
On Software Certification: We Need

Product-Focused Approaches�

Alan Wassyng, Tom Maibaum, and Mark Lawford

Software Quality Research Laboratory
Department of Computing and Software

McMaster University, Hamilton, Canada L8S 4K1
wassyng@mcmaster.ca, tom@maibaum.org, lawford@mcmaster.ca

Abstract. In this paper we begin by examining the “certification” of a
consumer product, a baby walker, that is product-focused, i.e., the certifi-
cation process requires the performance of precisely defined tests on the
product with measurable outcomes. We then review current practices in
software certification and contrast the software regime’s process-oriented
approach to certification with the product-oriented approach typically
used in other engineering disciplines. We make the case that product-
focused certification is required to produce reliable software intensive
systems. These techniques will have to be domain and even product
specific to succeed.

1 Introduction

This paper deals briefly with the current state of software certification, why it
is generally ill-conceived and some reasons for how (and why) we landed in this
mess, and suggestions for improving the situation.

2 Motivation

A certification story: Let us start the discussion with an item that has little to
do with software, but is typical of engineered artifacts - a baby walker. Consider
a typical baby walker, as shown in Figure 1.

In recent years, there has been considerable concern regarding the safety and
effectiveness of baby walkers. In reaction to this concern, we can now consider a
certification process we may wish to advocate in order that we may regulate the
sale of particular baby walkers. So, what should be the overall thrust of such a
certification process? Well, humbly we may suggest that we model the process
on certification processes that are common in our domain (software). What may
such a process look like? Perhaps something like the list shown below:

1. Evaluate manufacturer’s development process.
2. Evaluate list of materials used in manufacture of baby walker.
� Supported by the Natural Sciences and Engineering Research Council of Canada.

C. Choppy and O. Sokolsky (Eds.): Monterey Workshop 2008, LNCS 6028, pp. 250–274, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Software Certification: We Need Product-Focused Approaches 251

Fig. 1. A Typical Baby Walker

3. Evaluate manufacturer’s test plan.
4. Evaluate manufacturer’s test results.

Additionally, let us imagine what the manufacturer’s submission to the regu-
lators may contain:

1. Process.
(a) Requirements
(b) Requirements review
(c) Design
(d) Design review
(e) Manufacturing process
(f) Manufacturing process review

2. Materials.
(a) List of materials for each design part
(b) Safety analysis for each material used

3. Test plan.
4. Test results.

Perhaps a little more detail regarding the testing is required. The manufac-
turer decided to test two main problems. The first problem was related to quality
of manufacture. In this regard, a number of tests were planned and performed re-
garding the uniformity of the production line and the degree to which the resulting
baby walkers complied with the specified design. The second problem related to
the tendency of the baby walker to tip. In this regard, two tests of stability were
executed. The first test, shown in Figure 2(a), records the force required to tip
the baby walker when it is stopped at an abutment. The second test, Figure 2(b),
records the moment required to tip the baby walker - simulating a child leaning
over.

252 A. Wassyng, T. Maibaum, and M. Lawford

(a) Stability Test 1 (b) Stability Test 2

Fig. 2. Stability Tests from ASTM Standard F977-00 [1]

So, what may we observe from this example? Our observations may include:

1. It is extremely unlikely that regulators of baby walkers are going to evaluate
the manufacturer’s development process.

2. The regulator may evaluate the manufacturer’s tests, but will definitely run
tests independently.

3. The regulator will examine the materials used in the baby walker and deter-
mine if they expose the baby to potential harm.

4. Important: The regulator is likely to publish and use tests specifically de-
signed to test baby walkers.
(a) For this example, a number of countries published very specific require-

ments for baby walkers. For example, United States Standard ASTM F
977-00 - Standard Consumer Safety Specification for Infant Walkers [1].
The tests mentioned in Figures 2(a), and 2(b) are not nearly sufficient.
A number of dynamic tests have been added to those static tests. The
static tests would have been completely useless in determining whether
a baby in the walker would fall down unprotected stairs.

(b) Product-focus is not a panacea either. Canada banned the use of all baby
walkers, since Health Canada determined that baby walkers are (prob-
ably) not effective, and even product-focused standards may not guar-
antee safety when the product is ill-conceived [2]. The product-focused
standard helped Health Canada arrive at these conclusions, since they
could be confident that the products were designed and manufactured
well enough to satisfy stated requirements, and so the problems were
more fundamental.

Still, it seems strange to us that to certify a baby walker, a
regulator devised a product-based standard and tests baby
walkers to that standard, whereas, to certify a pacemaker
(for example), regulators use generic software process-
oriented standards and regulations!

Government oversight: The easiest software certification to motivate is where
the government mandates licensing/certification anyway. In this case, we want
to make the case to the regulators/certification authorities that product-focused

On Software Certification: We Need Product-Focused Approaches 253

certification will result in much more dependable systems than will process-based
certification. We believe that this will improve the objectivity and measurability
of evidence, thus improving the evaluation process, and thus making the certi-
fication process more predictable for all parties. It should also reduce the post-
licensing failure rate and facilitate the identification of the cause. This would
certainly, ignoring political issues, induce regulators to adopt a more product-
focused approach.

Social expectations: Over the past three or four years, we have seen growing
interest in software certification, driven in some cases by the public’s dissatis-
faction with the frailty of software-based systems. Online banking and trading
systems have experienced failures that were widely publicized and have caused
wide-spread chaos. Software driven medical devices have killed people. Security
breaches in software systems have disrupted peoples’ lives. There is no reason
that software systems should not be certified as fit-for-use and safe - just as most
other products are.

Market advantage: There is also a growing realization by commercial compa-
nies that if they can market their software with a warranty, that will give them a
tremendous marketing edge. So, as soon as they can manufacture certified soft-
ware at reasonable cost (and that is the difficulty right now), manufacturers will
be driven to consider software certification through normal marketing forces.

Component assurance/qualification: Many industries have to use compo-
nents manufactured by a myriad of different suppliers. For instance, auto manufac-
turers manufacture some components themselves and buy others from suppliers.
These components are becoming more complex and have to work under stringent
timing constraints. Product-focused standards and certification are going to be
unavoidable if the components are going to be able to deliver dependable service.

Political considerations: Many software producers find the idea of software
regulation anathema: witness the move in various jurisdictions (in the US and
an abortive one in the European Union) to lower the liability of software man-
ufacturers from even the abysmal levels in place today.

Governments are woefully ignorant of the dangers represented by the low or
non-existent levels of regulation in some industries, such as those producing med-
ical devices, cars and other vehicles, financial services, privacy and confidentiality
issues in many information systems, etc.

However, the issue is much too large for us, as a society, to ignore any longer.

3 Current Practice

This section describes approaches to software certification in three different ap-
plication domains. It presents one of our main hypotheses: current practice in
software certification is primarily focused on the process used to develop the

254 A. Wassyng, T. Maibaum, and M. Lawford

software, and that process-focused certification is never going to give us enough
confidence that, if a software product is certified, then the product will be effec-
tive, safe and reliable.

The domains we are going to discuss are:

• medical systems (in the U.S.);
• security systems (primarily in Europe, Japan and North America);
• nuclear power safety systems (in Canada).

3.1 Medical Systems

As an example, we will consider, briefly, the regulatory requirements for medical
systems in the U.S. The U.S. Federal Drug Administration (FDA) is responsi-
ble for regulating medical systems in the U.S., and they publish a number of
guidelines on software validation, e.g., [3,4]. The FDA validation approach, as
described in the FDA guidance documents falls short on describing objective
criteria which the FDA would use to evaluate submissions. The documents do
not do a good enough job of describing the artefacts that will be assessed. In
particular, the targeted attributes of these artefacts are not mentioned, and ap-
proved ways of determining their values are never described. The focus of these
documents is on the characteristics of a software development process that is
likely to produce high quality software. It shares this approach and concern with
almost all certification authorities’ requirements (as well as those of standards
organisations and approaches based on maturity, such as CMMI [5]).

3.2 Security Systems

The Common Criteria (CC) [6] for Information Technology Security Evaluation
is an international standard for specifying and evaluating IT security require-
ments and products, developed as a result of a cooperation between many na-
tional security and standards organisations. Compared with the FDA’s approach
for medical systems, the CC has a more systematic and consistent approach to
specifying security requirements and evaluating their implementation. The CC
does fall into the trap of prescribing development process standards (ISO/IEC
15408) in detail, but, on the other hand, it does a much better job than the FDA
guidelines of being measurement oriented.

One very good idea in the CC is that it defines seven levels of assurance, as
shown below.

EAL1: functionally tested
EAL2: structurally tested
EAL3: methodically tested and checked
EAL4: methodically designed, tested and reviewed
EAL5: semiformally designed and tested
EAL6: semiformally verified design and tested
EAL7: formally verified design and tested

On Software Certification: We Need Product-Focused Approaches 255

It is interesting to note that formal methods are mandated, if only at the
highest levels of assurance. Testing occurs at all levels, reinforcing that all certi-
fication regimes place a huge emphasis on testing. In keeping with a wide-spread
movement in trying to make software engineering more of an engineering dis-
cipline, we see that CC has introduced the concept of “methodical” processes
into their assurance levels. Our only cause for concern in this regard, is that
the CC community does not seem to require the process to be both methodical
and formal (or semi-formal). We do not agree with this, since formality really
relates to the rigour of the documentation. It does not necessarily imply that
the process is systematic/methodical.

The taxonomy of the CC describes Security Assurance Requirements (SARs)
in terms of action elements for the developer, and for the content and presen-
tation of the submitted evaluation evidence for the evaluator. Each evaluator
action element corresponds to work units in the Common Evaluation Method-
ology [7], a companion document, which describes the way in which a product
specified using the CC requirements is evaluated. Work units describe the steps
that are to be undertaken in evaluating the Target of Evaluation (TOE), the
Security Target (security properties of the TOE), and all other intermediate
products. If these products pass the evaluation, they are submitted for certifica-
tion to the certification authority in that country.

There are a number of important principles embedded in this approach: the
developer targets an assurance level and produces appropriate evidence that
is then evaluated according to pre-determined steps by the certifier; this un-
doubtedly helps in making the certification process more predictable; and the
certification process is designed to accommodate third-party certification.

3.3 Canadian Nuclear Power Safety Systems

While proponents of formal methods have been advocating their use in the devel-
opment and verification of safety critical software for over two decades [8,9,10],
there have been few full industrial applications utilizing rigorous mathematical
techniques. This is in part due to industry’s perception that formal methods
are difficult to use and fail to scale to “real” problems. To address these con-
cerns, a method must supply integrated tool support to automate much of the
routine mechanical work required to perform formal specification, design and
verification.

There have been some notable industrial and military applications of tool
supported formal methods, especially for the analysis of software systems re-
quirements (e.g., [11,12,13,14]). Unfortunately, the formal methods advocates
concerned, typically were not given the opportunity to fully integrate their
techniques with the overall software engineering process. As a result these ap-
plications required at least some reverse engineering of existing requirements
documents into the chosen formalism. A potential problem of this scenario is
that two requirements specifications may result: the original, often informal,
specification used by developers; and the formal specification used by verifiers.

256 A. Wassyng, T. Maibaum, and M. Lawford

An example of this problem occurred in 1988. Canadian regulators were strug-
gling with whether to licence the new nuclear power station at Darlington in On-
tario. At issue was the “certification” of the shutdown system - it was the first
software controlled shutdown system in Canada. The regulators turned to Dave
Parnas for advice, and his advice was to require formal proofs of correctness as
well as other forms of verification and validation. The regulators and Ontario
Hydro - OH (now Ontario Power Generation - OPG) worked together to agree
on an approach to achieve this. Most of the time, OH prepared process docu-
ments and interacted with the regulator to obtain an agreement in principle.
The correctness “proofs” were eventually delivered to the regulator (more than
twenty large binders for the two shutdown systems), and a walkthrough was con-
ducted for each of the shutdown systems [15,16]. The end result was a licence to
operate the Darlington Nuclear Generating Station. However, the regulator also
mandated a complete redesign of the software to enhance its maintainability.

As a result, OPG, together with Atomic Energy of Canada Limited (AECL),
researched and implemented a new safety-critical software development process,
and then used that process to produce redesigned versions of the two shutdown
systems [17]. As a start, OPG and AECL jointly defined a detailed engineer-
ing standard to govern the specification, design and verification of safety-critical
software systems. The CANDU Computer Systems Engineering Centre of Excel-
lence Standard for Software Engineering of Safety Critical Software [18] states
the following as its first fundamental principle:

The required behavior of the software shall be documented using math-
ematical functions in a notation which has well defined syntax and se-
mantics.

Not only was the software redesigned along information hiding principles, but
new requirements documents were also produced. These requirements are for-
mally described, primarily through the use of tabular expressions (function ta-
bles) [19]. In fact, the current implementation of the software engineering process
makes extensive use of tool supported tabular expressions [20]. The process re-
sults in the production of a coherent set of documents that allows for limited
static analysis of properties of the requirements. The process also includes a
mathematical verification of the design, described in the Software Design De-
scription (SDD), against the software requirements documented in the Software
Requirements Specification (SRS). This project is then an example of one in
which, from the start, the software development process itself was designed to
use formal methods and associated tools to deliver evidence for the licensing
(certification) of the resulting system.

A model of the process, including integrated tool support, that was applied to
the Darlington Nuclear Generating Station Shutdown System One (SDS1) Trip
Computer Software Redesign Project is shown in Figure 3.

The Darlington Shutdown Systems Redesign Project represents one of the
first times that a production industrial software engineering process was de-
signed, successfully, with the application of tool supported formal methods to
specification and verification as a primary goal. As we have seen, this was

On Software Certification: We Need Product-Focused Approaches 257

 Software

 Design

Document

 Code

Requirements

Review

Report

Design Review and

Verification Reports

 Code Review and

Verification Reports

Unit Test

 Report

Software Integration

 Test Report

Legend:

 Documents produced in the

 forward going development process

 Documents produced for

 verifications, reviews and

 testing

 Tools connected to documents/activities

 Activities and data flow

 HAR Hazards Analysis Report

Table Tools

Table Tools

Table Tools

Table Tools

Table Tools

Theorem
 prover

 Id. Extraction
 Tool

Code editor
& Compiler

 Logic
analyzer

Requirements
 Tool

Design Tool

Design Veri-
fication Tool

Design Tool

 Code Veri-
fication Tool

Simulation
 Tool

 Change
Request Tool

 Config.
Mgmt. Tool

 Test
Oracles

Unit Test
 Oracle

HAR

HAR

HAR

HAR

Formal

Requirements

Documents

Validation Test and

Reliability Qualification

Reports

Fig. 3. SDS1 lifecycle phases, documents and tools

necessitated by regulatory requirements, a situation that is becoming increas-
ingly common for industries utilizing software in safety-critical applications. The
major factors considered in choosing the particular formal methods for the Re-
design Project were: (i) learning curve and ease of use and understanding of
the formal specifications, (ii) ability to provide tool support, and (iii) previous
history indicating the ability to successfully scale to industrial applications. We
now address these three points in more detail.

Since tables are frequently used in many settings and provide important in-
formation visually, they are easily understood by domain experts, developers,
testers, reviewers and verifiers. From the original Darlington licensing experi-
ence, and a trial example of the same verification procedure applied to a smaller
scale Digital Trip Meter System [21], OPG had strong evidence that a verification
procedure using tabular methods would meet the requirements of the Redesign
Project. OPG’s confidence in the use of tabular expressions was re-affirmed by
domain experts working on SDS1 being able to read and understand the formal
requirements specifications, documented almost exclusively by tabular expres-
sions. Also, tabular expressions provide a mathematically precise notation with
a formal semantics [19]. Other methods such as VDM or Z utilize unfamiliar
notation and special languages with a significant learning curve [22]. The OPG
Systematic Design Verification (SDV) procedure avoids this problem through
the use of tabular notation in both the requirements and design documents

258 A. Wassyng, T. Maibaum, and M. Lawford

utilized by all project team members. To create the tabular specifications, cus-
tom “light-weight” formal methods tools (in the sense of [23,24]) are used to help
create and debug the tables from within a standard word processor. To perform
the verification these tools then extract the tables from the documents and gen-
erate input files for SRI’s Prototype Verification System (PVS) automated proof
assistant [25].

Tabular methods are well suited to the documentation of the Shutdown Sys-
tem’s control functions that typically partition the input domain into discrete
modes or operating regions. Some of the other major benefits of this, and other,
tool supported formal methods, include:

• Independent checks which are unaffected by the verifier’s expectations,
• Domain coverage through the use of tools that can often be used to check all

input cases – something that is not always possible or practical with testing,
• Detection of implicit assumptions and ambiguous/inconsistent specifications,
• Additional capabilities such as the generation of counter-examples for de-

bugging, type checking, verifying whole classes of systems, etc.

The creation of the specialized tools that allowed verification to be done with
the help of PVS played a large role in making the methods feasible for the
larger Redesign Project. A further reason for the adoption of tabular methods
is that they have been successfully applied to a wide variety of applications. In
particular, they have been used successfully with PVS on problems such as the
verification of hardware division algorithms similar to the one that caused the
Pentium floating point bug [26].

There are some important points to note about the licensing of the redesigned
Darlington Shutdown Systems. Compared with the licensing process for the orig-
inal system, the redesign licensing process progressed remarkably smoothly. A
major contributing factor was that the manufacturer (OPG) had asked the reg-
ulator to comment ahead of time on the deliverables for the licensing process. It
is true that the regulator wanted to understand (and comment on) the software
development process that was to be used in the project. However, the regulator’s
primary role was to evaluate the agreed upon set of deliverables. The evaluation
was more in the form of an audit, in that post factum, the regulator specified a
slice through the system for which a guided walkthrough was held. The regulator
also reviewed major project documents.

3.4 Software Engineers Get It Wrong Again!

The aim of certification is to ascertain whether the product, for which a certifi-
cate is being sought, has appropriate characteristics. Certification should be a
measurement based activity, in which an objective assessment of a product is
made in terms of the values of measurable attributes of the product, using an
agreed upon objective function.

Given the choice between focusing on process or product as a means of assess-
ing whether software intensive systems possess the appropriate characteristics,

On Software Certification: We Need Product-Focused Approaches 259

Formal

Requirements

Documents

 Software

 Design

Document

 Code

Requirements

Review

Report

Design Review and

Verification Reports

 Code Review and

Verification Reports

Unit Test

 Report

Software Integration

 Test Report

Validation Test and

Reliability Qualification

Reports

Legend:

 Documents produced in the

 forward going development process

 Documents produced for

 verifications, reviews and

 testing

 Activities and data flow

 HAR Hazards Analysis Report

HAR

HAR

HAR

HAR

Fig. 4. Idealized software development process

Software Engineers have again made the wrong choice. Classical engineers invari-
ably use product-focused assessment and measurement in evaluating manufac-
tured products. Software products are typically evaluated using process-focused
standards. This is tantamount to trying someone on a murder charge - based
solely on circumstantial evidence! The process based guarantee is a statistical
one over all products, not a guarantee of an individual product.

The focus on CMM (and now CMMI) and other process-oriented standards
was (perhaps) necessary to force companies to begin adopting proper engineering
methods, but CMMI, as an example, has not progressed to the point where it
achieves this.

We are advocating a product-focused approach to software certification - we
are not saying, however, that software certification regimes should completely
ignore the software process. We believe we will always need some notion of
an idealized software development process in the software certification process.
The idea is similar to Parnas and Clement’s exhortation to “fake it” [27], in
that there has to be agreement on mandatory documents produced during the
software development process. For example, a simplified version of the SDS1
development process (Figure 3), could describe a mandated idealized process (see
Figure 4 for example), and the certifiers could then evaluate product evidence
such as documents and the application itself, without any consideration given
to the quality of the development process that actually was followed.

260 A. Wassyng, T. Maibaum, and M. Lawford

4 Evaluating Process Is Easier

An obvious question arises: “Why did we (software engineers) turn to evaluating
process rather than evaluating the final product(s) directly”? The answer, as
usual in multi modal disasters, is complicated.

Evaluating the software development process is much easier than evaluating
the software product itself.

• We have no real consensus on absolutely essential metrics for products.
• Ironically, even if we did have consensus on essential metrics, what metrics

would help us evaluate the dependability of software products directly?
• It is widely accepted that testing software products completely is not possi-

ble. One of the major differences between software products and more tradi-
tional, physical products, is that the principle of continuity does not apply
to software products. Since software engineers felt that even a huge num-
ber of test cases could not guarantee the quality of the product, we turned
to supportive evidence, hoping that layers of evidence will add up to more
tangible proof of quality/dependability.

Other disciplines introduced an emphasis on process. From general manu-
facturing to auditing, the world started putting more and more emphasis on
process. We should be clear - there is a huge difference between the manufacture
of a product and the certification of that product. We need good manufacturing
processes and we also need effective certification processes. We have no hesita-
tion in agreeing that a company needs a good software development process.
When we discuss the difference between process-focus and product-focus, we are
really looking at where the certification process should place its emphasis. The
world-wide emphasis on manufacturing process made it easy for software certi-
fiers/regulators to concentrate on evaluating a manufacturer’s software develop-
ment process and thus appear to be achieving something worthwhile in terms
of certifying the manufacturer’s products. We think that certification standards
like CMMI and ISO 9000 tell us about the care and competence with which a
company manufactures its products. It tells us very little directly about a specific
product manufactured by the company.

5 Engineering Methods

We want to make the distinction between a proper engineering method, on the
one hand, and having a well defined process as usually understood in software
engineering, on the other hand. We begin by discussing the nature of engineering
as a discipline. Over the years, engineering has been defined in a number of ways.
A useful definition of engineering is the one used by the American Engineers’
Council for Professional Development (AECPD). It defines Engineering as: “The
creative application of scientific principles to design or develop structures, ma-
chines, apparatus, or manufacturing processes, or works utilizing them singly
or in combination; or to construct or operate the same with full cognizance of

On Software Certification: We Need Product-Focused Approaches 261

their design; or to forecast their behavior under specific operating conditions;
all as respects an intended function, economics of operation and safety to life
and property.” Within this context, we need to consider what it means to use
“engineering methods”. A classic description of the Engineering Method was pre-
sented by B.V. Koen [28] in 1985. Koen presents the view that the Engineering
Method is “the use of engineering heuristics to cause the best change in a poorly
understood situation within the available resources”. When one reads the expla-
nation of this, it becomes clear that Koen is talking about a systematic process,
that uses a set of state-of-the-art heuristics to solve problems. He also makes
the point that the state-of-the-art is time-dependent. Before we discuss software
engineering in particular, we lay the foundation by exploring concepts in the
epistemology of science and engineering, and how they fit into the framework
envisaged by the AECPD. We begin below by outlining the difference between
engineering method and the use of craftsmanship principles based on intuition,
but not proper science.

5.1 Engineering Intuition

(Sections 5 and 6 are heavily based on extracts from [29,30,31].) We typically
think of intuition as the ability to know something without having to reason
about it, or without being able to give a proper explanation, in the sense of
science or engineering, of it. We have “intuitive” people in all walks of life -
including engineering. In fact, we would go so far as to say that one role of a
university engineering education is to try to foster “engineering intuition”. How-
ever, we also claim that engineering intuition is not sufficient for the solution of
engineering problems. We believe that engineering intuition guides the engineer
in the choice of heuristics to try in the current problem. The engineering method,
on the other hand, constrains the engineer to apply and test those heuristics in
a very systematic way. So, intuition is not the difference between solving the
problem and not solving it. Rather, it affects the speed with which the engineer
arrives at a solution.

Exacerbating this intuition-science based engineering gap, it is our observa-
tion that there is a fundamental confusion between the scientifically and math-
ematically based practice of engineers and the day-to-day use of mathematics
in the engineering praxis. This confusion results in discussions about “formal”
versus “rigorous” (e.g., in the formal methods community), as if the dichotomy
being explored was that between science/mathematics, on the one hand, and
engineering, on the other. Actually, this difference resides completely in the sci-
ence/mathematics camp. Only ‘good” mathematicians and scientists are capa-
ble of doing rigorous mathematics. They know when they can leave out steps in
proofs because they know or they are confident (they have good intuition) that
the gaps can be filled. More typical mathematicians, scientists and engineers
are not so good at doing this and have to rely more on not leaving such big
gaps, or any at all. Thus less skilled mathematicians and scientists are capable
of using only the formal, formulaic versions. Engineers use quite different scien-
tific principles and mathematical techniques in their daily work [32]. It is with

262 A. Wassyng, T. Maibaum, and M. Lawford

respect to these practical uses of mathematics and science that engineers develop
“intuitions”. (The hydraulic engineer called in to resolve a knotty problem cer-
tainly recalled Bernoulli’s equations when his intuition told him that the relation
between the diameter of the tube and its effect on water flow is not linear, a rec-
ollection that enabled him to explain certain water shortages at Neuschwanstein
castle in upper Bavaria, a shortage that the operatic stage designer who de-
signed the castle could not explain.) In [29], Haeberer and Maibaum formulated
a number of ad hoc principles that we would like to put forward and discuss.
We will do this in the context of some ideas from epistemology that we believe
can provide a framework for discussions of the nature of (Software) Engineering
and for forming critical judgments of contributions to research and practice in
the subject. The principles are:

1. Intuition is a necessary but not sufficient basis for engineering design.
2. Intuitions are very difficult to use in complex situations without well-founded

abstractions or mental models. (The term “mental model” is used here as
a synonym of a somewhat vague abstraction of a /emphframework in the
Carnapian sense; see below.)

3. An engineer has our permission to act on intuition only when:
• Intuitions can be turned into mathematics and science, and
• Intuitions are used in the context of normal design processes (see below).

4. The abstractions, mental models, cognitive maps, ontologies used by engi-
neers are not the same as those used by mathematicians and scientists.

5.2 Carnap’s Statement View

Carnap’s Statement View of Scientific Theories provides a setting for discussing
these issues [33,34,35]. The primary motivation for the Statement View was to
explain the language (and practice) of science. Haeberer and Maibaum, [29,30],
adapted it to engineering and provided a framework to discuss issues such as
intuition, method, and mathematics. According to Carnap, a scientific theory,
relating some theory to observable phenomena, always has two disjoint sub-
theories: a theoretical one, not interpreted in terms of observable entities, and
a purely observational one, related by a set of correspondence rules (often mea-
surement procedures), which connect the two subtheories. According to Carnap’s
metaphilosophy, when we state some theory (or set of theories) to explain a set
of observations stated in the observational language, therefore constructing an
instance of the Statement View, we are putting in place a framework by making
some ontological commitments. Once a framework is established, we automati-
cally divide our (scientific) questions into two disjoint subsets, so-called internal
questions (e.g., is it true that E = mc2, and is it true that the halting problem
is undecidable in the classical computability framework?) and so-called external
questions (e.g., does Church’s thesis provide a useful model of computation or
not?). To assert that something is of utility, we must have in mind some task for
which it is to be of utility.

On Software Certification: We Need Product-Focused Approaches 263

Engineering, perhaps unlike science, is a normative subject. In our case, we
are interested in discussing software engineering as a proper engineering disci-
pline and use it as a basis for certifying its artefacts. That is, we want to ensure
that the framework (in the Carnapian sense) is of utility in accomplishing the
stated or intended purposes of engineering, generally, and software engineering,
in particular. According to Vincenti [32], the day-to-day activities of engineers
consist of normal design, as comprising the improvement of the accepted tradi-
tion or its application under ‘new or more stringent conditions’ ”. He goes on to
say: “The engineer engaged in such design knows at the outset how the device in
question works, what are its customary features, and that, if properly designed
along such lines, it has a good likelihood of accomplishing the desired task”.
Note the relationship to the definition of engineering above and Koen’s view of
engineering.

6 What Makes Software Engineering an Engineering
Discipline?

The ongoing debate on engineering versus intuition motivated Haeberer and
Maibaum to investigate the epistemology of software engineering, the role of
mathematics in the software engineering curriculum, and the engineering nature
of software engineering. This section is very heavily based on portions of that
work, [29]. Mathematics is undoubtedly an essential tool in engineering. There
are software engineers who still claim that mathematics is not necessary for
producing software. Luckily, fewer and fewer are willing to say this. The real
problem here is not the fact that mathematics is necessary, but that people
tend to associate the mathematics required with that of theoretical computer
science, rather than some appropriate engineering mathematics. In addition,
many software engineers underestimate the importance of the role of heuristics
(see Koen) and systematic method (see Vincenti), used in engineering to guide
and constrain intuition.

Vincenti [32] argues the case for engineering being different, in epistemologi-
cal terms and, consequently as praxis, from science or even applied science: “In
this view, technology, though it may apply science, is not the same as or entirely
applied science”. GFC Rogers [36] argues that engineering is indeed different
from science. He argues this view based on what he calls “the teleological dis-
tinction” concerning the aims of science and technology: “In its effort to explain
phenomena, a scientific investigation can wander at will as unforeseen results
suggest new paths to follow. Moreover, such investigations never end because
they always throw up further questions. The essence of technological investi-
gation is that they are directed towards serving the process of designing and
manufacturing or constructing particular things whose purpose has been clearly
defined. [...] It is also more limited, in that it may end when it has led to an
adequate solution of a technical problem.” He makes a further claim: “Because
of its limited purpose, a technological explanation will certainly involve a level of
approximation that is certainly unacceptable in science (our emphasis).” Going

264 A. Wassyng, T. Maibaum, and M. Lawford

back to the distinctions between the aims of science and engineering, we have,
again from [36]: “We have seen that in one sense science progresses by virtue of
discovering circumstances in which a hitherto acceptable hypothesis is falsified,
and that scientists actively pursue this situation. Because of the catastrophic
consequences of engineering failures - whether it be human catastrophe for the
customer or economic catastrophe for the firm - engineers and technologists must
try to avoid falsification of their theories. Their aim is to undertake sufficient
research on a laboratory scale to extend the theories so that they cover the
foreseeable changes in the variables called for by a new conception.

So science is different from engineering. Proceeding on this basis, we can
ask ourselves what the praxis of engineering is (and ignore, at least for the
moment, the specifics of scientific praxis). Vincenti defines engineering activities
in terms of design, production and operation of artefacts. Of these, design and
operation are highly pertinent to software engineering, while it is often argued
that production plays a very small role, if any. In the context of discussing the
focus of engineers’ activities, he then talks about normal design as comprising
“the improvement of the accepted tradition or its application under new or more
stringent conditions’ ”. He goes on to say: “The engineer engaged in such design
knows at the outset how the device in question works, what are its customary
features, and that, if properly designed along such lines, it has good likelihood
of accomplishing the desired task” (see [34].)

Another important aspect of engineering design is the organizing principle of
hierarchical design: “Design, apart from being normal or radical, is also multilevel
and hierarchical. Interesting levels of design exist, depending on the nature of
the immediate design task, the identity of some component of the device, or
the engineering discipline required.” An implied, but not explicitly stated, view
of engineering design is that engineers normally design devices as opposed to
systems. A device, in this sense, is an entity whose design principles are well
defined, well structured and subject to normal design principles. A system, the
subject of radical design, in this sense, is an entity, which lacks some important
characteristics making normal design possible. Examples of the former given
by Vincenti are aeroplanes, electric generators, turret lathes; examples of the
latter are airlines, electric-power systems and automobile factories. The software
engineering equivalent of devices may include compilers, relational databases,
PABXs, etc. Software engineering examples of systems may include air traffic
control systems, mobile telephone networks, etc. It would appear that systems
become devices when their design attains the status of being normal. That is,
the level of creativity required in their design becomes one of systematic choice,
based on well-defined analysis, in the context of standard definitions and criteria
developed and agreed by engineers. This is what makes everyday engineering
practice possible and reliable.

Let us now consider the particular characteristics of software engineering as a
discipline. We want to address the question: “Is the knowledge used by software
engineers different in character from that used by engineers from the conven-
tional disciplines?” The latter are underpinned not just by mathematics, but

On Software Certification: We Need Product-Focused Approaches 265

also by some physical science(s) - providing models of the world in terms of
which artefacts must be understood. (The discussion above illustrates this sym-
biosis.) We might then ask ourselves about the nature of the mathematics and
science underlying software engineering. It is not surprising, perhaps, that a large
part of the mathematics underlying software engineering is formal logic.

Logic is the mathematics of concepts and abstractions. Software engineering
may be distinguished from other engineering disciplines because the artefacts
constructed by the latter are physical, whereas those constructed by the former
are conceptual. There are some interesting and significant differences between the
two kinds of mathematics and engineering mentioned above. One of these is that
the real world acts as a (physical) constraint on the construction of (physical)
artefacts in a way which is more or less absent in the science and engineering
of concepts and abstractions. There seems to be a qualitative difference in the
dimensions of the design space for software engineering as a result.

What distinguishes the theoretical computer science and software engineering
dependence on logic is the day-to-day invention of theories (models) by engineers
and the problems of size and structure introduced by the nature of the artefacts
with which we are dealing in software engineering. Now, the relationship between
the mathematics of theoretical computer science and that of (formal methods
and) software engineering should be analogous to the difference between con-
ventional mathematics and its application and use in engineering. As an exam-
ple, program construction from a specification has a well-understood underlying
mathematics developed over the last 25 years. (We are restricting our attention
to sequential programs. Concurrency and parallelism are much less mature top-
ics.) We might expect to find a CAD tool for program construction analogous
to the “poles and canvas” model used in electronics for the design of filters. In-
stead, what we find is just a relaxation on the exhaustiveness requirement, i.e.,
we can leave out mathematical steps (proofs of lemmas) on the assumption that
they can be filled in if necessary, the so-called rigorous approach. Where is the
abstract model (analogous to the “poles and canvas” one) that encapsulates the
mathematics and constrains manipulation in a (mathematically / scientifically)
sensible manner?

6.1 An Epistemological Framework for Software Engineering

As Carnap (and others) have pointed out, an ontological framework, cannot be
said to be correct or incorrect, it can only be of some utility, or not. Hence,
in discussing a framework for software engineering, we are left with the task of
convincing our colleagues that the proposed framework will be of some utility.
We outline some details of the software engineering framework we proposed in
terms of Figure 5, illustrating that we can give the diagram a semantics. That is,
all the objects and relationships and processes denoted by the diagram could be
given exact, mathematical/scientific definitions. (We say “could” because some
of the relationships are presently the subject of research!) Nor do we claim that
this is the only framework of utility for software engineering. (We only induce the
reader to think about it as to be the last word in software engineering frameworks

266 A. Wassyng, T. Maibaum, and M. Lawford

(
)cor rectne

ss

)
�(ygolana

evitisop

gnitset
noitadilav

HPS
hypothetical

posit

EA
engineering
(software

realisation)
artifact

positive analogy (�
)

RSP
requirement
specification

SP1
design

specification

SPn
design

specification

nor
mal

desi
gn / eureka

refinement

positi
ve analo

gy(�
)

(�
) quasi-m

erotic
explanat ion

(�
) mero

tic
explan

atio
n

(�
) merotic explanation

(
) refinem

ent

co
rre

ct
ne

ss
(

)

elucidation
/ illum

ination

re
ifi

ca
tio

n
/ r

ea
lis

at
io

n

validation testing

for
ma
l p
roo
f a
nd/
or
ver
ific
ati
on
tes
tin
g

form
al proof and/or verification

testing

formal proof, correct construction and/or verification testing

fo
rm
al
pr
oo
f,
co
rr
ec
t c
on
str
uc
tio
n
an
d/
or
ve
rif
ic
at
io
n

validation
testing

val
ida
tio
n t
est
ing

reality modified (extended) reality

co

nt
ex

tC
TX
P contextCTXA

(�) merotic explanationformal proof and/or verification testing

form
al proof , correc

rt
sn

oc
t

uction
and /or

veri fication

Fig. 5. Carnapian Framework for Software Engineering from [29]

by means of the background omega letter!) There may be others, more or less
detailed, that are of equal utility. Actually, to assert that something is of utility,
we must have in mind some task for which it is to be of utility. In our case, we are
interested in making software engineering a proper engineering discipline (see,
e.g., [30]) and supporting the practice of certification. Superficially, the elements
of the diagram (objects and relationships) are just a more or less detailed version
of diagrams used to represent the development process of software systems from
conception to final realization as an executable system. As examples to illustrate
that the elements of the diagram can be formalized, we give the following def-
initions: Correctness is a relation between two constructed artefacts asserting
that the properties required by one are preserved in the other. Preservation of
properties may be mediated by translation (between ontologies). Also, preserva-
tion does not exclude the inclusion of new (consistent) properties. Validation is
the activity of determining, by means of experiments (i.e., testing), whether or

On Software Certification: We Need Product-Focused Approaches 267

not we are constructing the appropriate positive analogy. Positive analogy is a
relation between two entities (frameworks) consisting of a map between the two
underlying ontologies (an interpretation between languages), which correlates
positively (in the sense of essential and non-negative) properties of the source
of the mapping with the positive properties of the target. We call the source
an iconic model of the target. Testing is the application of tests. A test is an
experiment to determine if some entity may have (can be assumed to have) some
ground property (in the sense of logic).

We can use the framework to demonstrate the necessity of testing. We say
that a relation is epistemological if it cannot, in principle, be formally (i.e.,
mathematically) corroborated. Hence, whether the relation holds or not is in-
herently contingent. That is, the existence of the relationship requires some form
of testing (or experiment, in the sense of science) for its establishment. Despite
its logical character, the truth of a logical relation is often checked by verifica-
tion testing, in which case the character of this truth becomes contingent. The
truth of an epistemological relation cannot be definitively established, just as a
scientific theory cannot be “proved” once and for all.

6.2 Evidence and Measurement

Certification of any form requires evidence supporting the case for certification
and judgements based on this evidence (the utility function mentioned above).
The framework outlined above is intended to provide the foundation for building
a framework for certification. The epistemological basis of science has established
the principles and practice of using evidence in science. The adaptation to engi-
neering ([29,30,31]), and software engineering in particular, enables us to apply
informed judgements about proposals related to software development and cer-
tification. In particular, it provides a setting in which definitions of measurable
attributes of software and their role in certification can be scientifically assessed.
It also enables us to attempt assessments of their utility for the objectives of
certification. It is on this basis that process-based approaches to certification
should be rejected as insufficient to make certification judgements. The process-
based assessment may well provide a statistical basis for confidence about the
products of the process. But it does not provide sufficient levels of confidence
about a particular product. The only way to obtain sufficient confidence about
the product itself is to measure relevant product attributes and then make a
judgement based on this evidence. Normally, in science, it is not sufficient for
experiments to usually be successful in verifying some hypothesis about a theory.
If an experiment fails to verify the hypothesis, there are only two possibilities:
the experimental procedure was faulty, or the theory on which the hypothesis
was based is false. (The former is probably the more usual cause for failure.) In
the case of process-based predictions, there is a third possibility, namely that
the process-based evidence was incorrect in relation to this particular product.
Hence, the process-based approach does not pass the utility test: it fails to be
reliable enough, and cannot, in principle, be “improved” to overcome this short-
coming. There is a lot more that could usefully be learned from the epistemology

268 A. Wassyng, T. Maibaum, and M. Lawford

of science and engineering. In particular, the concept of explanation in science
([37]) might form a useful basis for assessing the evidence produced by a man-
ufacturer to support the licensing of a product. A basic question that needs to
be asked during the assessment of the evidence is: Does the evidence provide a
sufficiently good explanation (in this technical sense borrowed from epistemol-
ogy) of the effectiveness and safety of the product to be accepted as a guarantee
warranting certification? However, we shall not pursue this interesting topic here.

7 The Certification Initiative

In mid-2005, a number of researchers in academia and industry decided to start
working on a Certification Initiative. The initiative was spearheaded by members
of the Software Quality Research Laboratory (SQRL) at McMaster University in
Canada, primarily Alan Wassyng, Tom Maibaum, Mark Lawford and Ryszard
Janicki. Within a very short time, a small group of “Founding Members” was
formed:

• SQRL faculty - McMaster University (Canada)
• Jo Atlee, University of Waterloo (Canada)
• Marsha Chechik, University of Toronto (Canada)
• Jonathan Ostroff, York University (Canada)
• Stefania Gnesi, ISTI-CNR (Italy)
• Connie Heitmeyer, NRL (USA)
• Brian Larson, Boston Scientific (USA)

The idea was to put software certification on the primary research agenda,
and a number of activities have since resulted directly from this initiative.

7.1 The PACEMAKER Grand Challenge

With some encouragement from SQRL and Jim Woodcock, Brian Larson of
Boston Scientific (Guidant), worked hard to release a natural language spec-
ification of a ten year-old model of a pacemaker. The specification forms the
basis of a Grand Challenge to the software engineering community [38]. The
PACEMAKER specification has also been used as a project for the first Student
Contest in Software Engineering (SCORE) that is part of the 31st International
Conference on Software Engineering (ICSE 2009). A reference hardware platform
was designed by students at University of Minnesota, supervised by Brian Lar-
son, and Mark Lawford arranged to have 50 (slightly modified) PACEMAKER
boards manufactured. They have been available through SQRL [39] for use in
the PACEMAKER Grand Challenge, SCORE, and other academic endeavours.

The benefits we hope to realize from the PACEMAKER Grand Challenge and
related activities are:

• Demonstrate the state-of-the-art in safety-critical software development.
• Provide a comparison of development methods.
• Develop product-focused certification methods.

On Software Certification: We Need Product-Focused Approaches 269

7.2 The Software Certification Consortium

During 2007, SQRL researchers and Brian Larson spearheaded the formation
of the Software Certification Consortium (SCC). Its purpose is to develop and
promote an agenda for the certification of systems containing software (ScS),
by forming a critical mass of industry, academic and regulatory expertise in
this area. We held an inaugural meeting in August 2007, at SEI’s Arlington
location, and two further meetings in December 2007 (hosted by Mats Heimdahl,
University of Minnesota) and late April 2008 (hosted by Austin Montgomery and
Arie Gurfinkel, SEI). The current steering committee for SCC is:

• Richard Chapman (U.S. Federal Drug Administration)
• John Hatcliff (Kansas State University)
• Brian Larson (Boston Scientific)
• Insup Lee (University of Pennsylvania)
• Tom Maibaum (McMaster University)
• Bran Selic (Malina Software)
• Alan Wassyng (McMaster University)

A description of the goals of SCC, its objectives, and SCC’s view of the major
hurdles facing us in meeting those objectives was presented at SafeCert 2008
[40]. The goal of certification, SCC’s goals and objectives are repeated below.
The hurdles and their descriptions are also paraphrased below.

Goal of Certification - SCC: The Goal of Certification is to systematically
determine, based on the principles of science, engineering and measurement the-
ory, whether an artefact satisfies accepted, well defined and measurable criteria.

SCC Objectives:

(i) To promote the scientific understanding of certification for Systems con-
taining Software (ScS) and the standards on which it is based;

(ii) To promote the cost-effective deployment of product-focused ScS certifica-
tion standards;

(iii) To promote public, government and industrial understanding of the con-
cept of ScS certification and the acceptance of the need for certification
standards for software related products;

(iv) To investigate and integrate formal methods into ScS certification and de-
velopment;

(v) To co-ordinate software certification initiatives and activities to further
objectives i-iv above.

Goals to Achieve SCC Objectives: The Primary Goals are:

(i) Develop and document generic certification models that will serve as a
framework for the definition of domain specific regulatory and certification
requirements; and

270 A. Wassyng, T. Maibaum, and M. Lawford

(ii) Proof of concept: Develop and document software regulatory requirements
that help both developers of the software and the regulators of the soft-
ware in the development of safe, reliable software applications in specific
domains.

A number of Detailed Goals were also identified: (i) Use existing software en-
gineering and formal methods knowledge to develop appropriate evidence-based
standards and audit points for critical software in specific domains, including
hard real-time, safety-critical systems; (ii) Create software development meth-
ods that comply with the above standards and audit points for the development
of critical software; and (iii) Research and develop improved methods and tools
for the development of critical software.

Hurdles in Achieving Objectives: During the December 2007 SCC meeting,
participants identified the following 9 hurdles. The first 4 of these were voted
as the top 4 hurdles, in the order shown. The remaining 5 hurdles were not
prioritized.

1. Clarity of regulator’s expectation and method of communicating with the
regulator. Application developers do not know what to produce, and often
have to pay consultants - who get it wrong.

2. Lack of clear definition of evidence and how to evaluate it. We know very
little about the effectiveness of attributes and metrics related to dependability,
and do not really understand how to combine different evidentiary artefacts.

3. Poor documentation of requirements and environmental assumptions. We
need accurate and complete requirements in order to produce evidence of
compliance. Poor requirements invariably lead to poor products.

4. Incomplete understanding of the appropriate use of inspection, testing and
analysis. We do not know when to use inspection, testing and mathematical
analysis to achieve specific levels of dependability.

• No overarching theory of coverage that enables coverage to accumulate across
multiple verification techniques. In our opinion, this is the most important
hurdle of all. It was not voted #1 simply because it was felt that we need to
tackle easier hurdles first. We know of no single quality assurance technique
that is solely sufficient for effective certification. Each of these techniques
differs in strength of properties verified, types of behaviours covered, and the
life-cycle stage in which they are most naturally applied. Sharing coverage
across techniques via a single unified framework will enable the successes
of one technique to reduce the obligations of associated techniques, and will
clarify gaps in verification that must be filled by other techniques. The most
convincing arguments of correctness will rely on being able to accurately state
in quantitative ways how multiple verification techniques each contribute ev-
idence of overall correctness.

• Theories of coverage for properties like timing, tolerances as well as concur-
rent programs. Structural coverage for testing plays a key role in development

On Software Certification: We Need Product-Focused Approaches 271

and certification of safety-critical software. Existing coverage measures fail to
take into account properties such as timing and tolerance ranges for data values
and the degree to which interleavings in concurrent computations are exercised
As a result, even development efforts that succeed in achieving high levels of
mandated coverage measures often fail to fully explore and validate common
sources of program faults.

• Hard to estimate a priori the V&V and certification costs. Currently, it is
difficult to make a business case for the introduction of formal techniques,
because it is difficult to estimate both the time required to carry out vari-
ous forms of formal analysis and the reductions that can be obtained either
in costs of the certification process itself or long-term costs associated with
fewer defects found late in the development life-cycle, greater reuse in subse-
quent development of similar systems, fewer recalls of deployed systems, and
decreased liability costs.

• Lack of interoperable tools to manage, reason, and provide traceability.
• Laws, regulation, lawyers and politics. Certification has legal implications,

and as difficult as the technical problems may be, political considerations
complicate the process immeasurably.

8 Research Overview

Below, we list a number of broad research questions that we need to answer.
In addition to these questions, the specific hurdles that were identified above in
section 7.2 round out an initial research agenda for software certification.

• Is there a generic notion of certification, valid across many domains?
• What, if anything, needs to be adapted/instantiated in the generic model to

make it suitable for use in a particular domain?
• What benefit do we achieve by creating product-specific software certification

standards and processes?
• What simple process model is sufficient to enable the “faking” of real pro-

cesses and providing a platform for evaluation by certification authorities?
• What is the difference between software quality, of a certain level, and cer-

tifiability?
• In what situations can we safely use process-based properties as a proxy for

product qualities?
• If we have levels of certifiability, as in the Common Criteria, how does the

mix of formal verification and testing change with the level?
• Since evaluating evidence about software is an onerous task, how can we

assist evaluators to perform their tasks by providing tools? (Amongst exam-
ples of such tools may be proof checkers (to check proofs offered in evidence),
test environments (to re-execute tests offered in evidence), data mining tools
to find “interesting” patterns in artefacts, etc.)

272 A. Wassyng, T. Maibaum, and M. Lawford

9 Conclusions

Engineering methods are identifiable as those that are systematic, depend on
theories and heuristics derived from relevant basic sciences, and rely on being
able to measure relevant values in a repeatable way. Software engineering meth-
ods are moving - slowly - in that direction. Another important factor is the role
of measurement in engineering and science. One of the major problems facing
us is that we have not built or discovered adequate, meaningful metrics that
can be used to measure attributes of software artefacts, either to support engi-
neering methods, or more crucially, certification regimes. Unfortunately, existing
software certification methods are primarily focused on evaluating the software
development process that was used to develop the system being certified. This
does not seem to qualify as an engineering approach to certification of software
products. Almost all engineering certification regimes we have seen are product-
focused. In any case, it seems that reliance on indirect evaluation of artefacts is
a poor way of determining whether a product is effective, safe, and dependable.

We believe that software certification methods should be primarily product-
focused. There are technical, social, commercial and political pressures being
brought to bear on this movement. We also believe that there is growing agree-
ment on this issue. We also think that there are good reasons why we should be
examining whether or not we should be developing not just domain specific soft-
ware certification methods, but even product specific, product-focused software
certification methods. Interestingly, the FDA is also considering similar ideas
[41], which would be a major change in direction for their certification regime.

The previous section briefly describes a research agenda that we believe will
lead us to fundamental results that will aid in building new product-focused soft-
ware certifications processes. In order to accomplish the goals of certification for
software, we also have to undertake fundamental research on appropriate metrics
for software and software design artefacts. We must develop significantly better
engineering heuristics and methods, to make software development more reliable
and repeatable, akin to classical engineering disciplines. Almost certainly, these
heuristics and methods, and the accompanying certification regimes, will also be
domain specific. This appears to be an inescapable attribute of engineering.

References

1. ASTM Standard F977: Standard Consumer Safety Specification for Infant Walkers.
ASTM International, West Conshohocken, PA, USA (2000)

2. Regulatory Review and Recommendation Regarding Baby Walkers Pursuant to
the Hazardous Products Act. Health Canada (April 2004)

3. General Principles of Software Validation; Final Guidance for Industry and FDA
Staff. U.S. Dept. of Health and Human Services: FDA (January 2002)

4. Guidance for the Content of Premarket Submissions for Software Contained in
Medical Devices; Guidance for Industry and FDA staff. U.S. Dept. of Health and
Human Services: FDA (May 2005)

5. http://www.sei.cmu.edu/cmmi/ (March 2009)

http://www.sei.cmu.edu/cmmi/

On Software Certification: We Need Product-Focused Approaches 273

6. Common Criteria for Information Technology Security Evaluation: Part 1: Intro-
duction and general model, Version 3.1, Revision 1 (2006)

7. Common Criteria for Information Technology Security Evaluation: Evaluation
methodology, Version 3.1, Revision 2 (2007)

8. Parnas, D.: The use of precise specifications in the development of software. In:
IFIP Congress, pp. 861–867 (1977)

9. Heninger, K.L.: Specifying software requirements for complex systems: New tech-
niques and their applications. IEEE Trans. on Soft. Engineering 6(1), 2–13 (1980)

10. Parnas, D.: Using Mathematical Models in the Inspection of Critical Software. In:
Applications of Formal Methods, pp. 17–31. Prentice-Hall, Englewood Cliffs (1995)

11. Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D.: Requirements spec-
ification for process-control systems. IEEE Transactions on Software Engineer-
ing 20(9), 684–707 (1994)

12. Heimdahl, M.P.E., Leveson, N.G.: Completeness and consistency in hierarchical
state-based requirements. IEEE Trans. on Soft. Eng. 22(6), 363–377 (1996)

13. Heitmeyer, C., Kirby Jr., J., Labaw, B., Archer, M., Bharadwaj, R.: Using abstrac-
tion and model checking to detect safety violations in requirements specifications.
IEEE Transactions on Software Engineering 24(11), 927–948 (1998)

14. Crow, J., Di Vito, B.L.: Formalizing Space Shuttle software requirements: Four
case studies. ACM Trans. on Soft. Eng. and Methodology 7(3), 296–332 (1998)

15. Archinoff, G.H., Hohendorf, R.J., Wassyng, A., Quigley, B., Borsch, M.R.: Ver-
ification of the shutdown system software at the Darlington nuclear generating
station. In: International Conference on Control and Instrumentation in Nuclear
Installations, Glasgow, UK, The Institution of Nuclear Engineers (May 1990)

16. Parnas, D.L., Asmis, G.J.K., Madey, J.: Assessment of safety-critical software in
nuclear power plants. Nuclear Safety 32(2), 189–198 (1991)

17. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of
formal methods in an industrial project. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003)

18. Joannou, P., et al.: Standard for Software Engineering of Safety Critical Software.
CANDU Computer Systems Engineering Centre of Excellence Standard CE-1001-
STD Rev. 1 (January 1995)

19. Janicki, R., Wassyng, A.: Tabular representations in relational documents. Funda-
menta Informaticae 68, 1–28 (2005)

20. Wassyng, A., Lawford, M.: Software tools for safety-critical software development.
Software Tools for Technology Transfer (STTT) 8(4-5), 337–354 (2006)

21. McDougall, J., Viola, M., Moum, G.: Tabular representation of mathematical func-
tions for the specification and verification of safety critical software. In: SAFE-
COMP 1994, pp. 21–30. Instrument Society of America, Anaheim (1994)

22. Wassyng, A., et al.: Choosing a methodology for developing system requirements.
Ontario Hydro/AECL SD-2 Study Report (November 1990)

23. Easterbrook, S., Lutz, R., Covington, R., Kelly, J., Ampo, Y., Hamilton, D.: Expe-
riences using lightweight formal methods for requirements modeling. IEEE Trans-
actions on Software Engineering 24(1), 4–14 (1998)

24. Heitmeyer, C., Kirby, J., Labaw, B., Bharadwaj, R.: SCR*: A toolset for specifying
and analyzing software requirements. In: Y. Vardi, M. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 526–531. Springer, Heidelberg (1998)

25. Shankar, N., Owre, S., Rushby, J.M.: PVS Tutorial. In: Computer Science Labo-
ratory, SRI International, Menlo Park, CA (February 1993)

26. Rueß, H., Shankar, N., Srivas, M.K.: Modular verification of SRT division. Formal
Methods in Systems Design 14(1), 45–73 (1999)

274 A. Wassyng, T. Maibaum, and M. Lawford

27. Parnas, D., Clements, P.: A rational design process: How and why to fake it. IEEE
Trans. Software Engineering 12(2), 251–257 (1986)

28. Koen, B.: Definition of the Engineering Method. ASEE (1985)
29. Haeberer, A.M., Maibaum, T.S.E.: Scientific rigour, an answer to a pragmatic ques-

tion: A linguistic framework for software engineering. In: ICSE 2001 Proceedings,
pp. 463–472. IEEE Computer Society, Washington (2001)

30. Maibaum, T.: Mathematical foundations of software engineering: a roadmap. In:
ICSE 2000 Proceedings, pp. 161–172. ACM, New York (2000)

31. Maibaum, T.: Knowing what requirements specifications specify. In: PRISE 2004,
Conference on the PRInciples of Software Engineering, Technical Report, Univer-
sity of Buenos aires, keynote address in memory of Armando Haeberer (2004)

32. Vincenti, W.G.: What Engineers Know and How They Know It: Analytical Studies
from Aeronautical History. The Johns Hopkins University Press, Baltimore (1993)

33. Carnap, R.: Empiricism, semantics, and ontology. Revue Internationale de Philoso-
phie 11, 208–228 (1950)

34. Carnap, R.: The Methodological Character of Theoretical Concepts. In: Minnesota
Studies in the Philosophy of Science, vol. II, pp. 33–76. U. of Minnesota Press
(1956)

35. Carnap, R.: Introduction to the Philosophy of Science. Dover Publications, New
York (1995)

36. Rogers, G.: The Nature of Engineering. The Macmillan Press Ltd., Basingstoke
(1983)

37. Hempel, C.: Aspects of Scientific Explanation and Other Essays in the Philosophy
of Science. The Free Press, New York (1965)

38. http://sqrl.mcmaster.ca/pacemaker.htm

39. http://www.cas.mcmaster.ca/wiki/index.php/Pacemaker

40. Hatcliff, J., Heimdahl, M., Lawford, M., Maibaum, T., Wassyng, A., Wurden, F.: A
software certification consortium and its top 9 hurdles. In: Proceedings of SafeCert
2008. ENTCS (2008) (to appear)

41. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky, O.: Formal methods based de-
velopment of a PCA infusion pump reference model: Generic infusion pump (GIP)
project, pp. 23–33 (June 2007)

http://sqrl.mcmaster.ca/pacemaker.htm
http://www.cas.mcmaster.ca/wiki/index.php/Pacemaker

	On Software Certification: We Need Product-Focused Approaches
	Introduction
	Motivation
	Current Practice
	Medical Systems
	Security Systems
	Canadian Nuclear Power Safety Systems
	Software Engineers Get It Wrong Again!

	Evaluating Process Is Easier
	Engineering Methods
	Engineering Intuition
	Carnap's Statement View

	What Makes Software Engineering an Engineering Discipline?
	An Epistemological Framework for Software Engineering
	Evidence and Measurement

	The Certification Initiative
	The PACEMAKER Grand Challenge
	The Software Certification Consortium

	Research Overview
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

