has been used successfully in industry for almost 
four decades, helps to clarify the behaviors of, and the boundaries between the physical 
processes, input/output devices, and software. In this model, the acceptable behaviors
of the software are constrained by the physical environment, system requirements, and 
input/output devices. If acceptable software behaviors are possible, then the system 
requirements are said to be implementable with respect to these constraints. The only 
acceptability condition proposed in the literature deems as acceptable software behaviors 
that can lead to undesirable system behaviors, in particular, nondeterministic system 
behaviors that for the same input sometimes do not produce any results and some other 
times produce expected results. In this sense, the acceptability condition can be seen 
as angelic. In this paper we strengthen the acceptability condition using the demonic 
calculus of relations such that no undesirable system or software behaviors are allowed and 
prove a necessary and sufficient implementability condition for the system requirements. 
As a byproduct, we also obtain a mathematical characterization of the least restrictive 
software specification, which, for all intents and purposes, can play the role of the software 
requirements.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many safety-critical systems in application domains such as aerospace, automotive, medical devices, or nuclear power 
generation are required to monitor and control physical processes. An example is the shutdown system of a nuclear reac-
tor which monitors the temperature and pressure inside the reactor and commands the reactor to enter a shutdown state 
whenever abnormal temperature and pressure values have been detected. Such systems are usually implemented using digi-
tal computers that are embedded into the larger system of the application and are interfaced with the physical environment 
using input devices (e.g., sensors, analog-to-digital converters) and output devices (e.g., digital-to-analog converters, actua-
tors). Based on the measured values of the physical parameters of interest, the software commands the actuators to apply 
stimuli to the environment with the purpose of maintaining certain properties in the environment.

Due to their safety-critical nature, getting these systems right is extremely important. A challenging design task is to 
find the right combination of input devices, output devices, and software such that their integration produces a system that 
satisfies the requirements. Systems engineers are responsible for this task and, in particular, for choosing the input and 
output devices. Software engineers must then determine the software part of the system so that the system requirements 
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Fig. 1. The four-variable model.

are satisfied. Considering that changes in the specifications of the system requirements and hardware interfaces often arise 
during the system’s development life cycle, the process mentioned above becomes repetitive and thus even more demanding 
[1], [2, Section 2.6.3]. What if no software can satisfy the constraints imposed by the system requirements and chosen 
hardware interfaces? Time and resources will be spent trying to develop and verify repeatedly a system that can never 
satisfy the requirements.

Hence, we ask the following question: is the software part of the system possible at all given a particular choice of 
hardware interfacing between the system and the physical environment? A positive answer to this question would allow 
software engineers to proceed with a software design having the confidence that their efforts are not destined to fail 
from the start. In this case, the requirements of the system are said to be implementable with respect to the physical 
environment and chosen input/output devices, while the software is called acceptable. In the case of a negative answer, the 
next step would be for the systems engineers to understand why that is the case and determine the necessary changes to 
the specifications of the input and output devices, and possibly to the specification of the system requirements, in order 
for the software part of the system to become possible. Such a bidirectional interaction between systems engineering and 
software engineering is stressed in [2, Section 1.2] as being essential in producing dependable software-controlled systems.

In this paper we prove a necessary and sufficient implementability condition for requirements in the four-variable model 
proposed by Parnas and Madey [3]. This model, depicted in Fig. 1 and described in Section 2, has been used successfully 
in the development of safety-critical systems in industry and helps to clarify the behaviors of, and the boundaries between, 
the environment, sensors, actuators, and software. To be implementable, the system requirements must be feasible with 
respect to the environment (i.e., should specify only behaviors that obey the environmental constraints) and acceptable 
software behaviors must be possible given the chosen input/output devices. In Section 2, we discuss why the feasibility and 
acceptability conditions given in Parnas and Madey [3], which may be seen as angelic, are too weak and allow undesirable 
system and software behaviors. In Section 3 we introduce the demonic calculus of relations [4–6], which will be used to 
strengthen these conditions in Section 4. Using the strengthened feasibility and acceptability conditions, we will then give a 
necessary and sufficient implementability condition for the system requirements, along with a mathematical characterization 
of the software requirements. In Section 5 we describe a detailed analysis of the implementability of the requirements 
for a pressure sensor trip computer, a subsystem in the shutdown system of a nuclear power plant. This analysis also 
demonstrates the usefulness of the implementability conditions as rigorous and systematic guiding tools in determining the 
tolerances needed on the requirements of the pressure sensor trip computer.

This paper is an extended version of a previous paper by us [7]. Sections 2, 3 and 4 give more details, examples, and 
proofs; in particular, a more thorough comparison between demonic and angelic semantics is given. Section 5 is completely 
new.

2. The four-variable model

The model was used as early as 1978 as part of the Software Cost Reduction (SCR) program of the Naval Research 
Laboratory for specifying the flight software of the U.S. Navy’s A-7 aircraft [8]. The ideas from SCR were later extended 
into the Consortium of Requirements Engineering (CoRE) methodology, which was used for specifying the avionics system 
of the C-130J military aircraft in the 1980s [9]. Another significant example of a successful use of the four-variable model 
is the redesign of the software in the shutdown systems of the Darlington nuclear power plant in Ontario, Canada in the 
1990s [10–12]. In 2009, the four-variable model was used extensively in the Requirements Engineering Handbook [13] that 
was put together at the request of the U.S. Federal Aviation Administration.

2.1. System requirements and environmental constraints

In the four-variable model, REQ models the system requirements. At the system requirements level, a system is seen as a 
black-box that relates physical quantities measured by the system, called monitored variables, to physical quantities controlled 
by the system, called controlled variables. For example, monitored variables might be the pressure and temperature inside 
a nuclear reactor while controlled variables might be visual and audible alarms, as well as the trip signal that initiates 
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Fig. 2. Motivational example for a relational four-variable model.

a reactor shutdown; whenever the temperature or pressure reach abnormal values, the alarms go off and the shutdown 
procedure is initiated. The sets of the possible values for the monitored and controlled variables are denoted by M and C, 
respectively. The environmental constraints on the system are described by NAT (from “nature”), which restricts the possible 
values of the monitored and controlled variables. For instance, an environmental constraint might be the maximum rate of 
climb of an aircraft in the case of an avionics system.

2.2. System design

The possible system designs are modeled by a sequential composition of IN, SOF, and OUT. Here, IN models the input 
hardware interface (sensors and analog-to-digital converters) and relates values of monitored variables in the environment to 
values of input variables in the software. The input variables model the information about the environment that is available 
to the software. For example, IN might model a sensor that converts pressure values to analog voltages, which are converted 
via an analog-to-digital converter (ADC) to integer values stored in a register accessible to the software via an input variable. 
The output hardware interface (digital-to-analog converters and actuators) is modeled by OUT, which relates values of the 
output variables of the software to values of controlled variables. An output variable might be, for instance, a boolean 
variable set by the software with the understanding that the value true indicates that a reactor shutdown should occur 
and the value false indicates the opposite. The sets of the possible values of the input and output variables are denoted 
by I and O, respectively. Relating values of input variables to values of output variables is SOF, which models the control 
software including the input/output device drivers.

The four-variable model is in general relational, not functional. For example, let us consider an input interface IN that 
models an 8-bit resolution ADC which converts monitored voltages m in the range 0–5 V into software input values i
according to the formula i = �m ∗ 28/5�. Fig. 2a depicts IN and REQ for the monitored voltages m = 2.47 V, m = 2.49 V, and 
m = 2.51 V. Here, IN and REQ are functions and model idealized behaviors. If the ADC has a ±0.02 V accuracy (Fig. 2b), 
then IN becomes a relation because, for example, IN can produce any of the software input values i = 126, i = 127, and 
i = 128 for the monitored voltage m = 2.49 V. Conversely, the software input i = 127 can be the digital representation 
of any of the monitored voltages m = 2.47 V, m = 2.49 V, and m = 2.51 V. In this example, no system implementation 
can satisfy the requirements because no matter which system output c1, c2, or c3 is produced by SOF together with OUT
for i = 127, this output will violate the requirements (e.g., if c2 is produced, then m = 2.47 V and m = 2.51 V will be 
connected with c2, something not allowed by REQ). A typical engineering approach in such situations is to allow tolerances 
on the requirements, in which case REQ becomes a relation (Fig. 2c) and many system implementations become possible. If 
hardware inaccuracies are considered for the output interface, then OUT will be a relation as well. If we want to capture all 
the possible behaviors of the control software, then SOF will typically have to be a relation. An implementation of SOF that 
runs on an actual computer will be a function (i.e., a deterministic program).

The environmental constraints on the system, NAT, are usually described by a relation too. As extreme examples, if 
everything is possible in the physical environment, then NAT is the universal relation between M and C; if nothing is 
possible, then NAT is the empty relation.

The relations NAT and REQ are described by application domain experts and control engineers. The system designers 
allocate the system requirements between hardware and software, and describe IN and OUT. The software engineers must 
determine SOF and verify whether it is acceptable with respect to NAT, REQ, IN, and OUT.

2.3. Requirements feasibility

From an engineering perspective, the behaviors that do not obey the physical laws of the environment are not imple-
mentable. For example, there is no point for the requirements of an autopilot system in an airplane to specify rates of 
climb higher than what the plane is capable of; such requirements can never be satisfied by a real system and may even 
be dangerous as they can overstress the engines and airframe. Parnas and Madey [3] used the following two conditions to 
ensure that the requirements specify behaviors allowed by the environment:

dom (NAT) ⊆ dom (REQ) ; (1)
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Fig. 3. The acceptability conditions of Parnas and Madey [3] are too weak.

dom (REQ ∩ NAT) = dom (REQ) ∩ dom (NAT) . (2)

Condition (1) asks REQ to specify system response for all the monitored environmental states allowed by NAT. Under 
normal circumstances, it can be assumed that the environment will never be in a state that is not contained in the domain 
of NAT. Condition (2) constrains REQ to agree with NAT on at least one output for every input REQ and NAT have in common. 
Together, conditions (1) and (2) ensure that, for every monitored state allowed by the environment, the requirements ask 
the system to produce at least one output that is allowed by NAT. If the two conditions are satisfied, REQ is said to be 
feasible with respect to NAT [3].

2.4. Software acceptability

Assuming that the requirements are feasible with respect to the environment, Parnas and Madey [3] proposed the fol-
lowing acceptability condition for the software:

NAT ∩ (IN ., SOF ., OUT) ⊆ REQ . (3)

Here, the operator ., is the usual composition of relations.
A system implementation SYS = IN ., SOF ., OUT is then acceptable if and only if it satisfies the following condition:

NAT ∩ SYS ⊆ REQ . (4)

These acceptability conditions are, however, not strong enough. Let us consider the relations NAT, REQ, and SYS in Fig. 3, 
where m1, m2 are possible monitored environmental states and c1, c2, c3 are possible controlled environmental states. These 
relations satisfy the conditions (1), (2) and (4). Therefore the system requirements REQ are feasible with respect to NAT, and 
the system implementation SYS and software SOF are deemed acceptable although they should not be. This is the case due 
to the following problems.

2.4.1. Problem 1
In Fig. 3, (m1, c2) ∈ SYS, (m1, c2) ∈ REQ , and (m1, c2) /∈ NAT . That is, a system implementation SYS that drives the environ-

ment into states that violate environmental laws specified by NAT is deemed acceptable. From an engineering perspective, 
such implementations are not possible and it is important to reject early specifications that allow them. A similar problem 
with the acceptability conditions proposed by Parnas and Madey was pointed out by Gunter et al. [14].

The cause of this problem is the fact that the requirements allow the pair (m1, c2) while the environment does not allow 
it. For more complex requirements, such cases may not be obvious and the system designers may attempt to implement 
behaviors that are not allowed by the environment. For the feasibility and acceptability conditions proposed by Parnas and 
Madey [3] to work as intended, only right choices will have to be made during design. In this sense, these conditions may 
be seen as angelic.

In Section 4.1 we will offer a solution to this problem using a demonic approach that does not allow requirements 
specifications such as the one in Fig. 3. We will strengthen the condition for the feasibility of requirements such that 
throughout the whole domain of NAT, the requirements are allowed to specify only behaviors allowed by NAT.

2.4.2. Problem 2
In Fig. 3, (m2, c3) ∈ NAT , (m2, c3) ∈ REQ , and (m2, c3) /∈ SYS. That is, a system implementation SYS that does not react to 

all possible environmental states denoted by dom (NAT) is deemed acceptable.
This is another manifestation of the angelic nature of the acceptability conditions proposed by Parnas and Madey [3]. 

These conditions work as intended only if the designers do not make bad choices. However, designers will make bad choices 
if allowed to do so, even if unintentionally. In Section 4.2 we will give a stronger, demonic acceptability condition that rejects 
specifications of SYS such as the one in Fig. 3.

2.4.3. Problem 3
Another problem with the acceptability conditions (3) and (4) proposed by Parnas and Madey [3] is that they allow 

implementations that may sometimes not return any result for an input as long as there is the chance that some other 
times they produce expected results for that input. This can happen when ran (IN) ⊃ dom (SOF) or ran (SOF) ⊃ dom (OUT)

because SOF will not react to all values produced by IN and OUT will not react to all values produced by SOF. Deeming 
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Fig. 4. Angelic semantics allows undesirable implementations.

such implementations acceptable is indicative of an angelic view since the implicit assumption is that somehow only good 
choices will be made at runtime and the implementation will always return expected results.

Let us consider an example that illustrates this point. Let a relation IN model an 8-bit resolution ADC which converts 
monitored voltages m in the range 0–5 V into software input values i according to the formula i = �m ∗ 28/5�. The re-
quirements ask the system to produce at the output the double of the input with a tolerance of ±0.04 V. Because the 
relation NAT says that the monitored voltages will be in the range 0–2.49 V, it is decided that 8-bit unsigned integers 
will be used to represent the values of the output variable o = 2 ∗ i set by the software. If the converter has an accuracy 
of ±0.02 V, the following situation depicted in Fig. 4 can occur: for m = 2.49 V, which is a voltage allowed by NAT, the 
input hardware IN may produce any of the software inputs i = 126, i = 127 and i = 128; for i = 126 and i = 127 the 
system returns outputs allowed by REQ, but for i = 128 the corresponding software output does not fit in the 8-bit un-
signed integer variable and an overflow occurs resulting in a runtime error or in an incorrect value. In either case, none 
of the results expected by REQ is produced. The acceptability condition (3) of Parnas and Madey is trivially satisfied al-
though an implementation IN ., SOF ., OUT could produce an overflow: NAT ∩ (IN ., SOF ., OUT) = {(2.49 V, 2 ∗ 2.49 V)} ⊆ REQ =
{(2.49 V, 2 ∗ 2.49 V), (2.51 V, 2 ∗ 2.51 V), (2.53 V, 2 ∗ 2.53 V)}.

The root of this problem is that the software does not have any control over what values it receives from the input 
devices. Similarly, the output devices do not have control over the output values produced by the software. As such, it 
would be more sensible to assume that bad things will happen if given the opportunity, and reject specifications that allow 
such “demonic” opportunities, instead of relying on an angel that always makes good choices. We will address this issue in 
Section 4.2 by redefining the acceptability condition of Parnas and Madey[3] using the demonic calculus of relations.

3. The demonic calculus of relations

In this section we introduce the demonic calculus of relations [4–6]. This calculus will be used in Section 4 to rectify the 
problems with requirements feasibility and software acceptability described in Section 2.

In addition to the abstract algebraic notation customary in the relation algebra literature and somewhat standardized 
in [15], we will also give whenever convenient the equivalent, but more verbose, set-theoretic notation. We favor the 
set-theoretic notation since we believe that it is more accessible to the intended (software) engineering audience.

Relation algebras are particular cases of Boolean algebras and are frequently introduced using the language of universal 
algebra [15, Section 1.4] or that of category theory [6]. Again, to be more accessible to engineers, we will use a particular 
case of a relation algebra, the algebra of concrete binary relations.

A concrete binary relation R from a set A to a set B is a subset of the cartesian product A × B . In other words, R is a 
subset of the set of ordered pairs (a, b), where a ∈ A and b ∈ B . The sets A and B are called the source and, respectively, the 
target of relation R. For describing concrete relations we will use the usual set comprehension, or set builder, notation. In 
this notation, a relation R ⊆ A × B is given as R = {(a, b) ∈ A × B|Rpred(a, b)}, where Rpred, called the characteristic predicate
of relation R, is a predicate that describes the constraints that a pair (a, b) has to satisfy to be part of R .

Some elementary operations involving a relation R ⊆ A × B are:

• domain of R: dom (R) = {a ∈ A | ∃b ∈ B. (a,b) ∈ R};
• range of R: ran (R) = {b ∈ B | ∃a ∈ A. (a,b) ∈ R};
• converse of R: R� = {(b,a) ∈ B × A | (a,b) ∈ R};
• complement of R: R = {(a,b) ∈ A × B | (a,b) /∈ R};
• image set of a ∈ A under R: R(a) = {b ∈ B | (a,b) ∈ R} .

A relation R ⊆ A × B is univalent if every element in its domain is mapped to exactly one element in its range. Univalent 
relations also go by the name functional relations or partial functions. Relation R is total if and only if dom (R) = A. The 
relations that are both univalent and total are called mappings or total functions.

As seen in Fig. 2, the inaccuracy of the input and output hardware interfaces introduces uncertainty in a system im-
plementation. Likewise, tolerances on system requirements give potential implementations a number of equally acceptable 
choices for producing a result. Uncertainty and choice are forms of nondeterminism. Non-univalent relations are natural 



344 L.M. Patcas et al. / Science of Computer Programming 111 (2015) 339–362
candidates for modeling nondeterminism: the image set of an element in the domain of a non-univalent relation denotes all 
the acceptable results for that input. Functional relations model deterministic behaviors since the image sets of the elements 
in their domains are singletons. In addition to the nondeterminism caused by input/output hardware inaccuracies and tol-
erances on requirements, in the four-variable model there is another form of nondeterminism caused by the composition of 
partial specifications for IN, SOF, and OUT, as seen in Section 2.4.3.

Various approaches to nondeterminism have been studied in variations of Dijkstra’s weakest-precondition calculus 
[16–20], as well as in relation-algebraic approaches to formal specification and program semantics [21,22,4,23,20,5,6]. The 
main approaches to deal with nondeterministic specifications are angelic and demonic. In the angelic approach, specifi-
cations that allow “bad” behaviors for some inputs are permitted as long as they also allow “good” behaviors for those 
inputs. In contrast, in the demonic approach, specifications that allow “bad” behaviors are not permitted at all. Since the 
four-variable model has been used traditionally in the safety-critical domain, we argue that a demonic approach is more 
suitable and use the demonic calculus of relations [4–6]. Because the operators in the demonic calculus are defined in terms 
of their angelic counterparts, we first present the angelic operators and then the demonic operators.

3.1. Angelic operators

The angelic operators are the usual relational operators.
The intersection of two relations P ⊆ A × B and Q ⊆ A × B is the relation P ∩ Q = {(a, b) ∈ A × B | (a, b) ∈ P ∧ (a, b) ∈ Q }. 

Their union is P ∪ Q = {(a,b) ∈ A × B | (a,b) ∈ P ∨ (a,b) ∈ Q }.
The relation P is contained in the relation Q, written P ⊆ Q , if and only if ∀a ∈ A.∀b ∈ B. (a, b) ∈ P ⇒ (a, b) ∈ Q . 

Relational containment, or inclusion, is a partial order that induces a complete lattice structure on the set of relations 
between A and B. The join operation on this lattice is ∪ and the meet operation is ∩. The top element is the relation |�

A,B = {(a,b) ∈ A × B | true}, called the universal relation between A and B, and the bottom element is the empty relation

|� A,B = {(a,b) ∈ A × B | false}.
Relational inclusion is used as a refinement ordering in, for example, [22,24,25] and is known as partial correctness in 

Kahl [6], where an elegant mathematical explanation is given as to why the satisfaction and refinement concepts are the 
same when relations are used for describing both specifications and implementations. Therefore, in this paper we will 
use “satisfies”, “refines”, and “implements” interchangeably when describing the relationship between implementations and 
specifications.

The meaning of the statement “P implements R” in the relational inclusion sense is as follows:

• if R is not defined for some inputs (i.e., R is a partial relation), then those inputs are considered illegal and P must not 
produce any results for them;

• for the inputs for which R is defined, P may or may not produce a result, but if P produces a result, then that result 
must be allowed by R (i.e., relational inclusion is angelic). A degenerate case is the empty relation, which satisfies any 
specification (the empty relation is the bottom element in the lattice induced by ⊆).

Allowing implementations that are not required to deal with all the inputs in the domain of their specifications is prob-
lematic for safety-critical systems. Moreover, allowing the empty relation to be an acceptable implementation of any 
specification means that implementations that do not produce any results are always acceptable. This is also not some-
thing desirable, especially for a safety-critical system.

The composition of two relations P ⊆ A × B and Q ⊆ B × C is the relation:

P ., Q = {(a, c) ∈ A × C | ∃b ∈ B. (a,b) ∈ P ∧ (b, c) ∈ Q } .

Relational composition is an associative operation.
The precedence of the relational operators introduced so far is as follows: the unary operators � and are evaluated 

first; the binary operator ., is evaluated next; the binary operators ∩ and ∪ are evaluated last.
The relational composition and inclusion operations induce two residuation operations, the left and right residuals [22,

24–26,4,15,6]. The residuals are useful when a specification is refined by a composition of two other specifications of which 
one is not known, and will be used in Sections 3.3 and 4 in proving an existence condition for an acceptable relation SOF
in the four-variable model.

Assuming two relations R ⊆ A × C and Q ⊆ B × C , the left residual of R by Q, denoted R/Q , is the largest solution of the 
inequality X ., Q ⊆ R , where X ⊆ A × B is the unknown:

X ., Q ⊆ R ⇔ X ⊆ R/Q .

The value of the left residual of R by Q is:

R/Q = R ., Q � = {(a,b) ∈ A × B | ∀c ∈ C. (b, c) ∈ Q ⇒ (a, c) ∈ R} = {(a,b) ∈ A × B | Q (b) ⊆ R(a)} .

Given two relations R ⊆ A × C and P ⊆ A × B , the right residual of R by P, denoted P\R , is the largest solution of the 
inequality P ., X ⊆ R , where X ⊆ B × C is the unknown:
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Fig. 5. Examples of demonic refinement.

P ., X ⊆ R ⇔ X ⊆ P\R .

The value of the right residual of R by P is:

P\R = P� ., R = {(b, c) ∈ B × C | ∀a ∈ A. (a,b) ∈ P ⇒ (a, c) ∈ R} = {(b, c) ∈ B × C | P
�
(b) ⊆ R

�
(c)} .

The precedence of / and \ is the same as the precedence of the relational composition. The residuation operations are 
loosely analogous to division of natural numbers and the values of the residuals are a form of quotient. The left residual 
R/Q can be understood as what remains on the left of R after R is “divided” by Q on the right. Dually, the right residual 
P\R is what remains on the right of R after “dividing” R by P on the left. Hoare and He [22,24] were among the first to 
advocate the importance of the relational residuals to software development.1 Hoare and He called the left residual R/Q
the weakest prespecification of program Q to achieve specification R, and the right residual P\R the weakest postspecification
of program P to achieve specification R.

3.2. Demonic operators

We now present the demonic relational operators that will be used in the paper and motivate their suitability for 
safety-critical systems compared to their angelic counterparts.

First, we introduce constructs that will allow us to work with partial relations and also to make the transition from 
the abstract relation-algebraic presentation typical in the literature to a set-theoretic presentation. The rationale for allow-
ing partial relations is that in practice, in the early stages of system development formulating complete specifications for 
complex systems is virtually an impossible task; the specifications are iteratively refined, adding more detail as the system 
becomes better understood until the specifications cover all the possible cases that can arise [27–29]. Before getting to 
that point, however, many useful analyses can be performed, such as checking if an acceptable implementation really is 
possible. From the perspective of validation and verification, working with partial relations is a pragmatic approach: if we 
cannot satisfy a partial specification, we will not be able to meet a more complete version of that specification. The domain 
restriction of a relation P ⊆ A × B to a set A′ ⊆ A is the relation P

∣∣
A′ = {

(a,b) ∈ P
∣∣a ∈ A′}. The range restriction of a relation 

P ⊆ A × B to a set B ′ ⊆ B is the relation P
∣∣B ′ = {

(a,b) ∈ P
∣∣b ∈ B ′}. The domain and range restrictions are also known as the 

prerestriction and, respectively, postrestriction constructs in [30]. We will use the following domain and range restrictions:

• the domain restriction of P ⊆ A × B to the domain of R ⊆ A × C :

P
∣∣
dom(R)

= P ∩ R .,

|�

C,B = {(a,b) ∈ P |a ∈ dom (R)};
• the domain restriction of P ⊆ A × B to the range of R ⊆ C × A:

P
∣∣
ran(R)

= P ∩ R
� .,

|�

C,B = {(a,b) ∈ P |a ∈ ran (R)};
• the range restriction of P ⊆ A × B to the domain of R ⊆ B × C :

P
∣∣dom(R) = P ∩ |�

A,C
., R

� = {(a,b) ∈ P |b ∈ dom (R)}.
3.2.1. Demonic refinement

A relation P ⊆ A × B is a demonic refinement of a relation R ⊆ A × B , written P � R , if and only if dom (R) ⊆ dom (P )

and P
∣∣
dom(R)

⊆ R . Consider the relations P and R in Fig. 5: in Fig. 5a, P refines R; in Fig. 5b, P does not refine R because 
(a2, b1) ∈ P but (a2, b1) /∈ R; and in Fig. 5b, P does not refine R because dom (R) � dom (P ).

Maddux [20] made the connection between the approaches to nondeterminism and stepwise refinement in variations of 
Dijkstra’s weakest precondition calculus [16,18,17,19] and those in relation-algebraic formalisms [31,30,32,33,4,34,5,6].2 This 
connection reveals that demonic refinement appears under different guises in the literature: “more defined than” [30,32]; 
total correctness [31,5,6]; demonic refinement [33,4,34,5,6].

1 Hoare and He use a different notation than ours; we follow the RelMiCS [15] conventions.
2 The reader should note that the demonic refinement ordering in [32,4] is the converse of the usual demonic ordering.
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Fig. 6. Example of demonic intersection.

Demonic refinement is a partial order and induces a complete join semi-lattice, usually referred to as the demonic 
lattice [32,33,5,6]. The top element of the demonic lattice is the empty relation |� , which does not impose any constraints 
whatsoever on its implementations. As such, any relation is a refinement of |� . The sub-lattice between |� and the universal 
relation 

|�

is the set of partial relations, which specify termination only for the inputs in their domain. Below 

|�

, inclusively, 
is the set of the total relations which specify termination everywhere; the minima of this set are the ideal implementations, 
which are mappings (i.e., total functions). The join operation of the demonic lattice is the demonic union �� and will not be 
used in this paper. The meet operation is the demonic intersection ��, which is not always well defined (the demonic lattice 
is a join semi-lattice).

The meaning of the statement “P implements R” in the demonic refinement sense is as follows:

• for every input for which R is defined, P must produce only outputs allowed by R (i.e., an implementation is at least as 
deterministic as its specification);

• for the inputs for which R is not defined, P is allowed to do anything (i.e., P may produce incorrect results or no result 
at all).

Compared to angelic refinement, demonic refinement does not allow empty implementations if the specification is not 
empty. Moreover, demonic refinement forces an implementation to deal with all the inputs in the domain of its specification. 
These differences make the demonic refinement better suited for a safety-critical setting. It is debatable, however, in the 
case of demonic refinement, if allowing arbitrary behavior outside the domain of a specification is the best thing to do. 
When we give a demonic semantics to the four-variable model in Section 4, we will explain how this can be dealt with in 
practice. As particular cases, if P and R are total or if dom (P ) = dom (R), then P � R and P ⊆ R are equivalent.

3.2.2. Demonic intersection
Two relations P ⊆ A × B and Q ⊆ A × B are compatible if and only if

dom (P ) ∩ dom (Q ) ⊆ dom (P ∩ Q ) . (5)

Condition (5) means that for every input in common, P and Q should have at least one output in common.
The demonic intersection of P and Q , denoted as P �� Q , is defined only if P and Q are compatible. If the demonic 

intersection of P and Q is defined, then its value is:

P �� Q (P ∩ Q ) ∪ (P ∩ Q .,

|�

) ∪ (P .,

|� ∩ Q ) = (P ∩ Q ) ∪ P
∣∣
dom(Q )

∪ Q
∣∣
dom(R)

. (6)

The symbol , called the “venturi tube” [6], has the following meaning: for any two expressions φ and ψ , φ ψ means 
that if φ is defined, then ψ is defined and equal to φ. The intuition for (6) is that P �� Q captures the behavior that is 
common to both P and Q; outside the domain of Q, P �� Q does exactly what P does; and, outside the domain of P, P �� Q
does exactly what Q does. For example, let P = {(a1, b1), (a2, b1), (a2, b3)} and Q = {(a2, b2), (a2, b3), (a3, b3)}. In this case, 
P �� Q = {(a2, b3), (a1, b1), (a3, b3)} (Fig. 6).

3.2.3. Demonic composition
The demonic composition of two relations P ⊆ A × B and Q ⊆ B × C is defined as:

P �Q = P ., Q ∩ P ., Q .,

|�

C,C = {(a, c) ∈ P ., Q | P (a) ⊆ dom (Q )} .

Demonic composition is the same as the angelic composition when P is univalent or when Q is total. The difference between 
these two notions of relational composition is indicative of the difference between angelic and demonic semantics. As an 
example, let us consider the following two relations P = {(a1, b1), (a1, b2)} and Q = {(b1, c1)}, depicted in Fig. 7. Here, P ., Q
allows the dead end (a1, b2) as long as there is a chance that c1 will be reached via b1. On the other hand, P �Q is empty 
because there is the possibility that an implementation will get stuck at b2 and will not reach c1.

3.2.4. Demonic residuals
As was the case with angelic composition and angelic inclusion, demonic composition and demonic refinement induce 

two residuation operations, the demonic left and right residuals. The demonic residuals are useful when a relation is re-
fined by a demonic composition of two other relations and one of these relations is not known. They will be used in 
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Fig. 7. Demonic vs. angelic composition.

Sections 3.3 and 4 to prove a necessary and sufficient condition for the existence of a relation SOF such that the diagram of 
the four-variable model commutes.

The demonic left residual3 of a relation R ⊆ A × C by a relation Q ⊆ B × C , denoted R � Q , is defined as the largest 
solution with respect to � of the inequation X � Q � R , where X ⊆ A × B is the unknown:

X �Q � R ⇔ X � R � Q .

A solution X, called a demonic left factor of R through Q, does not always exist. As such, the demonic left residual R � Q is 
not always defined. For example, if Q = |� B,C and R �= |� A,C , then X �Q = |� A,C for any X ⊆ A × B , in which case X �Q is 
not a demonic refinement of R and R � Q is not well defined.

If R � Q is defined, then its value is:

R � Q R/Q ∩ |�

A,C
., Q

� = (R/Q )
∣∣dom(Q ) = {(a,b) ∈ A × B |b ∈ dom (Q ) ∧ Q (b) ⊆ R(a)} . (7)

We now state and prove a necessary and sufficient condition for the existence of a demonic left factor and, therefore, for 
the definedness of the demonic left residual.

Lemma 1. Given two relations R ⊆ A × C and Q ⊆ B × C , there exists a demonic left factor X ⊆ A × B such that X �Q � R if and 
only if ∀a ∈ dom (R) .∃b ∈ dom (Q ) . Q (b) ⊆ R(a).

Proof. If direction:

∃X. X �Q � R

⇒ 〈by definition, if X �Q � R admits a solution in X, then R � Q also is a solution〉
(R � Q ) �Q � R

⇒ 〈by definition of �〉
dom (R) ⊆ dom ((R � Q ) �Q )

⇒ dom (R) ⊆ dom (R � Q )

⇒ ∀a ∈ dom (R) .∃b ∈ B. (a,b) ∈ R � Q

⇒ 〈by (7)〉
∀a ∈ dom (R) .∃b ∈ dom (Q ) . Q (b) ⊆ R(a) .

Only if direction:

∀a ∈ dom (R) .∃b ∈ dom (Q ) . Q (b) ⊆ R(a)

⇔ 〈by (7)

∀a ∈ dom (R) .∃b ∈ dom (Q ) . (a,b) ∈ R � Q

⇔ ∀a ∈ dom (R) .∃b ∈ B. (a,b) ∈ R � Q ∧ b ∈ dom (Q )

3 The demonic left residual is called the conjugate kernel in [35].
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⇔ 〈by definition of �〉
∀a ∈ dom (R) .∃c ∈ C. (a, c) ∈ (R � Q ) �Q

⇒ dom (R) ⊆ dom ((R � Q ) �Q ) . (8)

((R � Q ) �Q )
∣∣
dom(R)

⊆ R

⇔ ∀a ∈ dom (R) . ((R � Q ) �Q ) (a) ⊆ R(a)

⇔ 〈by unfolding ⊆〉
∀a ∈ dom (R) .∀c ∈ C. (a, c) ∈ ((R � Q ) �Q ) ⇒ (a, c) ∈ R

⇔ 〈by definition of � and ; 〉
∀a ∈ dom (R) .∀c ∈ C. (∃b ∈ dom (Q ) . (a,b) ∈ R � Q ∧ (b, c) ∈ Q ) ⇒ (a, c) ∈ R

⇔ 〈by (7)〉
∀a ∈ dom (R) .∀c ∈ C. (a, c) ∈ R ⇒ (a, c) ∈ R

⇔ true . (9)

∀a ∈ dom (R) .∃b ∈ dom (Q ) . Q (b) ⊆ R(a)

⇒ 〈by (8) & (9) & definition of �〉
(R � Q ) �Q � R

⇒ 〈by taking X = R � Q 〉
∃X. X �Q � R . �

Several conditions for the definedness of the demonic left residual can be found in the literature, such as, if converted to 
our notation: dom (R) ⊆ dom

(
(R/Q )

∣∣dom(Q )
)

in [33,4] and dom (R) ⊆ dom ((R/Q ) ., Q ) in [5,6]. It can be shown that these 
conditions are equivalent to our condition in Lemma 1.

The demonic right residual of a relation R ⊆ A ×C by a relation P ⊆ A × B , denoted P � R , is defined as the largest solution 
with respect to � of the inequation P � X � R , where X ⊆ B × C is the unknown:

P �X � R ⇔ X � P � R .

A solution X, called a demonic right factor of R through P, does not always exists. Therefore, the demonic right residual P � R
is not always defined.

If P � R is defined, then its value is:

P � R
(

P ∩ R .,

|�

C,B
)\R ∩ (

P ∩ R .,

|�

C,B
)� .,

|�

A,C(
P
∣∣
dom(R)

∖
R
) ∣∣∣

ran
(

P
∣∣
dom(R)

)
{
(b, c) ∈ B × C

∣∣∣∣b ∈ ran
(

P
∣∣
dom(R)

)
∧

(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(c)

}
. (10)

We now give a necessary and sufficient condition for the existence of a demonic right factor and, therefore, for the 
definedness of the demonic right residual.

Lemma 2. Given two relations R ⊆ A × C and P ⊆ A × B, there exists a demonic right factor X ⊆ B × C such that P � X � R if and 
only if the following conditions are both satisfied:

(i) dom (R) ⊆ dom (P ) ;

(ii) ∀b ∈ ran
(

P
∣∣
dom(R)

)
.∃c ∈ C.

(
P
∣∣
dom(R)

)�
(b) ⊆ R�

(c) .
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Proof. If direction:

∃X. P �X � R

⇒ 〈by definition, if P �X � R has a solution in X, then P � R also is a solution〉
P � (P � R) � R

⇒ 〈by definition of �〉
dom (R) ⊆ dom (P �(P � R))

⇒ 〈by definition of �〉
dom (R) ⊆ dom (P ) ∧ ran

(
P
∣∣
dom(R)

)
⊆ dom (P � R)

⇒ dom (R) ⊆ dom (P ) ∧ ∀b ∈ ran
(

P
∣∣
dom(R)

)
.∃c ∈ C. (b, c) ∈ P � R

⇒ 〈by (10)〉
dom (R) ⊆ dom (P ) ∧ ∀b ∈ ran

(
P
∣∣
dom(R)

)
.∃c ∈ C.

(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(c) .

Only if direction:

dom (R) ⊆ dom (P ) ∧ ∀b ∈ ran
(

P
∣∣
dom(R)

)
.∃c ∈ C.

(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(c)

⇒ 〈by (10)〉
dom (R) ⊆ dom (P ) ∧ ∀b ∈ ran

(
P
∣∣
dom(R)

)
.∃c ∈ C. (b, c) ∈ P � R

⇒ ∀a ∈ dom (R) .∀b ∈ P (a).∃c ∈ C. (b, c) ∈ P � R

⇒ 〈by definition of �〉
∀a ∈ dom (R) .∃c ∈ C. (a, c) ∈ P �(P � R)

⇒ dom (R) ⊆ dom (P �(P � R)) . (11)

(P �(P � R))
∣∣
dom(R)

⊆ R

⇔ ∀a ∈ dom (R) . (P �(P � R)) (a) ⊆ R(a)

⇔ 〈by unfolding ⊆〉
∀a ∈ dom (R) .∀c ∈ C. (a, c) ∈ P �(P � R) ⇒ (a, c) ∈ R

⇔ 〈by unfolding � and ; 〉
∀a ∈ dom (R) .∀c ∈ C. (∃b ∈ dom (P � R) . (a,b) ∈ P ∧ (b, c) ∈ P � R) ⇒ (a, c) ∈ R

⇔ 〈by (10)〉
∀a ∈ dom (R) .∀c ∈ C. (a, c) ∈ R ⇒ (a, c) ∈ R

⇔ true . (12)

dom (R) ⊆ dom (P ) ∧ ∀b ∈ ran
(

P
∣∣
dom(R)

)
.∃c ∈ C.

(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(c)

⇒ 〈by (11) & (12) & definition of �〉
P � (P � R) � R

⇒ 〈by taking X = P � R〉
∃X. P �X � R . �
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Fig. 8. Demonic vs. angelic residuals.

Fig. 9. Existence of a demonic mid factor.

The definedness conditions for the demonic right residual presented in the literature [4,33,6] can be converted to the 
following common form in our notation: dom (R) ⊆ dom (P ) ∧ |�

B,C ⊆
(

P
∣∣
dom(R)

∖
R
)

.,

|�

C,C . In the literature, this condition 
is stated only as sufficient, but it can be shown that it is equivalent to our condition in Lemma 2, which is necessary and 
sufficient. The advantage of our conditions for the definedness of demonic left and right residuals compared to the abstract 
relation-algebraic presentation is a better insight into the constraints that the relations R, P, and Q must satisfy in order for 
R � Q and P � R to be well defined.

It is worth explaining why the demonic residuals are more suitable compared to their angelic counterparts. Let us 
consider the relations depicted in Fig. 8. Here, if seen as specifications, the angelic residual R/Q allows the dead end (a1, b2)

where an implementation could get stuck, whereas the demonic residual R � Q does not allow any dead ends. Moreover, 
both demonic residuals in the figure are less restrictive than their angelic counterparts without breaking refinement: R/Q , 
but not R � Q , asks its implementations to deal with a2, which is not an input of interest for R; similarly, P\R , but not 
P � R , asks its implementations to deal with b2.

The demonic operators have the same precedence as their angelic counterparts. For more details on the demonic calculus 
of relations, we refer the reader to [4–6].

3.3. Demonic factorization of relations

To answer the question whether acceptable software exists in the four-variable model, we are interested in existence con-
ditions for the dotted arrows in the commutative diagram depicted in Fig. 9. The results will be applied to the four-variable 
model in the subsequent sections.

Ultimately, we are interested in necessary and sufficient conditions for the existence of a demonic factor X such that 
P � X �Q � R , which we call a demonic mid factor of R through P and Q. Demonic composition is an associative operation 
[36]: P � (X �Q ) = (P � X) �Q . The associativity of � indicates that both diagonals AC and BD are necessary for X to exist. 
This suggests that the existence of the diagonals might also be a sufficient condition. As it turns out, this is not the case. By 
applying Lemma 2 in �A, B, D , the necessary and sufficient condition for diagonal BD to exist is:

dom (R) ⊆ dom (P ) ∧ ∀b ∈ ran
(

P
∣∣
dom(R)

)
.∃d ∈ D.

(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(d) . (13)

By definition, the largest relation, with respect to �, for the diagonal BD is the demonic right residual P � R . The necessary 
and sufficient condition for the existence of diagonal AC is obtained by applying Lemma 1 in �A, C, D:

∀a ∈ dom (R) .∃c ∈ dom (Q ) . Q (c) ⊆ R(a) . (14)

The largest relation, with respect to �, for the diagonal AC is the demonic left residual R � Q .
While conditions (13) and (14) are both necessary for X, Fig. 10 provides a counterexample to the sufficiency of their 

conjunction. Condition (13) is satisfied because dom (R) ⊆ dom (P ) and 
(

P
∣∣
dom(R)

)�
(b1) = {a1, a2} ⊆ R�

(d2) = {a1, a2}. 
Condition (14) is also satisfied because Q (c1) = {d1} ⊆ R(a1) = {d1, d2} and Q (c3) = {d3} ⊆ R(a2) = {d2, d3}. However, if 
(b1, c1) ∈ X , then a2 can be connected to d1 via P � X �Q although (a2, d1) /∈ R; similarly, if (b1, c3) ∈ X , then a1 can reach 
d3 via P � X �Q although (a1, d3) /∈ R . Consequently, there is no relation X such that P � X �Q � R , although both (13) and 
(14) are satisfied. It is only when (c2, d2) ∈ Q that there is an X = {(b1, c2)} such that P � X �Q � R . It can be seen in Fig. 10
that d2 enjoys a special property: the amount of “confusion” at the input of R to produce d2 is at least the same as the 

amount of “confusion” at the input of P to produce b1, that is, 
(

P
∣∣
dom(R)

)�
(b1) = {a1, a2} ⊆ R�

(d2) = {a1, a2}. This suggests 
that Q reaching points similar to d2 must be part of a necessary and sufficient condition for X to exist.
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Fig. 10. The diagonals are not sufficient for a demonic mid factor.

Lemma 3. Given three relations R ⊆ A × D, P ⊆ A × B, and Q ⊆ C × D, there exists a demonic mid factor X ⊆ B × C such that 
P � X �Q � R if and only if the following conditions are both satisfied:

(i) dom (R) ⊆ dom (P ) ;

(ii) ∀b ∈ ran
(

P
∣∣
dom(R)

)
.∃c ∈ dom (Q ) . Q (c) ⊆

{
d ∈ D

∣∣∣∣
(

P
∣∣
dom(R)

)�
(b) ⊆ R�

(d)

}
.

Proof. The geometrical interpretation in Fig. 10 of the associativity of � is that it does not matter if we use the diagonal 
BD or the diagonal AC to arrive to the condition for the existence of X. As such, it suffices to use the diagonal BD and show 
that the conditions in Lemma 3 are necessary and sufficient for X such that P � (X �Q ) � R .

∃X. P �(X �Q ) � R

⇔ 〈by definition of � & Lemma 2 applied in �A, B, D〉
(∃X. X �Q � P � R) ∧ (13)

⇔ 〈by Lemma 1 applied in �B, C, D〉
(∀b ∈ dom (P � R) .∃c ∈ dom (Q ) . Q (c) ⊆ (P � R)(b)) ∧ (13)

⇔
〈
dom (P � R) = ran

(
P
∣∣
dom(R)

)
& (P � R)(b) =

{
d ∈ D

∣∣∣∣
(

P
∣∣
dom(R)

)�
(b) ⊆ R

�
(d)

}〉

dom (R) ⊆ dom (P )

∧ ∀b ∈ ran
(

P
∣∣
dom(R)

)
.∃c ∈ dom (Q ) . Q (c) ⊆

{
d ∈ D

∣∣∣∣
(

P
∣∣
dom(R)

)�
(b) ⊆ R

�
(d)

}
. �

Lemma 4. Given relations R ⊆ A × D, P ⊆ A × B, X ⊆ B × C , and Q ⊆ C × D, if P � X �Q � R, then X � P � R � Q .

Proof. For any X such that P � (X �Q ) � R we have that P � (X �Q ) � R ⇔ X �Q � P � R ⇔ X � (P � R) � Q by using the 
definitions of � and �, respectively. It is also the case that for any X such that (P � X)�Q � R we have that (P � X)�Q �
R ⇔ P � X � R � Q ⇔ X � P � (R � Q ). Considering that the demonic composition is associative, we drop the parentheses 
and say that any solution of the inequality P � X �Q � R , if it exists, is a demonic refinement of the residual P � R � Q . �

An implication of Lemma 4 is that the residual P � R � Q is the largest solution, with respect to �, of the inequation 
P � X �Q � R . We call this residual the demonic mid residual of R by P and Q. By Lemma 3 and Lemma 4, the demonic mid 
residual is defined only if a demonic mid factor exists. Lemma 3 also gives us the value of the demonic mid residual:

P � R � Q

{
(b, c) ∈ B × C

∣∣∣∣b ∈ ran
(

P
∣∣
dom(R)

)
∧ c ∈ dom (Q )∧

Q (c) ⊆
{

d ∈ D

∣∣∣∣
(

P
∣∣
dom(R)

)�
(b) ⊆ R

�
(d)

}}
. (15)

4. Implementability of system requirements

In this section we give a formal characterization for the implementability of system requirements in the four-variable 
model. To this end, we redefine feasibility of system requirements and acceptability of software using the demonic calculus 
of relations, strengthening the angelic conditions proposed by Parnas and Madey[3] and discussed in Sections 2.3 and 2.4. 
We also give a necessary and sufficient condition for the existence of acceptable software. Our approach also yields a formal 
characterization of the software requirements in terms of the least restrictive, or weakest, software specification.
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4.1. Redefining feasibility of system requirements

Revisiting Fig. 3, we can see that REQ �� NAT = {(m1, c1), (m2, c3)} drops (m1, c2) from REQ because this pair does not 
belong to NAT. As such, for the inputs in the domain of NAT, the demonic intersection of REQ with NAT retains only that 
part of the system requirements that is physically meaningful. This suggests that we should ask a system to implement 
REQ �� NAT instead of REQ. If we want the system requirements to specify only physically meaningful behaviors for the 
inputs allowed by NAT, then the following new definition should be used for the feasibility of the system requirements.

Definition 5. System requirements REQ are feasible with respect to a physical environment NAT if and only if REQ = REQ ��
NAT .

This notion of feasibility is stronger than the feasibility notion proposed by Parnas and Madey [3] and described in 
Section 2.3. The latter allows REQ to specify outputs not allowed by NAT as long as REQ also specifies at least one output 
allowed by NAT for every input in the domain of NAT (conditions (1) and (2)). The feasibility notion we propose in Defini-
tion 5, on the other hand, requires REQ to specify only outputs allowed by NAT for every input in the domain of NAT. This is 
a consequence of the following theorem, which also ensures that the demonic intersection of REQ with NAT in Definition 5
is always well defined.

Theorem 6. System requirements REQ are feasible with respect to a physical environment NAT if and only if REQ is a demonic refine-
ment of NAT:

REQ = REQ �� NAT ⇔ REQ � NAT.

Proof. The statement of this theorem holds in a lattice for any REQ and NAT. However, because the demonic lattice is a join 
semi-lattice, the demonic meet �� is not always well defined. Thus, we need to make sure that �� is well defined in both 
directions of ⇔.

For any two relations REQ and NAT, we can write REQ as

REQ = REQ
∣∣
dom(NAT)

∪ REQ
∣∣
dom(NAT)

. (16)

By the definition we also have that

REQ �� NAT = (REQ ∩ NAT) ∪ REQ
∣∣
dom(NAT)

∪ NAT
∣∣
dom(REQ)

. (17)

“⇒” direction:

Assuming REQ = REQ �� NAT , it follows by (17) that

REQ = (REQ ∩ NAT) ∪ REQ
∣∣
dom(NAT)

∪ NAT
∣∣
dom(REQ)

. (18)

By combining (16) and (18), and canceling REQ
∣∣
dom(NAT)

on both sides, we get

REQ
∣∣
dom(NAT)

= (REQ ∩ NAT) ∪ NAT
∣∣
dom(REQ)

. (19)

For this equality to hold, NAT
∣∣
dom(REQ)

has to be empty, which implies that

dom (NAT) ⊆ dom (REQ) . (20)

With NAT
∣∣
dom(REQ)

empty, (19) becomes

REQ
∣∣
dom(NAT)

= REQ ∩ NAT . (21)

Equation (21) implies that REQ
∣∣
dom(NAT)

⊆ NAT .

Starting from REQ = REQ �� NAT , we have shown that dom (NAT) ⊆ dom (REQ) and REQ
∣∣
dom(NAT)

⊆ NAT . By the definition 
of demonic refinement, this means that REQ � NAT .

We still need to make sure that the demonic intersection of REQ and NAT in REQ = REQ �� NAT is always well defined. 
Because (20) holds, we have that

dom (REQ) ∩ dom (NAT) = dom (NAT) . (22)

By (21), dom
(

REQ
∣∣
dom(NAT)

)
= dom (REQ ∩ NAT). Because (20) holds, we also have that dom

(
REQ

∣∣
dom(NAT)

)
= dom (NAT). 

Consequently:
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dom (REQ ∩ NAT) = dom (NAT) . (23)

By (22) and (23), the following equality holds:

dom (REQ ∩ NAT) = dom (REQ) ∩ dom (NATT) . (24)

This equality is exactly the same as the second condition of the feasibility notion proposed by Parnas and Madey (condition 
(2) in Section 2.3), which is in fact equivalent to the compatibility condition (5) of REQ and NAT because dom (REQ ∩ NAT) ⊆
dom (REQ) ∩ dom (NAT) is satisfied by any REQ and NAT (i.e., it is a tautology). As such, REQ �� NAT is well defined if 
REQ = REQ �� NAT .

“⇐” direction:

Assuming REQ � NAT , we have by the definition of demonic refinement that dom (NAT) is contained in dom (REQ). This 
implies that

NAT
∣∣
dom(REQ)

= |� . (25)

Demonic refinement also implies that REQ
∣∣
dom(NAT)

⊆ NAT . Because REQ
∣∣
dom(NAT)

⊆ REQ holds for any REQ and NAT, we also 
have that REQ

∣∣
dom(NAT)

⊆ REQ ∩ NAT . Moreover, the converse inclusion REQ ∩ NAT ⊆ REQ
∣∣
dom(NAT)

is trivially satisfied by any 
REQ and NAT. Therefore (21) holds. From (16), (17), (21) and (25), it follows that REQ = REQ �� NAT .

As shown in the “⇒” direction, this implies that REQ �� NAT is always well defined. �
Because Definition 5 implies that dom (NAT) ⊆ dom (REQ), a question arises as to what the system requirements should 

do about the inputs outside the domain of NAT. These inputs can be assumed to never happen under normal circumstances, 
but, for increased robustness of the system, they can be used to specify system response for the cases when the normal 
behavior of the environment is perturbed by some phenomena that are independent of the system.

The check for the feasibility of system requirements can be done as part of the requirements validation process. If the 
requirements are not feasible with respect to the environment to be controlled by the system, then no implementation will 
fully satisfy them. As such, feasibility is a necessary implementability condition for system requirements.

4.2. Redefining system and software acceptability

We now redefine the angelic acceptability notion of Parnas and Madey [3], described in Section 2.4, in the demonic 
calculus of relations.

Definition 7. A system implementation SYS is acceptable with respect to system requirements REQ and physical environment 
NAT if and only if SYS � REQ , where REQ is feasible with respect to NAT.

Given an acceptable system implementation SYS, Theorem 6 ensures that the following refinement ordering holds:

SYS � REQ = REQ �� NAT � NAT

Consequently, an acceptable system implementation will sense all the inputs that are possible from the environment and, 
for these inputs, will produce only outputs allowed by the physical environment. The inputs outside the domain of NAT, but 
in the domain of REQ, can be assumed to never happen under normal environmental circumstances; these inputs can be 
used for specifying fault-tolerant behavior for abnormal circumstances when the environment is perturbed by phenomena 
that are independent of the system. Allowing arbitrary behavior outside the domain of REQ should present no danger as it 
is assumed that, for a final product, hazard analyses have been conducted and all the inputs that could lead to hazardous 
system behavior have been added to the domain of REQ as additional safety requirements.

In Parnas and Madey [3], a system implementation is given as SYS = IN ., SOF ., OUT . As seen in Section 3, angelic composi-
tion allows dead ends between the composed relations and leads to the problem described in Section 2.4.3. If in the example 
given in Fig. 4 we redefine the system implementation using demonic composition, then SYS = IN�SOF�OUT = |� and, by 
Definition 7, it will not demonically refine a non-empty REQ = REQ �� NAT . Consequently, this system implementation will 
not be acceptable.

Considering that an acceptable software has to be part of an acceptable system implementation, we give the following 
definition for acceptability of software.

Definition 8. A software specification SOF is acceptable with respect to system requirements REQ, input interface IN, output 
interface OUT, and environment NAT if and only if IN�SOF�OUT � REQ , where REQ is feasible with respect to NAT.
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4.3. A necessary and sufficient implementability condition

Assuming that the system requirements are feasible with respect to the environment, the implementability of the system 
requirements reduces to the existence of acceptable software with respect to the input and output devices. The mathemati-
cal question we ask is, given relations NAT, REQ, IN, and OUT, does a relation SOF exist such that IN�SOF�OUT � REQ �� NAT? 
The following theorem answers this question.

Theorem 9. Given feasible system requirements REQ, input interface IN, output interface OUT, and environment NAT, there exists an 
acceptable software specification SOF if and only if the following conditions are both satisfied:

(i) dom (REQ �� NAT) ⊆ dom (IN);

(ii) for any software input i ∈ ran
(

IN
∣∣
dom(REQ��NAT)

)
there exists a software output o ∈ dom (OUT) such that

OUT(o) ⊆
{

c ∈ C

∣∣∣∣
(

IN
∣∣
dom(REQ��NAT)

)�
(i) ⊆ (REQ �� NAT)

�
(c)

}}
.

Proof. An acceptable SOF is a demonic mid factor of REQ �� NAT through IN and OUT (see Section 3.3). As such, the current 
theorem is a direct consequence of the necessary and sufficient existence condition for a demonic mid factor given in 
Lemma 3. �

In Theorem 9, IN and OUT are coupled. In practical terms, this means that for the system requirements to be imple-
mentable, the input and output hardware interfaces cannot be, in general, designed independently of each other. In [37] we 
proved two stronger implementability conditions that decouple IN and OUT. These implementability conditions are sufficient, 
but not necessary.

4.4. Software requirements

The four-variable model does not explicitly specify the software requirements, but rather bounds them by specifying 
the system requirements and the input and output hardware interfaces of the system. The software engineers are left with 
the problem of how to construct software that satisfies the system requirements and input/output interfacing constraints. 
Extracting the software requirements from these specifications is “often an exercise in frustration” [1], hence an automated 
method would offer a significant advantage. In this section we give a mathematical characterization of the software require-
ments that offers a sound starting point for devising such a method.

From Definition 8 and Lemma 4, we have that any acceptable SOF, if it exists, is a demonic refinement of the demonic 
mid residual IN � (REQ �� NAT) � OUT . As a result, this residual is the least restrictive software specification, or the weakest 
software specification, as it leaves open most software design options. In this sense, it describes the software requirements.

Definition 10. Given feasible system requirements REQ, input interface IN, output interface OUT, and environment NAT, the 
software requirements SOFreq are given by the demonic mid residual of REQ �� NAT through IN and OUT:

SOFreq
def= IN � (REQ �� NAT) � OUT .

The software requirements SOFreq are well defined only when an acceptable SOF exists, that is, when Theorem 9 is 
satisfied. A well defined SOFreq is a sound starting point for the software design process. A software design and, eventually, 
a program are guaranteed to be acceptable by construction if they are a demonic refinement of a well defined SOFreq .

If the software requirements are well defined, then they can, in principle, be derived by “calculating” the value of the 
residual IN � (REQ �� NAT) � OUT . One way to calculate this demonic residual is to use matrices. In general, the demonic 
operations are defined in terms of angelic operations, which can be calculated as operations on the adjacency matrices of 
the graphs associated with the relations: composition is matrix multiplication, converse is matrix transposition, etc. [26,38]. 
RelView,4 with its library Kure2,5 is a tool that supports the manipulation of relations represented as Boolean matrices using 
an optimized implementation based on binary decision diagrams. This approach would necessarily work only for sufficiently 
small, finite relations. Another way to calculate the residual IN � (REQ �� NAT)� OUT is to use the following formula, obtained 
from (15):

SOFreq

{
(i,o) ∈ I × O

∣∣∣∣ i ∈ ran
(

IN
∣∣
dom(REQ��NAT)

)
∧ o ∈ dom (OUT)∧

OUT(o) ⊆
{

c ∈ C

∣∣∣∣
(

IN
∣∣
dom(REQ��NAT)

)�
(i) ⊆ (REQ �� NAT)

�
(c)

}}
. (26)

4 http://www.informatik.uni-kiel.de/~progsys/relview/.
5 http://www.informatik.uni-kiel.de/~progsys/kure2/.

http://www.informatik.uni-kiel.de/~progsys/relview/
http://www.informatik.uni-kiel.de/~progsys/kure2/
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From Theorem 9(ii) and (26) it follows that checking for the implementability of system requirements actually requires 
enumerating all the elements of SOFreq . This constructive nature of the necessary and sufficient implementability condition 
means that implementability checking also gives us the software requirements.

When calculating the software requirements is not feasible for very large relations, or in the case of infinite relations, 
reasoning about implementability is still possible in a higher-order logic proof assistant such as Coq, Isabelle, or PVS.

5. Example: the Pressure Sensor Trip (PST) system

In this section we analyze the implementability of the requirements for the pressure sensor trip (PST) subsystem of 
a nuclear reactor shutdown system, which was first described in [10]. This example highlights many of the challenges in 
developing such safety-critical systems, as well as the usefulness of the necessary and sufficient implementability condition 
given in Section 4. The implementability analysis reveals that the requirements for the PST system are not implementable 
given the chosen input and output devices. The hard engineering task in such situations is to find a way to make the 
requirements implementable. This can be done by choosing input/output devices with different capabilities, by relaxing the 
requirements to allow tolerances, or by doing both. Here we present a scenario in which the requirements are modified to 
allow tolerances and use the necessary and sufficient implementability condition to determine the tolerances needed on the 
requirements for the PST such that they become implementable.

5.1. Tabular specifications

We will use tabular specifications [39,40], or tables for short, to describe the relations in the four-variable model of the 
pressure sensor trip system. The reason for using tables is that they are more readily readable by humans compared to other 
notations used in formal specification. Depending on the kind of specifications they describe, tables with different structures 
as well as semantics-preserving transformations between the various types of tables have been proposed in the literature 
[41–47]. For the pressure sensor trip example, we will use a particular type of tables in which the characteristic predicate 
Rpred : A → B → bool of a relation R = {

(a,b) ∈ A × B
∣∣ Rpred(a,b)

}
is described by a table with the following structure and 

semantics:

cond1,1(a) cond1,2(b)

.

.

.
.
.
.

condn,1(a) condn,2(b)

Rpred(a,b) = IF cond1,1(a) THEN cond1,2(b)

ELSEIF . . .

ELSEIF condn,1(a) THEN condn,2(b)

A well defined tabular specification satisfies two properties: disjointness (i.e., the conditions in the first column do not 
overlap, otherwise logical inconsistencies might be inadvertently introduced) and completeness (i.e., together, the conditions 
in the first column cover all the possible cases so that the resulting relation is total) [11]. In general, for implementability 
checks we only insist on disjointness. However, the specifications of a final product must also be complete. Care must also 
be taken when the conditions in the second column contain conjunctions, as this can lead to logical inconsistencies when b
is required to take different values at the same time.

5.2. The four-variable model of the PST

We now describe the four-variable model of the pressure sensor trip system.

5.2.1. System requirements
The PST computer is connected to a pressure sensor in the reactor. The software in the PST is required to make decisions 

as to whether a reactor shutdown procedure should be initiated or not. Whenever the pressure exceeds a normal operating 
setpoint of 2450 units, the trip computer sets its output to a “tripped” state that commands an actuator to initiate a reactor 
shutdown. When the pressure is less than or equal to 2400 units, the reactor should not be tripped. The requirements use 
a deadband region of 50 units between 2400 and 2450 to prevent “tripping” the reactor repeatedly due to sensor chatter. 
For pressures within the deadband region, the system is required to keep its output unchanged.

The above requirements for the PST are described formally by the following tabular specification:

REQ ((pressure, PressTrip′) :R × Trip, PressTrip : Trip) : bool =
pressure ≤ 2400 PressTrip = NotTripped

2400 < pressure < 2450 PressTrip = PressTrip′
2450 ≤ pressure PressTrip = Tripped

Here, REQ is actually a function and specifies the ideal behavior expected from the system. Monitored variables are the 
analog voltage produced by the pressure sensor, and the previous trip state set by the software. The value of the sensor 
voltage is modeled by the mathematical variable pressure that ranges over the real numbers. The value of the previous 
trip state is modeled by the mathematical variable PressTrip′ that ranges over the set Trip = {Tripped,NotTripped}. Therefore, 
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Fig. 11. Nondeterminism introduced by the ADC.

the set M (see Fig. 1) in the four-variable model of the PST system is the cartesian product R × Trip. As such, the system 
inputs are ordered pairs of the form (pressure, PressTrip′) ∈ R × Trip. The current state of the system output is modeled by 
the controlled variable PressTrip, which, just as PressTrip′ , ranges over the set Trip. Therefore, the set Trip of system outputs 
plays the role of the set C (see Fig. 1) in the four-variable model of the PST system.

The requirements REQ of the PST are assumed to be feasible with respect to the physical environment in which the PST 
system is to operate.

5.2.2. Input interface
The input hardware interface of the PST system consists of an analog-to-digital converter (ADC) for reading the monitored 

analog voltage produced by the pressure sensor. The abstraction relation R2Z models the functionality of the ADC and relates 
the monitored variable pressure with its corresponding software input variable, PRES:

R2Z (pressure :R, PRES : Z) : bool =
pressure ≤ 0 PRES = 0

0 < pressure < 5000 max(0, �pressure� − 5) ≤ PRES ≤ �pressure� + 5
5000 ≤ pressure PRES = 5000

The input variable PRES is a digital approximation of the monitored variable pressure that is available to the software. 
The effective output range of the ADC is the open integer interval (0..5000); anywhere outside this interval the output of 
the ADC becomes saturated. We take into account ADC inaccuracies, which are inevitable in practice. Even an ideal ADC 
introduces inaccuracy in the form of quantization errors (i.e., loss of accuracy due to constructing a discrete representation 
of a continuous quantity) [48–50]. In our example, the quantization errors are modeled by the floor function � �, which takes 
a real number and truncates it to its integer part. There also are inaccuracies due to hardware manufacturing tolerances, 
noise, etc., which manifest themselves as deviations from the actual value of the monitored pressure. For the ADC in our 
example, this deviation is within ±5 units of the actual value and causes R2Z to be a relation, not a function. Because of 
these inaccuracies, the ADC introduces uncertainty (nondeterminism) in a system implementation. For example, any pressure 
in the real interval [2395..2406) can be mapped to the same software input PRES = 2400, as illustrated in Fig. 11. As we 
will show later, this nondeterminism causes implementability issues.

The monitored previous trip state, PressTrip′, is mapped to the boolean input variable PREV in the software via the 
abstraction function Trip2Bool:

Trip2Bool (PressTrip′ : Trip, PREV : bool) : bool = PressTrip′ = Tripped PREV = true
PressTrip′ = NotTripped PREV = false

The relation IN in the four-variable model of the pressure sensor trip system uses the two abstractions R2Z and Trip2Bool
to project the system inputs (pressure, PressTrip′) ∈R × Trip to software inputs (PRES, PREV) ∈ Z × bool:

IN ((pressure,PressTrip′) : R× Trip, (PRES,PREV) : Z× bool) : bool = R2Z (pressure,PRES) ∧ Trip2Bool (PressTrip′,PREV)

5.2.3. Output interface
The output interface of the pressure sensor trip system is described by the following table:

OUT (PTRIP : bool, PressTrip : Trip) : bool = PTRIP = true PressTrip = Tripped
PTRIP = false PressTrip = NotTripped

The software sets the boolean output variable PTRIP to true to indicate that a sensor trip has occurred and to false
otherwise. The controlled variable PressTrip is then actuated accordingly by the output devices to Tripped or NotTripped. If 
the trip state is Tripped, a reactor shutdown is initiated.

The four-variable model of the PST system is depicted in Fig. 12. No environmental constraints are considered in this 
example. Also, the tabular specifications for REQ, IN, and OUT each are disjoint, complete, and internally consistent.
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Fig. 12. The four-variable model of the PST.

Fig. 13. Implementability issues when (PRES,PREV) = (2395, true).

5.3. Implementability analysis and tolerances for the PST

Having described formally the system requirements REQ, input interface IN, and output interface OUT for the pressure 
sensor trip system, the question now is whether the system requirements are implementable or not, and, if not, what toler-
ances are needed on the system requirements so they become implementable. We will use the implementability condition 
presented in Theorem 9 to answer these two questions.

We assume that REQ is feasible with respect to the physical environment. Because REQ and IN are total, it is the case that 
dom (REQ) = dom (IN) and IN

∣∣
dom(REQ)

= IN. Hence, by specializing Theorem 9 to this setting, we get the following necessary 
and sufficient implementability condition for the pressure sensor trip system:

∀(PRES,PREV) ∈ ran (IN) .∃PTRIP ∈ dom (OUT) .

OUT(PTRIP) ⊆
{

PressTrip ∈ Trip
∣∣∣ IN

�
((PRES,PREV)) ⊆ REQ

�
(PressTrip)

}
. (27)

There are three steps in the implementability analysis we carry out for the pressure sensor trip system. First, we find all 
counterexamples to (27); this will give us the largest subsets in M where tolerances are needed on REQ for some, if not all, 
system inputs. Second, we find which of the system inputs in the subsets identified in the first step really need tolerances 
and figure out the right tolerances. Formally, this means enlarging the image sets for those system inputs such that the 
system requirements become implementable. Usually, many solutions are possible, but a most desirable solution is one that 
minimally changes the requirements. Third, we derive a relaxed version of the system requirements that has the tolerances 
from the second step.

Step 1: Find the regions in the system input space where tolerances are needed
The universal quantifier in (27) requires checking all the software inputs, which is an infinite state space in the case of 

the PST system. Intuition dictates to start looking for counterexamples in the vicinities of the two setpoints specified in the 
system requirements. We choose to describe the analysis around the setpoint 2400 and only give the results for the analysis 
around the setpoint 2450.

A counterexample to (27) is found by taking (PRES, PREV) = (2395, true). As seen in Fig. 11, when the software re-
ceives from the ADC the pressure approximation PRES = 2395, the actual pressure could have had any value in the real 
interval [2390..2401). Thus, IN�

((2395, true)) = ([2390..2401), Tripped), with the understanding that ([2390..2401), Tripped)

denotes all the pairs (pressure, PressTrip′) ∈ R × Trip such that 2390 ≤ pressure < 2401 and PressTrip′ = Tripped. A prob-
lem arises because the system requirements prescribe different system responses for the pressure values in the interval 
[2390..2401), situation depicted in Fig. 13: on the subinterval [2390..2400], the system is asked to produce a Not-
Tripped output regardless of the previous trip state, whereas on the subinterval (2400..2401) the system is asked to keep 
its previous trip state. For (PRES, PREV) = (2395, true), the previous trip state is PressTrip′ = Tripped. As a consequence, 
IN�

((2395, true)) = ([2390..2400], Tripped) ∪ ((2400..2401), Tripped) � REQ�
(PressTrip) for any PressTrip ∈ Trip. This consti-

tutes a counterexample to (27).
If we look again at Fig. 11, it is clear that 2395 is the smallest PRES that can originate from actual pressures higher 

than the setpoint 2400. The greatest PRES that can originate from actual pressures less than or equal to the setpoint 2400
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Fig. 14. Implementability issues when (PRES,PREV) = (2405, true).

Fig. 15. Implementability issues when (PRES,PREV) = (2445, false).

is 2405. The situation at (PRES, PREV) = (2405, true) is illustrated in Fig. 14, where IN�
((2405, true)) = (2400, Tripped) ∪

((2400..2411), Tripped) � REQ�
(PressTrip) for any PressTrip ∈ Trip. Consequently, (PRES, PREV) = (2405, true) violates (27).

The cases when the previous trip state is PressTrip′ = NotTripped and PREV = false are not problematic. The reason is that 
for pressure values less than or equal to 2400 the system requirements specify that a NotTripped output should be produced 
regardless of PressTrip’ and that above 2400 the system output should not change. Therefore, the software inputs around the 
setpoint 2400 that do not satisfy (27) are the pairs (PRES, PREV) such that PRES is in the integer interval [2395..2405] and 
PREV = true. Consequently, the largest system input region around the setpoint 2400 where tolerances are needed is given 
by the pairs (pressure, PressTrip′) ∈R × Trip such that 2390 ≤ pressure < 2411 and PressTrip′ = Tripped.

A similar analysis around the setpoint 2450 reveals that the software inputs that do not satisfy (27) are the pairs 
(PRES, PREV) such that PRES is in the integer interval [2445..2454] and PREV = false. The situations at the extremities of 
this interval are depicted in Figs. 15 and 16. Consequently, the largest system input region around the setpoint 2450 where 
tolerances are needed is given by the pairs (pressure, PressTrip′) ∈R × Trip such that 2440 ≤ pressure < 2460 and PressTrip′ =
NotTripped.

This gives us the two system input regions where there definitely are system inputs for which the system requirements 
need tolerances. Allowing tolerances outside these regions is completely unnecessary.

Step 2: Find proper tolerances
The second step is to figure out which system inputs in the regions found at Step 1 really need tolerances and what 

these tolerances are.
Usually, many solutions are possible. For the pressure sensor trip system, as can be seen in Figs. 13 and 14, we have 

three options for relaxing REQ around the setpoint 2400 such that the software inputs (PRES, PREV) = ([2395..2405], true)
will satisfy the necessary and sufficient implementability condition (27):

1. for (pressure, PressTrip′) = ([2390..2400], Tripped), the system requirements give an implementation the choice to set the 
controlled variable PressTrip to either Tripped or NotTripped;

2. for (pressure, PressTrip′) = ((2400..2411), Tripped), the system requirements give an implementation the choice to set 
the controlled variable PressTrip to either Tripped or NotTripped;

3. both previous options combined.

Around the setpoint 2450 we also have three options for relaxing REQ so that the software inputs (PRES, PREV) =
([2445..2454], false) will satisfy the necessary and sufficient implementability condition (27) (see Figs. 15 and 16):
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Fig. 16. Implementability issues when (PRES,PREV) = (2454, false).

Fig. 17. The 4-variable diagram commutes when proper tolerances are allowed on system requirements.

1. for (pressure, PressTrip′) = ([2440..2450), NotTripped), the system requirements give an implementation the choice to set 
the controlled variable PressTrip to either Tripped or NotTripped;

2. for (pressure, PressTrip′) = ([2450..2460), NotTripped), the system requirements give an implementation the choice to set 
the controlled variable PressTrip to either Tripped or NotTripped;

3. both previous options combined.

Choosing one of the three tolerance options for each of the two setpoints produces a relaxed, implementable version of 
the initial system requirements. There are nine such possibilities. The first two tolerance options around the two setpoints 
are minimal changes to the system requirements. The third options would relax the requirements more than necessary.

Step 3: Derive relaxed system requirements
We now present the effect of choosing the first tolerance option for the setpoint 2400, combined with the second 

tolerance option for the setpoint 2450 that were described at Step 2. The other eight possibilities to relax REQ are not 
explored here, but a similar process and reasoning can be used to obtain them.

Fig. 17 depicts how the chosen tolerances make an acceptable SOF possible. For brevity, the figure illustrates only for 
(PRES, PREV) = (2395, true) how the diagram of the four-variable model commutes.

The resulting system requirements with the chosen tolerances are given by the following relation REQ ′:

REQ ′ ((pressure, PressTrip′) :R × Trip, PressTrip : Trip) : bool =

pressure < 2390 PressTrip = NotTripped

2390 ≤ pressure ≤ 2400
PressTrip = NotTripped
∨PressTrip = PressTrip′

2400 < pressure < 2450 PressTrip = PressTrip′

2450 ≤ pressure < 2460
PressTrip = PressTrip′
∨PressTrip = Tripped

2460 ≤ pressure PressTrip = Tripped

The necessary and sufficient implementability condition (27) has helped us to find the relaxed, implementable version 
REQ ′ of the original, unimplementable system requirements REQ. Because REQ ′ satisfies (27), the tolerances it allows are 
sufficient for implementability. These tolerances are also necessary because if we reduced the system input regions for 
which tolerances are allowed, then REQ ′ would no longer satisfy (27). In this sense, the tolerances allowed in REQ ′ are 
minimal changes to the initial requirements REQ that are needed for REQ to become implementable. In practice, REQ ′
would need to be revalidated by the domain experts and client to ensure that the tolerances are acceptable.

Because REQ ′ satisfies the necessary and sufficient implementability condition, the demonic mid residual IN � REQ � OUT
is defined and (26) gives us the corresponding software requirements:
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SOFreq ((PRES, PREV) : Z × bool, PTRIP : bool) : bool =
PRES < 2395 PTRIP = false

2395 ≤ PRES < 2455 PTRIP = PREV
2455 ≤ PRES PTRIP = true

6. Related work and discussion

A method for assessing the implementability of system requirements early in system development may save time and 
resources. To be implementable, the system requirements must obey the laws of the physical environment in which the 
system is to operate, a property called feasibility of system requirements. Another condition necessary for implementability 
is the existence of a software specification that satisfies the constraints imposed by the system requirements and chosen 
hardware interfaces. Such a software specification is called acceptable. We formalized the feasibility of system requirements 
and acceptability of software in the demonic calculus of relations, strengthening the angelic definitions proposed by Parnas 
and Madey [3], and proved a necessary and sufficient implementability condition for system requirements. The demonic 
approach offers guarantees of total correctness, rather than the partial correctness guarantees of an angelic approach. The 
demonic setting also allowed us to deal with partial specifications, which are rather the norm in early stages of system 
development.

The implementability results presented in the this paper are very general. The relations REQ, IN, OUT, and SOF model 
input–output behaviors without internal states. Also, we did not assume any structure on the sets M, C, I, and O. On one 
hand, this generality facilitates foundational principles for implementability in the four-variable model. On the other hand, 
our implementability condition does not explicitly consider constraints that a practical implementation has to deal with, 
such as, for example, timing. Time can be added explicitly to the four-variable model by treating the elements of M, C, I, 
and O as functions of time [3,10,51]. A useful research direction would be to specialize our implementability condition to 
include timing constraints.

Methods for assessing the existence of acceptable software in the four-variable model have not received much attention 
in the literature. Of the few examples, Lawford et al. [10] give, without proof, a necessary condition for the existence 
of SOF in a functional variant of the four-variable model. In the context of real-time systems, Hu et al. [52] address in 
a functional four-variable model the ability of a software implementation to meet continuous-time requirements, such 
as the detection of physical events that have been enabled for a predefined amount of time; necessary and sufficient 
existence conditions for SOF are given for different assumptions made about the access of the software to the time of the 
environment.

To be more useful in practice, our implementability check needs to be supported by tools. The necessary and sufficient 
condition suggests a general algorithm for checking the implementability of system requirements. We have not investigated 
the complexity of such an algorithm, however, developing heuristics that exploit the particularities of a specific system 
will very likely improve its performance. Satisfiability Modulo Theories (SMT) solving may be another direction for an 
automated check. However, many SMT solvers do not cope well with formulas that have existential quantifiers within the 
scope of universal quantifiers, as is the case with our necessary and sufficient existence condition for acceptable software. 
When SMT solving and heuristics do not work, or in the case of very large or infinite relations, verifying implementability 
will still be possible in a higher-order logic proof assistant such as Coq, Isabelle, or PVS, paying the price of having to do 
tedious and, more than often, not trivial proofs.

An acceptable SOF was defined as a demonic mid factor of a feasible REQ through IN and OUT. Because the necessary 
and sufficient implementability condition ensures the existence of such a demonic factor, whenever an acceptable SOF
is possible, the software requirements, which are given by the demonic mid residual IN � (REQ �� NAT) � OUT , are also well 
defined. Thus, the software requirements are obtained as a byproduct of an implementability check. This constructive nature 
of the implementability condition means that spending the effort to check whether acceptable software is possible is also 
an effort spent to derive the software requirements.

We also addressed the need for formal methods that better reflect typical engineering practices. It is often the case in 
practice that requirements are not implementable without appealing to tolerances. We described how our necessary and 
sufficient implementability condition can be used in determining the tolerances needed on the requirements of a pressure 
sensor trip subsystem used in the shutdown system of a nuclear reactor. Although the results of this analysis were checked 
with the proof assistant Coq, the analysis itself was rather a manual effort guided by the insights gained from the im-
plementability condition. An automated method for calculating the minimal tolerances so that a set of unimplementable 
requirements becomes implementable would be very useful in practice. Since this may prove to be a hard problem in 
general, a formal characterization of common types of tolerances that are used in practice would be helpful. An exam-
ple of such typical tolerances are uniform tolerances, which allow the same deviation from the ideal behavior for every 
input to the system. Deriving tolerances on requirements may be seen as a “glass box activity” in the “retrenchment” 
approach to refinement proposed by Banach et al. [53]. This is so because obtaining the relaxed requirements with toler-
ances is not a refinement process, but rather an activity performed before the client, domain experts, and system designers 
settle down for a version of the requirements that will be implemented (i.e., the “contracted model” in retrenchment par-
lance).

The demonic factorization results presented in the paper can be applied to essentially any system that can be mod-
eled using a commutative diagram similar to the one of the four-variable model. For example, such commutative diagrams 
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appear frequently in stepwise refinement techniques where mappings between behaviors at different levels of abstraction 
are frequent. If the direction of a relation (or function) is reversed compared to the four-variable model, the necessary and 
sufficient existence condition for a demonic mid factor can still be used provided that the converse of that relation is used 
instead. To our knowledge, the necessary and sufficient existence condition for a demonic mid residual is a new result in 
relation algebra.

For increased confidence in our results, we formalized and verified the mathematical development presented in this 
paper, as well as the implementability analysis and tolerances of the pressure sensor trip system with the proof assistant 
Coq.6 This may be a starting point towards a formal framework that offers machine support for verified system development 
of safety-critical systems.
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