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Abstract

In this paper the Supervisory Control Problem (SCP) for discrete event systems (DES) is generalized to a
class of probabilistic discrete event systems (PDES). Necessary and sufficient conditions for the existence of
a solution to the probabilistic SCP for a class of nonterminating PDES are developed. Methods of represent-
ing probabilistic supervisors for PDES are described and the computation of supervisors is briefly discussed.
Finally, we discuss how the results may be extended to terminating probabilistic languages.

I. INTRODUCTION

Ramadge and Wonham first developed the Supervisory Control Problem (SCP) for Discrete Event Systems
(DES) in [7]. The main concern of the supervisory control problem is to ensure that only acceptable strings
or sequences of events occur. Although the deterministic language framework applied in [7] allows for nonde-
terminism in the sense that there may be more than one possible continuation of a string, there is no effort
made to quantify this randomness. It is assumed that the choice of a possible continuation of a string is made
by some internal structure unmodeled by the systems designer.

As pointed out in [2], many DES have noise associated with them that we may be able to model by assigning
probabilities to the possible one step continuations of a string. This results in the use of probabilistic languages
over a set of events as the underlying model for these discrete event systems. In [2] and [3] the author develops
an algebra to model probabilistic languages along the lines of Milner’s CCS [5].

The treatment in [2] and [3] differs from the optimal control theory of Markov chains [1] and the recent
application of supervisory control theory to Semi-Markov Decision problems [4], in its emphasis on sequences
of events rather than states and state sequences. The work also allows for the possibility of termination of
a system after completing a finite sequence of events. The algebraic theory is used to build complex models
of probabilistic DES by combining subsystems using the defined algebraic operators but possible control
mechanisms to alter the probabilistic behavior of the systems are not explicitly discussed.

Currently a theory of stochastic supervisory control is being developed. Our probabilistic supervisors differ
from the stochastic supervisors of [6] in that the probabilistic supervisors enable or disable a controllable event
in the underlying deterministic automata with a certain probability according to the string observed thus far.
The stochastic supervisors of [6] can disable a controllable event, or enable it and choose the probabilities
with which the occurrence of the controllable event causes the system to move from the current state to any
other state of the system in the underlying nondeterministic automata. Probabilistic controls can simply
randomly enable or disable controllable transitions. They cannot change the underlying plant dynamics. The
probabilistic effect of this random disablement is entirely determined by the plant.

In what follows we use the same event disablement control technology as employed in the control of DES,
but we generalize the supervisors of [7] to probabilistic supervisors, allowing them to perform “random dis-
ablement”. Random disablement is the key feature that allows one to significantly alter the probabilistic



behavior of a system. Random disablement will be described in detail in the next section that defines the
class of probabilistic generators before introducing the class of probabilistic DES we will consider. Section I11
develops the Probabilistic Supervisory Control Problem (PSCP), providing necessary and sufficient conditions
for the existence of a solution for nonterminating systems. Finally Section IV discusses extensions of these
results to terminating systems.

II. PROBABILISTIC DISCRETE EVENT SYSTEMS
A. Probabilistic Generators

To define a probabilistic discrete event system we first present a generalization of the generator of a formal
language. A probabilistic generator is a 6-tuple

G= (Q7 27 57 qo0, Q’m7 p)

where ) is the set of states ¢, ¥ is the set of events o, § : ) X ¥ — @ is the (partial) transition function,
qgo € Q is the initial state, Q,, C @ is the set of marker states and p : @ x ¥ — [0,1] is the statewise
event probability distribution. Formally G is equivalent to a directed graph, with node set Q and edges ¢->¢'
whenever §(q,0) = ¢', along with the statewise event probability distribution p.

The generator GG starts in gp and executes state transitions, generating sequences of events by following the
graph. Upon reaching state ¢, the generator will execute event o with probability p(q,0). For G to be well
defined we require that p(q, o) = 0iff 6(¢, o) is not defined. In general 3~ <5 p(q,0) < 1 and, as in [2] and [3],
we interpret 1 —3" v p(g,0) < 1 to be the probability that upon entering ¢, the generator terminates in that
state. In much of the remainder of this paper we will consider a special class of nonterminating probabilistic
generators.

Definition 1: The probabilistic generator (¢ is nonterminating if

(Vge@) > plg,0)=1

cEX
If we let 32* denote the set of all finite strings s over X including the empty string ¢, one can easily construct

the extended transition function (in fact a partial function) ¢ : Q x ¥* — @ as follows:
5(¢;6) = ¢
d(g,s0) = 4(5(¢,5),0)
whenever ¢' = 8(q, s) and §(¢’, o) are both defined. The language generated by G is then
L(G) :={s € X" : §(qo, 5) is defined }

While L(G) is the set of all finite sequences of events that G can execute, the statewise event probability
function p implicitly determines a function L,(G) : ¥* — [0, 1], where

Lp(G)(e) = 1
Ly(G)(so) = {Lp(G)(S)-p(é(qo,s),a) if 8(qo, 5) is defined

0 otherwise

As Garg demonstrates, L,(G) is a p-language (probabilistic language) in the rigorously defined sense of [3].
Hence we call L,(G) the probabilistic language generated by GG. The interpretation is that L,(G)(s) is the
probability that GG executes string s. Note that L,(G)(s) > 0iff s € L(G).



B. Control of PDES

Using identical control technology to that of [7] we introduce an equivalent mathematical description of
the supervisors of [7] that is easily generalized to the probabilistic supervisors employed later in the paper.
In [7] the systems designer is given a generator GG of the language L(G) C ¥*, a partitioning of the event

set ¥ = ¥, U X, into disjoint sets of controllable and uncontrollable events, and a specification language
FE C ¥*. Tt is assumed that controllable events can be disabled, or prevented from occurring, by a supervisor.
To solve the supervisory control problem the systems designer must find, if possible, a feedback controller or
“supervisor” V such that L(V/G) = E, where L(V/G) is the language generated by G under the supervision
of V. Here V : L(G)) x ¥ — {0, 1} such that

1 ifeeX,orsocekF
0 otherwise

(Vs € L(G)) (Vo e ¥)V (s,0) = {

The supervisor maps the pair (s,0) to 1 if event o is enabled after observing string s and to 0 if the event
is to be disabled. Supervisors can also be represented as generators or, equivalently, directed graphs, with o
exiting a state if for all strings s that arrive at the state we have V(s,0) = 1.

From now on we will refer to a probabilistic generator G where the partitioning of the event set as ¥ =
3. U X, is understood, as a probabilistic discrete event system or PDES. Assuming that supervisors can only
disable controllable events in order to achieve their control objectives, one might wonder what effect a standard
supervisory control as defined above would have upon a PDES. We give a possible interpretation which then
motivates the introduction of probabilistic supervisory controls.

Figure 1 shows the simple PDES G, the supervisory control V' and L,(V/G), the probabilistic language
generated by G under the supervision of V. (G is a nonterminating PDES with ¥ = {«, 3,~v}. The evaluation

G 14 Lp(V/G)
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Fig. 1. PDES G and (deterministic) supervisor V and L,(V/G)

of G’s statewise event probability distribution p is indicated on G’s graph by the number immediately following
each event. For instance edge 246 exiting state ¢ indicates that G will perform a with probability 0.6 when
in state ¢ (ie. (Vs € X*)8(qo, s) = ¢ implies p(6(qo, ), @) = 0.6). The set of controllable events ¥, = {a, #} is
indicated on the graph of G by placing cross bars on controllable edges.

The arrow enter gy indicates that supervisor V' begins in this state. When in gy V disables {a, 3} and
then alternately disables {3} and {«, 3}. For example V (¢, ) = 0 but V(yay,a) = 1. We now have to make
an assumption about the behavior of PDES when under control. When an event is disabled by a supervisor
then it increases the probability of the remaining enabled events in proportion to their probability in the
uncontrolled system. This assumption allows us to determine the probabilistic language that G' would be
observed to generate when under the supervision of V.

When V disables both a and § only 7 is enabled in . In this case v occurs with probability 1 since
G terminates with probability 0 so ~ is the only choice that G can make. When V just disables 3, we



have a slightly more complicated situation since two alternatives remain. We assume that (3’s probability is
distributed to the enabled events a and v in proportion to these events respective probabilities of occurrence
in the uncontrolled system. More formally, if V(s,a) = 1 and V (s, 8) = 0 then upon the occurrence of s, if
G is in state g then a will occur with probability

plg, a)

p(q, )+ p(q,7)
0.6

- 075

0.6+ 0.2

Pleloe{y,a}) =

Similarly ~ will occur with probability 0.25. This information is represented in the probabilistic generator
representing L,(V/G) in figure 1.

When applied to PDES the class of supervisory controllers of the form V' : L(G) x ¥ — {0, 1} can only
cause a system to generate a very restricted class of p-languages. Consider the p-language represented by the
probabilistic generator shown in figure 2. Clearly there is no (deterministic) supervisory controller V' such

q21

a:04
Fig. 2. Probabilistic language L,(G2)

that L,(V/G) = L,(G}) since a standard disabling supervisor cannot change the event occurrence probability
distribution of a system without reducing the probability of one or more controllable events to 0 by disabling
the events. In the case of G5 all the events of G would be required to be initially enabled but with altered
probabilities. Also, after an odd number of & and 7 events, a supervisor would be required to disable g while
increasing the probability of v and reducing the probability of . From the previous example we know that
when V disables 3 the probability of a will become 0.75, not the required 0.4. Until now we have been trying
to control a random system with a deterministic controller. For instance, upon observing yavy, V of figure 1
always disables . What happens when a supervisor uses “random disablement” to control a PDES?

We now generalize the definition of a supervisor for a DES to define a probabilistic supervisor for a PDES.
The control technique will be called random disablement and can be formalized as follows.

For a PDES G = (Q, %, v, g0, @m, p) a probabilistic supervisor is a function V), : L(G) x ¥ — [0, 1] such that

1 if o€y
Ts, for some z,, otherwise

(Vs € L(G)) (Vo € )V, (s, 0) = {

We interpret V, (s, o) as the probability that the supervisor V,, enables event o after observing the string s. As
was the case with deterministic supervisory controllers, we can represent probabilistic supervisors as labeled
directed graphs. Whenever V,,(s, ) > 0 then there is an edge labeled by o : V, (s, o) exiting the current graph
state. Figure 3 shows the graph representation of a controller that will later be applied to GG of figure 1. Upon
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Fig. 3. Probabilistic supervisor V,,

starting in gpg the probabilistic supervisor enables o and 3 with probabilities 0.162 and 0.886 respectively,
while v is enabled with probability 1.0 (ie. all the time) since it is an uncontrollable event. After an odd
number of o and 7 events have been observed the supervisor is in state gp;. The absence of a 3 transition
exiting this state indicates that in this case V, (s, 3) = 0 (5 is always disabled). Note that although the graph
of V), is similar to the probabilistic generators used to represent PDES, it is not a probabilistic generator since
in general ) v V,(s,0) > 1. This is because the number next to an event in the graph is the probabilities
that the event is enabled, not the probability that the event occurs in the system. For each o € ¥ V,(s,0) is
independent of the values V), assigns to other events.

Instead of always enabling or disabling the same events after observing the string s, we suppose that upon
observing s the supervisor flips |X| appropriately biased coins, one for each possible event, and then the
supervisor enables or disables the events according to the outcome of their individual coin tosses. Once the
choice of event enablements has been made, it is then as if a deterministic supervisory controller with the
chosen enablement pattern has been applied and the system acts accordingly. Thus the probability of event
« occurring after s in the controlled system can be computed as

P(ain V/Gls) = Z P(V, enables I'|s) - P(a|V,, enables I') (1)
re2”
where
P(V, enables I'ls) = H Vp(s,0) - H (1 =V,(s,0))
cel ce(X2-T)
and
P(alV, enables ') = P(alo €T)
_ _rs9)
ZG’EF p(87 U)

We now illustrate the effect of probabilistic supervisor V), of figure 3 upon the PDES G. Note that by the
definition of probabilistic supervisor, the only enablement patterns that occur with non-zero probability are
those patterns such that 3, C I' since for o € 3, V(s,0) = 1. Thus for the G under consideration, potential
enablement patterns are I' = ¥, I' = {y,a} and [' = {v,}. If we assume that s is the string that G has
executed under the supervision of V,,, then for s = ¢, or s containing an even number of a and v transitions,
V), will enable each event with the probabilities given by the events exiting gpg in figure 3. Thus letting P,



be the probability of ¢ continuing s in the controlled system V,,/G we have

Po = plg,)Vi(s, a)Vp(s, 5) + Plafo € {7, a})Vy(s, @) (1 = Vi(s, §))

= 0.6(0.162)(0.886) + 0.75(0.162) (1 — 0.886) (2)
= 0.1

Ps = plg,B)Vpls,a)Vy(s,8) + P(Blo € {y, 8})(1 = Vy(s,a))Vp(s, B)
= 0.2(0.162)(0.886) + 0.5(1 — 0.162)(0.886) (3)
= 04

Pyo= plg,7)Vls, a)Vp(s, 8) + Pylo € {y,a})Vy(s, @) (1 = Vy(s, B))
+P(v[o € {y, B}) (1 = Vp(s,0))Vp(s, 8)
+P(v[o € {7})(1 = Vp(sa))(1 = V;(s,8)) (4)
= 0.2(0.162)(0.886) + 0.25(0.162) (1 — 0.886)
+0.5(1 — 0.162)(0.886) + 1.0(1 — 0.162) (1 — 0.886)
= 05

After observing s containing an odd number of a’s and 4’s V,, will enable events with the probabilities
given by state gpy. By a calculation identical to the above with these new values of V) (s, o) substituted we
obtain P, = 0.4, P3 = 0.0 and P, = 0.6. Note that L,(V,/G) = L,(G2), thus the introduction of probabilistic
supervisors allows us to generate p-languages that no deterministic supervisor could cause the system to
generate. Clearly any deterministic supervisor can be viewed as a special case of a probabilistic supervisor.

The above example serves to illustrate some interesting properties of controlled PDES. First, through
random disablement the probability of an uncontrollable event with nonzero occurrence probability is always
increased when controllable events are randomly disabled. Second, it is possible to increase the probability of
some controllable events at the expense of other controllable events. In our example 8’s probability in one state
was increased from 0.2 to 0.4 while a’s probability was reduced from 0.6 to 0.1. Now that we have a general
idea of how a PDES’s behavior may be altered it is logical to ask: What probabilistic languages can a PDES
generate under probabilistic supervisory control? We will answer this question for the above system, and for
nonterminating PDES in general, in the next section, when we develop necessary and sufficient conditions for
the solution of the probabilistic supervisory control problem.

III. THE PROBABILISTIC SUPERVISORY CONTROL PROBLEM

We begin this section with a formal statement of the Probabilistic Supervisory Control Problem (PSCP),
followed by some results on how probabilistic supervisors affect PDES, culminating in Theorem 5 giving
necessary and sufficient conditions for the existence of a solution to the PSCP for nonterminating PDES.

Probabilistic Supervisory Control Problem (PSCP). Given PDES (1 and G3, construct, if possible, a proba-
bilistic supervisor V), such that Lp(V,/G1) = L,(Gs).

The main result of this section will follow immediately from two propositions regarding the behavior of
nonterminating PDES under probabilistic supervisory control. In the remainder of the section we consider
only nonterminating PDES.

For a nonterminating PDES G' = (Q, ¥, 8, qo, @, p) we illustrate a typical state ¢ in figure 4. Let Pos(q) :=
{0 € X|p(q,0) > 0}, the set of events that are possible next transitions from state ¢ in G. Pos(q) N
Y. =A0o1,...,0,} represents the set of controllable events with nonzero occurrence probability in state ¢ (ie.
p(q,0:) > 0) and similarly {041 ...0us} = Pos(q) N X,. We now assume that GG is under the supervision of
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Fig. 4. Typical state ¢ in nonterminating PDES G

some V), such that for string s € ¥* §(qo,s) = ¢ and L,(V,/G)(s) > 0. In this case we will let P, be the
probability that o continues s in V,,/G, that is

By = Lp(Vp/G)(50) [ Lp(Vp/G)(5)

The first proposition states that the ratio of the probabilities of uncontrollable events remains constant
under supervision.

Claim 2: For G' and ¢ as given above, if there exists o, € ¥, such that p(q,o,) > 0 then for any
probabilistic supervisor V,, we have for all o, € X

Py, plg,0u)

Pcrm‘ B P(% Uui)
Proof: Let k = %. From the previous section we know that

1WWur

P,, = E P(V, enables I'|s) - P(0,|V, enables I')
re2”
where
P(oy|Vp enables I') = P(oy|lo €1)
__pr(s04)
ZG’EF ,0(8, U)
_ k - P(57 UM)
Soer 2(5.0)
hence
P,, = Z P(V, enables I'|s) - kP(0,;|V, enables I')
re2”
= kP,,

O

The above claim informs us that we are relatively restricted in how we can influence the probability of
uncontrollable events, as we might expect. The following example illustrates that the designer is free to



choose the occurrence probabilities of controllable events within the bounds given in Claim 4. Once again
considering the GG of figure 1, equations (2) and (3) relate P, and Pj to a supervisor’s choice of Vp(s, o) and
Vp(s, B). Substituting G’s values for p(¢, @) and p(¢ 3) we obtain:

Pa(Vi(s,0), Vo5, 8)) = 0.6Vy(s,0)Vp(s, B) + 0.5V (s,0) (1 - Vi (s, 8))

= 0.75V,(s,a) — 0.15V, (s, a)V,(s, B) (5)
Bp(Vp(s,0), Vi(s, B)) = 0.2Vp(s, @) Vy(s, ) + 0.5(1 = Vp (s, a)) Vi (s, B)
= 0.5V,(s, 3) — 0.3V, (s, a)V,(s, ) (6)

For any V,, we know that (V,(s, ), V,(s,8)) € [0,1] x [0,1]. Figure 5 represents this region and the resulting

Vifs,) B
1 1 -
3P+ FPs=1
0.5 + /&\ p(ojé?)_ 1
o B =
0.’5 1 Vals,0) 0_I5 I1 to

Fig. 5. Mapping from choice of V}, to resulting (Pa, Pp)

image region under the mapping using equations (5) and (6). To obtain the image of the region we map the
boundaries into the (P,, Pg) plane. When V,,(s,a) = 0in (5) then P, = 0 as we would expect, since in this case
a is always disabled, while P3(0, V, (s, 3)) = 0.5V, (s, 8). Thusif V,(s, 8) € [0, 1] with V,(s, @) = 0 then P, =0
and Pg € [0,0.5]. Similarly when V,(s,3) = 0 then P, € [0,0.75] and P3 = 0. Substituting V,(s,a) = 1
in (6) we can solve for V,(s,) in terms of Ps and then substituting into (5) to obtain 3P, + Pz = 1
Setting V,(s,3) = 1 and eliminating V, (s, a) gives P, + 2P3 = 1. Note that these two lines intersect at
(P, P3) = (0.6,0.2), the values of the uncontrolled event probabilities in G and hence the probabilities when
Vy(s,0) = Vy(s, ) = 1.

It is possible to derive the linear bounds on P, and P by another method. For a nonterminating PDES
G, upon arriving at a state ¢ after executing string s, if (36 € Pos(q))V,(s,0) = 1 then the uncontrolled
system exits ¢ with probability 1. This follows from the fact that the uncontrolled system terminates in ¢
with probability 0 and the supervisor never disables all the possible events. In this case we conclude that

P, =1

cEYL

For G of figure 1 p(q,v) = 0.2 and v € ¥, so by definition, if V), is a probabilistic supervisor then V,(s,v) = 1.
Thus in the case of G
P.+ P+ P =1 (7

In the one boundary case V,(s,a) = 1 so « is, in effect, uncontrollable. Thus for any choice of V, (s, §) with
Vp(s, &) = 1 it follows from Claim 2 that

Iy
P, plg,a)



But any reduction of V (s, a) will decrease P, while increasing P,. Hence we conclude that

Py > 2Py

Wl =

with equality holding when V,,(s, «) = 1. Using this result in (7) we have

1
Pa‘|‘Pﬁ+Pw Z Pa‘i’Pﬁ‘l‘gPa
hence

4
gPa—}—PgSl

Upon noting that p(q, 5) = p(q,~) a similar computation yields
P, + QPﬁ <1

The next result shows that this bounding of assignable probabilities extends to cases where there are an
arbitrary number of controllable and uncontrollable events exiting state ¢, each with nonzero probability.

Definition 3: Given a PDES G with ¢ as shown in figure 4 with {0, ...0,} = Pos(¢)NX. and {oy1,...,0um} =
Pos(q) NY,. Suppose s € L(G) such that 6(qo,s) = ¢ and that V,, : L(G)) x ¥ — [0, 1] is an arbitrary prob-
abilistic supervisor for G. Then we define the set of assignable probabilities for ., SAP.(q), to be the
following:

SAP.(q) :=={(z1,...,2,) €[0,1]" : (V) for i = 1.n,2; = Fy,}

Claim j: For G and ¢ = §(qo, s) with Pos(¢q) N2, = {o1,...,0,} and Pos(q) N3, = {ou1,...,0um} as in

Definition 3 it follows that

n

SAP.(q) = ﬂ{(ml, cenZy) € 00,17 i + Zn:a;j <1}

=1 7=1

where
- Ea’EEu p(q7 U)
Z p(q, o)
Proof: (Sketch) The proof relies upon considering the boundary case V,(s,0;) = 1 and then applying Claim 2

as above to obtain 77, Py > 3w, 5((57’;)) P,,. O

The two preceding claims can be easily used to develop necessary and sufficient conditions for the existence
of a solution to the PSCP for nonterminating PDES.

Theorem 5: Given nonterminating PDES G = (Q, %, 61, g0, Qm, p1) and Gy = (R, X, 82,70, Ry, p2) with
disjoint state sets () and R. There exists a probabilistic supervisor V,, such that L,(V,/G1) = L,(G2) iff for
all s € L(Gy) there exists ¢ € @ such that 81 (qo, s) = ¢ and, letting r = §;(ro, s), the following two conditions

hold:

(1) - Pos(q) NY, = Pos(r) N Y,
and if o,; € Pos(r) NY, then (Yo, € 3,)

£1 (qa Uu)
P2\T,0y) = —F < P2\T", Oui
( ) £1 (Q7 Uui) ( )

(ii) . Pos(r)NX. C Pos(q) N Y.
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and (Vo; € Pos(q) NX.)
o)+ Y palre) <1
c€Pos(q)NE,
where
L Zo‘EEu pl(q7 U)
' P1 (Q7 Ui)
Proof: The statement is an immediate consequence of Claims 2 and 4.

O

Given G4 and (9, when &1 (qo, s) = ¢, solving for the values V), (s, o) to make L,(V,/G1)(so) = L,(G2)(so)
involves solving |Pos(q)| simultaneous polynomial equations in |Pos(q) N ¥.| variables. The main result of
this section says, in effect, that a solution to these equations exists iff the |Pos(q) N ¥,| — 1 linear equations
of condition (i) and the |Pos(q) N X.| linear inequalities of condition (ii) are satisfied. By tracing through the
graphs of Gy and (G5 while checking conditions (i) and (ii) it is possible to determine if a supervisor exists that
solves the given case of the PSCP. If a solution exists, one can then solve the systems of nonlinear equations
derived from formula (1).

Consider nonterminating PDES G of figure 6. Here ¥. = {a, 8, u} while ¥, = {v,7}. Suppose we want

G a:04
3:0.3
7:0.04

Fig. 6. Example to illustrate Theorem 5

to solve the PSCP for some (3. Letting V,(s,0) = z, then for s € L(G3) such that 61(go,s) = ¢o and
82(ro, s) = r for some r € R, the set of equations developed from (1) that have to be solved to determine the
values of z, and zg are given below.

0.752, — 0.15z,23 = pa(r, )
0.525 — 0.3z,23 = pafr,
1—-0.75z, — 0.5z3 + 0.45z,253 = pa(r,7)

Note that the values of pi(qo,-) are identical to those of p(qo, ), so these equations are obtained by straight
forward substitution in equations (5), (6) and (7) respectively. It also follows that these equations have a
solution iff the event set conditions of (i) and (ii) hold and the linear inequalities below are satisfied.

2921, 0) 4 2l ) <

1
p?(r7 O‘) + 2,02(7"7 a) < 1
For the case when 6&;(qo, s) = ¢1 then the equations resulting from (1) to be solved are given by

1
E[ b6zoz52, — T0z,23 — 30242, + 2102,] = p2(r,a) (8)
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1
%[Q:Camﬁxu —8zqz3 — 3zgz, + 1825] = pa(r, ) 9)
1
— (262,282, — 402,42, — 35zgz, + 702,] = po(r, p) (10)

210

for the controllable transitions and, letting LS(8) denote the left side of equation (8), the equations for the
uncontrollable transitions are

[1-LS(8)-LS(9)-LS(10)] = pa(r,7)
[1-LS(8)-LS(9)-LS(10)] = p2(r,T)

4
5
1
5

These equations have a solution iff the other constraints of (i) and (ii) are met and

prlr) = 7palr)
2 pary0) + pa(r, B) + palrop) < 1

2
pa(r,@) + 2ol B) + palrp) <1
,02(7‘, a) + P2(73 ﬁ) + 3,02(7"7 :u) S 1

IV. EXTENSION TO TERMINATING PDES

With some minor modifications Theorem 5 can be extended to cover terminating PDES by a technique
employed in [3]. A terminating PDES G with event set ¥ can be transformed to a nonterminating PDES
G' with the extended event set ¥ U {(} where ¢ ¢ ¥. From terminating G = (Q, %, 6, g0, @m, p) we obtain
nonterminating G' = (Q U {q¢}, XU {(}, ¥, g0, Qm, p’) where

p'(¢,0) = plg,0)

pl(q,¢) = 1= plg,0)
cEXL

p'la,C) = 1

and

¥(q,0) = d(q,0)

8¢, Q) = qcif p'(¢,¢) >0

§(qe,¢) =

Figure 7 shows a simple terminating PDES and the nonterminating PDES G’ obtained by the above
transformation. One of the subtleties in the terminating case is illustrated here. If we are to consider the
event ¢ in G’ to be equivalent to termination in  then we have to consider the special case when all the
events exiting a state ¢ are controllable. In this case a supervisor can cause the system GG to terminate by
disabling all the controllable events. Upon entering ¢ the probability of termination in the controlled system
is equal to the probability that the supervisor disables all events in Pos(q) N X.. This situation is indicated
in figure 7 by the dashed edge from ¢ to ¢¢.

V. CONCLUSIONS

In this paper we have introduced the class of probabilistic discrete event systems. The use of random
disablement generalizes the (deterministic) supervisors of [7] to probabilistic supervisors. The Supervisory
Control Problem for DES then generalizes in a straight forward way to the Probabilistic Supervisory Control
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Fig. 7. Terminating PDES G and resulting nonterminating PDES G’

Problem (PSCP). The paper has focused on nonterminating PDES with the development of necessary and
sufficient conditions for the existence of a solution to the PSCP in the case when both the PDES to be
controlled and the specification PDES (or equivalently the specification p-language) are nonterminating. A
method for extending the results on the PSCP to terminating PDES is outlined.
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