
Formal Translation of IEC 61131-3 Function
Block Diagrams to PVS with Nuclear

Application

Josh Newell1(B), Linna Pang1, David Tremaine1, Alan Wassyng2,
and Mark Lawford2

1 Systemware Innovation Corporation, Toronto M4P 1E4, Canada
{jnewell,lpang,tremaine}@swi.com

2 McMaster Centre for Software Certification, McMaster University,
Hamilton L8S 4K1, Canada

{wassyng,lawford}@mcmaster.ca

Abstract. The trip computers for the two reactor shutdown systems of
the Ontario Power Generation (OPG) Darlington Nuclear Power Gen-
erating Station (DNGS) are being refurbished due to hardware obsoles-
cence. For one of the systems, the general purpose computer originally
used is being replaced by a programmable logic controller (PLC). The
trip computer application software has been rewritten using function
block diagrams (FBDs), a commonly used PLC programming language
defined in the IEC 61131-3 standard. The replacement project’s qual-
ity assurance program requires that formal verification be performed to
compare the FBDs against a formal software requirements specification
(SRS) written using tabular expressions (TEs). The PVS theorem prov-
ing tool is used in the formal verification. Custom tools developed for
OPG are used to translate TEs and FBDs into PVS code. In this paper,
we present a method to rigorously translate the graphical FBD language
to a mathematical model in PVS using an abstract syntax to represent
the FBD constructs. We use an example from the replacement project
to demonstrate the use of the model to translate a FBD module into a
PVS specification.

Keywords: Safety critical systems · IEC 61131-3 · Function block
diagrams · Formal specification · PVS · Tabular expressions

1 Introduction

Many industrial, safety-critical control systems leverage programmable technolo-
gies for their flexibility and scalability. The use of programmable technologies
for safety-critical design is now commonplace in nuclear, aerospace and automo-
tive applications, and formal methods can play an important role in ensuring
that those applications are safe. In the aviation domain, DO-178C [2] advocates
the use of formal methods to create mathematical models for the specification

c© Springer International Publishing Switzerland 2016
S. Rayadurgam and O. Tkachuk (Eds.): NFM 2016, LNCS 9690, pp. 206–220, 2016.
DOI: 10.1007/978-3-319-40648-0 16



Formal Translation of IEC 61131-3 Function Block Diagrams to PVS 207

and analysis of system behaviour. In the nuclear industry, IEEE 7-4.3.2 [1] lists
acceptance criteria for mission- or safety- critical systems that practitioners need
to comply with. In the context of formal methods, two important criteria are:
(1) the software requirements are both precise and complete; and (2) the software
implementation is correct with respect to specified behaviour. In the Canadian
nuclear industry, CE-1001-STD [7] governs the software engineering of safety
critical applications. It prescribes not only the formal specification of require-
ments and design, but also the formal proof of correctness of implementation
against requirements. Traditionally, CE-1001-STD has been applied to general
purpose computer languages. It is now being applied to the application-oriented
language paradigm of programmable logic controllers (PLCs). PLCs provide a
higher level of abstraction for the programmer via a set of built-in hierarchical
function blocks (FBs) that can be safety certified for use in critical applications.

The Ontario Power Generation (OPG) Darlington Nuclear Generating Sta-
tion (DNGS) in Ontario, Canada uses two diverse, computerised special safety
systems for emergency shutdown of the reactor. These are referred to as Shut-
down System One and Two (i.e., SDS1 and SDS2). They were completed in
the early 1990s and are based on an arrangement of real-time general purpose
computers. Each SDS has three redundant trip computers (TCs) in a 2-out-
of-3 voting configuration. The TCs are categorized as safety critical and were
engineered in compliance with CE-1001-STD, which defines a comprehensive
set of development, verification and validation processes. Formal requirements
and design specification were developed and documented using tabular expres-
sions (TEs) [13]. In addition to various review and overlapping testing processes,
formal proof of correctness was performed using a theorem prover Prototype Ver-
ification System PVS [9].

Currently, SDS1 and SDS2 are being refurbished to extend the nuclear plant’s
life and both hardware platforms are being replaced. A safety-certified PLC
compliant with IEC 61131-3 [4] was selected for the SDS1 TC replacement. As
with the original project, the software requirements are specified using TEs, but
the software design is now specified in a function block diagram (FBD) language
using built-in IEC 61131-3 FBs provided by a PLC vendor1,2. Using the PLC
platform, the detailed design automatically generates executable code. PVS is
used to formally verify the design against the requirements.

PVS provides an integrated environment with mechanized support for the
syntax and semantics of TEs and (higher-order) predicates. Based on [10], an
approach was developed for the replacement project to support the formal verifi-
cation of FBDs. The process is as follows: (1) the trip computer design, described
in a collection of FBDs, is translated into PVS; (2) the requirements described in
tabular expressions are translated into PVS; and (3) formal proofs for systematic
design verification are automated using PVS.

1 A small portion of the software design is written using structured text (ST), but
that is not relevant to the subject of this paper.

2 The use of IEC 61131-3 compliant built-in FBs eased formal specification and sub-
sequent verification of their behavior; one of many PLC qualification activities.



208 J. Newell et al.

Fig. 1. Framework diagram

Step (1) of the process is the subject of this paper and is based on our
experience in the replacement project. An abstract syntax is created to represent
the constructs of a FBD and rigorous translation rules are defined for the general
translation of FBDs into PVS specifications.

Figure 1 summarizes the overall verification process and contributions. As
shown on the left, the requirements are documented using tabular expressions.
The design is written in a FBD language that is complaint with IEC 61131-3. In
the center of the diagram, we highlight our main contributions within a dashed
rectangle. We define an abstract syntax for FBDs using a FBD design as input.
With values from the abstract syntax as input, we define an attribute map and
labelled directed graph to represent relationships in the FBD. Given an attribute
map and graph, we define an additional data structure, block groups, to reduce
the complexity of PVS translation. Shown on the right side of Fig. 1, the require-
ments are formalized in PVS whereas the FBD specification is produced from
our methodology. Based on [10], our technique also produces the consistency
theorems3 for FBDs, which are verified manually in PVS. The correctness the-
orems are manually specified and verified in PVS. The future automation of
consistency and correctness proofs is discussed in Sect. 8.

2 Preliminaries

2.1 Tabular Expressions

Tabular expressions [13] (a.k.a., function tables) are a proven and effective app-
roach for describing conditionals and relations, and thus are ideal for document-
ing many system requirements. They are arguably easier to comprehend and to

3 A FBD design is consistent if for every input there exists an output that satisfies the
internal relationships. Otherwise, a FBD design trivially satisfies any requirement.



Formal Translation of IEC 61131-3 Function Block Diagrams to PVS 209

maintain than conventional mathematical expressions. Formal semantics for tab-
ular expressions have been well-developed in [6] and are useful for inspections,
testing and verification [17,18]. Tabular expressions were used on the original
SDS1 project and continue to be used on the replacement project for specify-
ing software requirements. As an example of a tabular expression (Fig. 2), we
consider the c PressParmTrip requirement that will be used as a running exam-
ple. The function calculates the parameter trip value using the process variable
m Presssure compared against the setpoint value k PressSP4. We present the
detailed discussion in Sect. 6.1.

Fig. 2. Tabular expression of c PressParmTrip

2.2 IEC 61131-3 FBDs

To unify the syntax and semantics of PLC programming languages, the Inter-
national Electrotechnical Committee (IEC) first published IEC 61131-3 in 1993,
with its latest version being published in 2013 [4]. The DNGS SDS1 trip com-
puter uses built-in IEC 61131-3 FBs as the basis of the formal software design.
The methodology outlined in [10,11], used as a basis for this paper, provides an
approach for formally verifying built-in IEC 61131-3 FBs. It also generalizes the
approach for verifying generic FBDs using tabular expressions (Sect. 2.1) and
PVS. Figure 3 presents an example FBD design (seeded with an error) for the
requirement described in Fig. 2, which is further discussed in Sect. 6.2.

2.3 PVS Grammar

The PVS specification language [9] is based on classical higher-order logic
equipped with dependent and subtyping mechanisms. PVS has a powerful inter-
active prover to perform sequent-style deductions. It is used in both academia
and industry to analyze formal software specifications. We rely on the syntax
and semantic mechanisms implemented in PVS to perform systematic design
verification on SDS1. To provide a formal translation to PVS, we select a subset
of the PVS grammar as a target language for FBD specifications.

4 The prefixes in this section refer to monitored variables (m ...), controlled variables
(c ...), enumerations (e ...), and constants (k ...).



210 J. Newell et al.

Fig. 3. FBD design for c PressParmTrip5

3 FBD Abstract Syntax

We propose an abstract mathematical model to represent various FBD compo-
nents. We consider FBDs as a named collection of variables and networks. In
practice, a FBD may consist of several networks used to specify the dataflow and
transitions between variables and internal FBs. We allow for negated statements
as well as feedback connections to support typical programming practices. In
addition, the variable set includes interface properties and a named instance for
each internal FB6.

Using basic mathematical constructs, we define recursive and terminal com-
ponents of a FBD. We use the following notations: “×” for Cartesian product,
“+” for disjoint union, “{}” for set, “〈〉” for sequence, “:” for type definition
and “→” for function. We begin by defining the following types: Iident is an
identifier type that has decidable equality; Kconn : type = {direct, feedback}
is an enumerated type for direct and feedback connections; Cclass : type =
{input, output, extern, local, wire} is an enumerated type containing five tokens
for FBD variable classification; and Iinit : type = Iident + ε is an initial value
that is either a value represented by an identifier or is empty.

Ffbd = Fident × Wvars × {Nntwk} (1)
Wvars = {Ddecl} (2)
Ddecl = Rvar + (Bident × Hident × {Rvar}) (3)
Rvar = Vident × Tident × Cclass × Iinit (4)

Nntwk = Nident × {Sstm} (5)
Sstm = Uvelm × Kconn × Uvelm (6)

Uvelm = Qsvar + Zneg (7)
Qsvar = Vident + (Bident × Pident) (8)
Zneg = Qsvar (9)

5 There are five internal FBs: subtraction (SUB), less than or equal to (LE), greater
than or equal to (GE), logical disjunction (OR) and logical conjunction (AND).

6 Concrete examples are available to assist the reader with the translation rules
(Sects. 3 and 4) at http://www.swi.com/research/NFM2016.



Formal Translation of IEC 61131-3 Function Block Diagrams to PVS 211

The abstract syntax is a recursive data structure, defined by Eqs. (1)–(9),
with an entry value of Ffbd. A Ffbd consists of an identifier accompanied by
a variable collection and a set of networks. The variable collection Wvars is
defined by a set of declarations; Ddecl is either a variable declaration or a block
declaration. A variable declaration Rvar consists of a variable identifier, a type
identifier, and a classification. The second variant of Ddecl is a block declaration
consisting of a block identifier and a block name, and a set of variable declarations
that describes the interface of the block. The variable names for the interface
are referred to as interface variable identifiers Pident. A network Nntwk contains
an identifer for the network and a set of statements. A statement consists of a
two variable elements and a connector. A variable element Uvelm consists of two
variants, Qsvar and Zneg. Zneg is a recursive reference to Qsvar and represents a
negated interface connection. Qsvar has two variants. The first represents a FBD
variable identifier and the second is a block identifier and an interface variable
identifier. Statements represent the connections between variables and blocks.

The graph models connections between FBD variables and FBs. Variable-
to-variable statements do not satisfy this condition. Representing block-to-block
statements is syntatic sugar. These statements are rewritten as block-to-variable
and a variable-to-block statements before producing the graph. The variable
introduced is refered to as an interconnector, which is necessary for the PVS
formalization. Lastly, the classification property for interface variables are exclu-
sively input or output values.

4 Graph Model

In this section we summarize our formalization technique using the abstract
syntax, previously defined, as input. We make use of an attribute map, and
labelled directed graph to represent interconnections in a FBD network. The
labels of the graph contain indices that are used to retrieve properties for blocks,
variables and connections from the attribute map. Given the abstract syntax,
we use Wvars and Nntwk to construct the attribute map and Nntwk to construct
the graph. We chose to use variable identifiers Iident to construct the indices.

4.1 Attribute Map

The attribute map is an associative structure that relates indicies to properties
for FBD variables and interface variables. It is created to separate attributes from
identifiers. The map is used in conjunction with the graph to retrieve properties
for nodes and edges in a FBD network.

Mmap = 〈(Iidf → Avarf ) + (Iidi → Avari)〉 (10)
Iidf = Vident (11)
Iidi = Bident × Pident (12)

Avarf = Tident × Vclass × Iinit (13)
Avari = Iident × Tident × Pclass (14)



212 J. Newell et al.

The attribute map, defined by Eqs. (10)–(14), is a sequence of functions from
indices to attributes as described by Mmap. The map has two possible function
variants. The first function is the mapping between the index of a FBD variable
to its attributes Avarf : FBD variable type, classification and initial value. The
second index is a block identifier and one of its interface variables. The second
function maps an index Iidi to the attributes Avari: block name, interface variable
type, and interface variable classication. For a given FBD network, a map is
defined to store each FBD, interface and interconnector variable.

4.2 Graph Model

A directed graph is mathematically defined as a pair of nodes N, and edges E.
Formally, a graph is defined by Eqs. (15) and (16). From the abstract syntax, we
construct a graph for each FBD network.

G = (N, E) (15)
E ⊆ N × N (16)

Lnode = Vident + Bident (17)
Ledge = Pident × B × B (18)

A labelled graph consists of a node and edge labelling function (i.e., lnode :
N → Lnode and ledge : E → Ledge) that is used to map nodes and edges with
their respective labels. We select labels, for the node and edge respectively, as
described by Eqs. (17) and (18). Lnode is either a variable identifier (i.e., Iident)
or a block identifier. Ledge contains an interface variable identifier, a boolean flag
identifying the edge as a feedback and a boolean flag identifying the negation of
a interface connection.

4.3 Block Groups

Given an attribute map and graph for a FBD network, we define an additional
data structure that reduces the complexity of our PVS translation by restructur-
ing the data to a format similar to the target expression. The block group data
structure, defined by Eqs. (19)–(22), is motivated by the PVS predicate expres-
sion for composite FBDs. In a composite FBD, the predicate for each internal
block consists of the internal block name and its associated arguments.

Block groups require two structures defined by Bio and Bgroup that depend
on the secondary structures Kblk and Iarg. Kblk consists of a block identifier
and block name. Iarg associates a FBD variable identifier to an interface vari-
able identifier, with boolean flags for feedback and negation. FB arguments are
ordered using the interface variable element index from an attribute map.



Formal Translation of IEC 61131-3 Function Block Diagrams to PVS 213

Kblk = Bident × Hident (19)
Iarg = Vident × Iident × B × B (20)
Bio = Kblk × Iarg (21)

Bgroup = Kblk × 〈Iarg〉 (22)
fio : Mmap → G → N → {Bio} (23)

fgroup : Mmap → {Bio} → 〈Bgroup〉 (24)

We present two functions that describe the process for constructing block
group values in Eqs. (23) and (24). These functions implement the logic to group
and order various elements. Function fio constructs Bio values from an attribute
map, graph and block node. The attribute map is required to retrieve properties
for nodes and edges in the graph. Values constructed from variable nodes are
not valid. Bio consists of granular inputs or outputs for a block. Function fgroup
constructs Bgroup values from a set of Bio values by extracting inputs or outputs
and grouping the block identifier and block name. The resulting Bgroup set is
ordered using Mmap, as are individual Iarg sequences.

5 PVS Translation

We summarize our contributions for translating our mathematical model to PVS
expressions. Based on [11], the resulting expression is a predicate with input and
output arguments existentially quantified over all its internal FBs.

5.1 Identifying Predicate Arguments

The graph maps interconnections between variables and blocks. From this rela-
tionship, we determine whether variables behave as inputs or outputs in a given
FBD network. It is possible the determination differs from the classification
property in the attribute map since the classification does not represent the use
of a variable in a given network. For example, if a local variable is set at the end
of network 1 and used as input in network 2, then it is consistent with its use
as an output of network 1 and an input of network 2. Thus, it is not sufficent to
rely on the classification value of local from the attribute map.

From graph theory, the degree of a node is the number of incident edges to
and from a node. Since the graph is directed, we are able to determine the input
degree (i.e., deg+) and output degree (i.e., deg−) of a node based on the position
of the node in the ordered product of an edge. To find input variables, the graph
is searched for all nodes that have an input degree of zero, and nodes that satisfy
the variable predicate Pvar (i.e., nodes that are FBD variables and not blocks).
This is precisely described by inference rule (25), which is implemented by our
translation process.

n : N Pvar(n) deg+(n) = 0
Pinput(n)

(25)



214 J. Newell et al.

∀(e : E) : ¬Pfback(e) n : N Pvar(n) deg−(n) = 0
Poutput(n)

(26)

An output variable is defined as a terminal node in a dataflow. If an output
variable is used as feedback in a FBD, then it will have an edge with a feedback
property set to TRUE, thus the output degree will be non-zero. These edges
represent inputs from the previous cycle and satisfy the predicate Pfback. To
correctly identify output variables, feedback edges are excluded, which causes
the output degree to become zero for terminal nodes. This is precisely described
by inference rule (26). Using rules (25) and (26) we construct the predicate
arguments and resolve the type for each using the attribute map. This informa-
tion also allows us to construct the expression used in the consistency theorem
from [11].

5.2 Identifying Existential Variables

The next step of the predicate formalization is the existential quantification of all
interconnections between internal blocks. The determination of interconnectors
is performed using a similar search predicate from inference rule (26). Feedback
edges are excluded to avoid identifying output variables as interconnectors. As a
result, the input and output degree of a node should not be zero (i.e., each node
has at least one input and one output). This is precisely described by inference
rule (27), which is implemented by our translation process.

∀(e : E) : ¬Pfback(e) n : N Pvar(n) deg−(n) �= 0 deg+(n) �= 0
Pinternal(n)

(27)

Using rule (27), we construct the existential quantification over all internal
blocks using the attribute map to resolve types. This is the initial component
necessary to specify the predicate expression for a composite FBD.

5.3 Function Block Composition

The last step of the composite FBD formalization is a PVS expression consisting
of all internal FBs composed by logical conjunction. To define this, we consider
several functional structures interpreted with PVS syntactic types.

A fold is a higher order function that takes a binary function as input to
reduce a recursive data structure to a terminal value. We define a function fexpr
in Eq. (28) that translates a block grouping (i.e., Bgroup) to a PVS application
expression7. Considering fgroup, an ordered list of Expr elements is produced
using the function defined by the function fexprl from Eq. (29).

7 The application expression consists of the block name applied with ordered argu-
ments. An example of a PVS application expression is MOVE(input, output) where
MOVE is the block name, and input and output are the arguments.



Formal Translation of IEC 61131-3 Function Block Diagrams to PVS 215

fexpr : Bgroup → Expr (28)
fexprl = map(fexpr, fgroup) (29)
Mexpr = (Expr, fand) (30)

fand : Expr → Expr → Expr (31)
fpexpr = fold(fand, fexprl) (32)

To specify a binary function for the fold, we define a monoid in Eq. (30), with
a signature defined in Eq. (31). The definition of fand constructs an “Expr AND
Expr” value from the two Expr inputs. Each Expr input is a PVS application
expression for a given composite block. Using the ordered list of Expr elements,
and the binary function from the monoid Mexpr, the completed conjunctive
expression is defined by the function fpexpr in Eq. (32).

6 Nuclear Industry Case Study

The DNGS SDS1 TCs monitor a diverse set of nuclear and secondary parameters
that cover all critical design basis accident scenarios. In the case of anomalous
behavior, the TCs respond via control logic to signal a reactor trip. Signals
from three redundant SDS1 TCs are connected to 2-out-of-3 voting logic that
ultimately initiates a reactor trip8. The SDS1 TC software requirements are for-
malized using TEs and the software is designed using FBDs. First, we present a
simplified example of verifying a parameter trip requirement. Second, we demon-
strate the application of our formal translation rules and discuss the verification
results from applying PVS.

6.1 Parameter Trip Setpoint Requirements

In this example, we consider the requirements of a generalized parameter trip.
The special safety system is designed to provide coverage of a pressure input
m Pressure. The TE (Fig. 2, Sect. 2.1) specifies that c PressParmTrip generates
a trip response, if the pressure input (m Pressure) is above or equal to the
setpoint (k PressSP). It will not generate a trip response, if the pressure input
is below or equal to the setpoint minus the deadband value. The deadband
value is assumed to be positive (or else the tabular expression is ill-formed), and
much smaller in value than the absolute value of the setpoint (or else it affects
behaviour rather than simply reducing noise). The value of c PressParmTrip
does not change at all if the pressure input is in the deadband region. Note
that, since the function value may be left unchanged, an initial value must be
provided. In keeping with the safety priority of the system, the initial value in
this case would be e tripped.

8 SDS2 uses diverse technologies to cause a reactor trip if SDS1 were to fail.



216 J. Newell et al.

6.2 Design and Formal Translation

An example design (Fig. 3, Sect. 2.2) uses several built-in IEC 61131-3 FBs to
specify the functional behaviour and uses a feedback connection for the hys-
teresis effect. It is important to note that the target PLC treats “de-energised”
(“FALSE” = 0) as the safe state, therefore c PressParmTrip = FALSE is equiv-
alent to c PressParmTrip = e tripped.

For this example, we use the prototype translator to demonstrate our transla-
tion rules. Mapping this diagram to an abstract syntax is performed by preparing
an ASCII input file and using a simple parser. We have implemented a function
to modify block-to-block connections by introducing an additional “wire” vari-
able. These variables are added to an attribute map and are used in the labels
of a graph, as illustrated in Fig. 4.

Fig. 4. Labelled directed graph for c PressParmTrip

The translation rules are further applied and the resulting PVS code is illus-
trated in Fig. 5. Using the input and output identification rules from Eqs. (25)
and (26), inputs and outputs of the graph in Fig. 4 are respectively: k PressSP,
k DeadBand, m Pressure, and c PressParmTrip. The existential identification
rule from Eq. (27) yields the internal variables: wire 0, wire 1, wire 2, and wire 4.
Lastly, the conjunction of internal blocks SUB, GE, LE, OR9 and AND com-
pletes the expression as shown10.

6.3 Verification

CE-1001-STD [7] specifies a set of complementary and overlapping verification
processes, one of them being systematic design verification (SDV). The objec-
tive of SDV is to verify that all functions in the design are equivalent to their
9 The underscore (... ) is used for generated names that conflict with PVS keywords.

10 The FBD is formalized over a discrete time series of equally distributed samplings,
i.e., ticks. The pre operator returns the previous time sample.



Formal Translation of IEC 61131-3 Function Block Diagrams to PVS 217

Fig. 5. Generated PVS for c PressParmTrip

corresponding functions in the requirements using mathematical techniques or
rigorous argument. SDV uses a specialization of the four variable model [12] to
confirm the satisfaction of Eq. (33).

OUT ◦ SOF ◦ IN 	 REQ (33)

For the purposes of our example, REQ is the TE from Fig. 2 plus other
supporting information (not shown) that defines the monitored and controlled
variables, the constants, and the enumerated types. SOF is the FBD from Fig. 3
plus other supporting information (not shown) that defines the input and output
variables and constants used. IN and OUT are functions that translate moni-
tored variables to input variables and output variables to controlled variables,
respectively (an example of such a translation for c PressParmTrip is shown
in Sect. 6.2). Our verification was performed in PVS using cond expressions to
specify the requirements [18]. We then created a PVS specification containing a
theorem in the form of Eq. (33). By running PVS, we discovered an unprovable



218 J. Newell et al.

sequent that prevented us from discharging the proof. Upon investigation, we
recognize the design failed to add a negation to the first input of the AND
block. This is a clear demonstration of how formal verification detects subtle
design flaws that could potentially result in unintended behaviour.

The application of the approach11 for SDV on the DNGS SDS1 TC replace-
ment project helped identify design pattern inconsistencies that led to an
improved FBD-based design approach, uncovered inconsistencies in TEs that
led to a more precise requirements specification, and identified an omitted con-
version in the FBD for performing an average power calculation. PVS was used to
verify all FBDs in the design, which accounted for 80 % of the overall SDV effort.
Our approach was used to automatically discharge 70 % of the proof obligations.
The most complicated FBD, a module with 20 FBs and 39 variables, and mod-
ules with real-time properties, required user interaction with PVS to discharge
the proof.

7 Related Work

IEC 61131-3 provides definitions for five PLC languages12 and various research
work has produced formalization and verification of PLC programs. In terms of
the formal verification of PLC programs written in these languages, there are
typically two main approaches to prove or disprove the correctness of a design
with respect to a certain formal requirements specification or required property:
model checking and theorem proving.

In the case of model checking, [8] provides the formal verification of a safety
procedure in a nuclear power plant (NPP) in which a verified Coloured Petri
Net (CPN) model is derived by reinterpretation from the FBD description. [15]
transforms FBD descriptions to its logically equivalent Uppaal models that per-
form the verification of safety applications in the industrial automation domain.
[5] translates ST and FBD into a synchronized data-flow language SIGNAL to
compile and reason about the verification of specifications. In the case of theorem
proving, [3] uses Coq to check the correctness of SFC programs, which is auto-
matically generated from a graphical front-end. [16] formalizes PLC programs
using higher-order logic and uses HOL to discharge safety properties. Also, [14]
presents an algebraic approach to verify PLC programs.

In the case of model checking, there is difficulty scaling up to industrial-size
applications. In theorem proving, complex formalisms can be handled, but the
process of proofs is not fully automated and adds additional overhead to indus-
trial scale applications. Thus, the strengths and weaknesses for model checking
and theorem proving are complementary. To balance this issue, our technique
has been successfully used in an on-going nuclear industrial application, and it is

11 The approach was qualified using a combination of trial use, inspection and accep-
tance testing.

12 Function block diagram (FBD), structured text (ST), instruction list (IL), ladder
diagram (LD) and sequential function chart (SFC).



Formal Translation of IEC 61131-3 Function Block Diagrams to PVS 219

novel in that: (1) we translate a FBD design to a formal PVS model; and (2) the
resulting PVS model can be verified against TE-based requirements input to
PVS.

8 Conclusion and Future Work

In this paper, we have extended the work presented in [10] with an industrial-
scaled methodology for the systematic translation of FBD designs compliant
with IEC 61131-3 into the PVS formal specification language. The approach
was developed for OPG and is in current use as part of the verification of the
DNGS SDS1 TCs. In combination with PVS, this work has proven effective in
uncovering subtle inconsistencies in applying design patterns, inconsistencies in
the requirements documented using TEs, and non-conformance between a FBD
design and its requirements.

As on-going and future work, we first aim to improve our translation rules
using PVS to provide more precision for potential tool designers. Secondly, we
are currently formalizing proof scripts to increase the level of automation, which
has potential application in other industrial domains, e.g., aerospace. Lastly,
we plan to extend our formalization technique to other IEC 61131-3 compliant
programming languages, e.g., Structured Text (ST).

Acknowledgements. We would like to thank OPG for their permitting us to describe
the work related to the DNGS TC replacement project. The methodology and tools
described herein are the property of OPG. Particularly we thank Ivan Dimitrov, Section
Manager, Safety Related Computers, Computers and Control Design, and Mike Viola,
SDS Replacement Project Manager, for their valued oversight and assistance. We would
also like to thank Lucian Patcas for his thorough review.

References

1. IEEE 7–4.3.2: Standard for Digital Computers in Safety Systems of Nuclear Power
Generating Stations (Revision of IEEE Std 7–4.3.2-2003). The Institute of Electri-
cal and Electronics Engineers (IEEE) (2010)

2. DO-178C: Software Considerations in Airborne Systems and Equipment Certifica-
tion. Special Committee 205 of RTCA (2011)

3. Blech, J.O., Biha, S.O.: On formal reasoning on the semantics of PLC using Coq.
CoRR abs/1301.3047 (2013)

4. IEC: 61131–3 Ed. 3.0 en: 2013: Programmable Controllers – Part 3: Programming
Languages. International Electrotechnical Commission (2013)

5. Jimenez-Fraustro, F., Rutten, E.: A synchronous model of IEC 61131 PLC lan-
guages in SIGNAL. In: Euromicro Conference On Real-Time Systems, pp. 135–142
(2001)

6. Jin, Y., Parnas, D.L.: Defining the meaning of tabular mathematical expressions.
Sci. Comput. Program. 75(11), 980–1000 (2010)



220 J. Newell et al.

7. Joannou, P., Harauz, J., Viola, M., Cirjanic, R., Chan, D., Whittall, R., Tremaine,
D., Moum, G.: Standard for Software Engineering of Safety Critical Software.
CANDU Computer Systems Engineering Centre of Excellence Standard CE-1001-
STD Rev. 3 (2014)

8. Németh, E., Bartha, T.: Formal verification of safety functions by reinterpretation
of functional block based specifications. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 199–214. Springer, Heidelberg (2009)

9. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

10. Pang, L.: An Engineering Methodology for the Formal Verification of Function
Block Based Systems. Ph.D. thesis. McMaster University, Department of Comput-
ing and Software (2015)

11. Pang, L., Wang, C., Lawford, M., Wassyng, A.: Formal verification of function
blocks applied to IEC 61131–3. Sci. Comput. Program. 113, 149–190 (2015)

12. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput.
Program. 25(1), 41–61 (1995)

13. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Trans. Software Eng. 20, 948–976 (1994)

14. Roussel, J.M., Faure, J.: An algebraic approach for PLC programs verification. In:
6th International Workshop on Discrete Event Systems, pp. 303–308 (2002)

15. Soliman, D., Thramboulidis, K., Frey, G.: Transformation of function block dia-
grams to Uppaal timed automata for the verification of safety applications. Annu.
Rev. Control 36, 338–345 (2012)

16. Völker, N., Krämer, B.J.: Automated verification of function block-based industrial
control systems. Sci. Comput. Program. 42(1), 101–113 (2002)

17. Wassyng, A., Janicki, R.: Tabular expressions in software engineering. In: Interna-
tional Conference on Software & System Engineering and their Applications, vol.
4, pp. 1–46 (2003)

18. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of
formal methods in an industrial project. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003)


