
Safety Case Impact Assessment in Automotive
Software Systems: An Improved

Model-Based Approach

Sahar Kokaly1(B), Rick Salay2, Marsha Chechik2, Mark Lawford1,
and Tom Maibaum1

1 McMaster Centre for Software Certification,
McMaster University, Hamilton, Canada

{kokalys,lawford,maibaum}@mcmaster.ca
2 Department of Computer Science, University of Toronto, Toronto, Canada

{rsalay,chechik}@cs.toronto.edu

Abstract. Like most systems, automotive software systems evolve due
to many reasons including adding, removing or modifying features, fixing
bugs, or improving system quality. In this context, safety cases, used to
demonstrate that a system satisfies predefined safety requirements, often
dictated by a standard such as ISO 26262, need to co-evolve. A neces-
sary step is performing an impact assessment to identify how changes
in the system affect the safety case. In previous work, we introduced a
generic model-based impact assessment approach, that, while sound, was
not particularly precise. In this work, we show how exploiting knowledge
about system changes, the particular safety case language, and the stan-
dard can increase the precision of the impact assessment, reducing any
unnecessary revision work required by a safety engineer. We present six
precision improvement techniques illustrated on a GSN safety case used
with ISO 26262.

1 Introduction

Safety engineers in various domains, including automotive, experience difficul-
ties with safety case maintenance. As stated in [11], the main reason for this is
that they do not have a systematic approach by which to examine the impact
of change on a safety argument. The authors of [2] performed a study which
suggested that engineers spend 50–100 h on Change Impact Assessment (CIA)
per year on average. The second most commonly mentioned CIA challenge is
related to information overload. The three most senior engineers in the study
reported that obtaining a system understanding is hard due to the complexity
of the systems. The sheer number of software artifacts involved makes traceabil-
ity information highly complex. Based on the results of [2], determining how a
change impacts the product source code seems to be less of a challenge than
determining impact on non-code artifacts, e.g., requirements, specifications, and
test cases. In [14,17], the authors further discuss the problem of CIA being a
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challenge in safety-critical systems. Specifically, Leveson [14] mentions that inad-
equate CIA has been among the causes of accidents in the past. Thus, the current
state of practice can clearly benefit from improved CIA techniques, especially to
help perform safety assurance more cost-effectively.

In this paper, we build on our earlier work [13] which proposed using a
model-based approach to perform impact assessment on an assurance case due
to system changes. Our technique is applicable to assurance cases in general and
ensures soundness, i.e., it does not miss any elements that are impacted. Yet,
the approach is conservative. i.e., it can flag elements as impacted when they are
not, resulting in “false positives”. Using knowledge about the system models,
the safety case language and the standard under consideration, the precision of
our approach can be improved, thus reducing unnecessary effort by the safety
engineer. The contributions of this paper are as follows: (1) we provide a model-
based approach for impact assessment on GSN safety cases used with ISO 26262,
and (2) we identify and describe six techniques for improving the precision of
the impact assessment approach.

The rest of the paper is organized as follows: Sect. 2 introduces the power
sliding door system used as a running example in the paper. Section 3 presents
background material on ISO 26262. Section 4 describes how our model-based
approach can be used for GSN safety cases linked to ISO 26262. Section 5 presents
the techniques that can be used to improve the precision of our model-based
impact assessment approach. Section 6 discusses related work, and Sect. 7 sum-
marizes the paper and outlines problems for future work.

2 Running Example: Power Sliding Door (PSD) System

Consider an automotive subsystem that controls the behavior of a power sliding
door in a car. The system has an Actuator that is triggered on demand by a
Driver Switch. This example is presented in Part 10 of ISO 26262 [8]. Figure 1
shows the system models comprised of a Class Diagram (to model structure), a
Sequence Diagram (to model behavior) and a relationship between them. This
can be visualized at a high-level as the megamodel [16] in Fig. 4a, which includes
other parts of the system such as results of model checking and testing. In
practice, the system megamodel could include other system models, e.g., SysML
representations, FMEA and FTA results.

The Driver Switch input is read by a dedicated Electronic Control Unit
(ECU), referred to as AC ECU which powers the Actuator through a dedicated
power line. The vehicle equipped with the item is also fitted with a control unit
able to provide the vehicle speed, referred to as VS ECU. The system includes a
safety element, namely, a Redundant Switch. Including this element ensures a
higher level of integrity for the overall system.

The VS ECU provides the AC ECU with the vehicle speed. The AC ECU monitors
the driver’s requests, tests if the vehicle speed is less than or equal to 15 km/h,
and if so, commands the Actuator. Thus, the sliding door can only be opened or
closed if the vehicle speed is not higher than 15 km/h. The Redundant Switch is
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Fig. 1. Power sliding door class diagram-sequence diagram.

located on the power line between the AC ECU and the Actuator as a secondary
safety control. It switches on if the speed is less than or equal to 15 km/h, and off
whenever the speed is greater than 15 km/h. It does this regardless of the state
of the power line (its power supply is independent). The Actuator operates only
when it is powered.

Suppose that the PSD system changes such that the redundant switch is
removed. In the new system, only the AC ECU checks the vehicle speed before
commanding Actuator. Given a safety case for the original system (refer to
Fig. 7 ignoring the annotations1), it is desirable to reuse as much as possible of
its content in structuring a new safety case. An important prerequisite for this

1 Note that the ASIL assignments are given in the example in Part 10 of ISO 262626,
and we selected assignments for requirements B2 and B4 based on the possible ASIL
C decompositions for redundancy as shown in Fig. 2 – ASIL decomposition schemes,
in Part 9 of the standard.
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is performing an assessment to identify the impact of the changes made in the
system on the safety case components.

3 Background: ISO 26262

ISO 26262 is a standard that regulates functional safety of road vehicles. It
recommends conducting a Hazard Analysis to identify and categorize hazardous
events in the system and to specify safety goals and integrity levels related to
the mitigation of the associated hazards. The standard has 10 parts, and we
focus on one of them, “Product Development at the Software Level” (Part 6),
and refer to Part 9 which explains Automotive Safety Integrity Levels (ASILs).

ASIL Allocation and Propagation. An ASIL refers to an abstract classifica-
tion of inherent safety risk in an automotive system or elements of such a system.
ASIL classifications are used within ISO 26262 to express the level of risk reduc-
tion required to prevent a specific hazard, with ASIL D representing the highest
and ASIL A the lowest. If an element is assigned QM (Quality Management),
it does not require safety management. The ASIL assessed for a given hazard is
then assigned to the safety goal set to address that hazard and is then inherited
by the safety requirements derived from that goal following ASIL propagation
rules. The higher the ASIL, the more rigorous the application of ISO 26262 has
to be. i.e., the more requirements need to be fulfilled.

ASIL Decomposition. The method of ASIL tailoring during the design process
is called “ASIL decomposition”. When allocating ASILs, benefit can be obtained
from architectural decisions, including the existence of sufficiently independent
architectural elements (as in the redundancy in the original PSD system). This
offers the opportunity to implement safety requirements redundantly by these
independent architectural elements, and to assign a potentially lower ASIL to
these decomposed safety requirements2.

Furthermore, ISO 26262 requires the production of over 100 work products,
achieved via various requirements and methods used in the different phases of
software development. For example, Sect. 9 of Part 6 of ISO 26262 discusses Soft-
ware Unit Testing, and Sect. 9.5 outlines the required work products for it. One

Fig. 2. Methods for software unit testing - ISO 26262 Part 6 (cropped for space).

2 Refer to Fig. 2 in Part 9 of the standard for ASIL decomposition schemes.
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of these work products is 9.5.1: Software Verification Plan which results from
requirements 9.4.2–9.4.6 in the same section. Consider one of these requirements,
9.4.3, which describes which software testing methods can be used. These meth-
ods clearly link to ASILs. Specifically, Fig. 2, lists various methods for software
unit testing and how they relate to the four ASILs. The degree of recommenda-
tion to use the corresponding method depends on the ASIL and is categorized as
follows: “++” indicates that the method is highly recommended for the identified
ASIL (we interpret this as “required”), “+” – that the method is recommended
for the identified ASIL, and “o” – that the method has no recommendation for
or against its usage for the identified ASIL. For example, methods 1a, 1b, 1e
in Fig. 2 are required for unit testing for ASIL C. An increased ASIL D, now
requires methods 1c and 1d which were only recommended for ASIL C.

4 GSN Safety Case Impact Assessment

In this section, we present our generic safety case impact assessment app-
roach [13] specifically instantiated for GSN Safety Cases [10]. First, we define
the GSN metamodel and the result of the impact assessment algorithm. Then,
we describe the algorithm, which we name GSN-IA (GSN Impact Assessment),
and the supporting model transformations. We have shown our algorithm to be
sound [4] but do not replicate the argument due to space restrictions.

4.1 GSN and Annotation Models

Figure 3 gives a fragment of the GSN metamodel extended with state informa-
tion. A Goal has a truth state and in this paper we assume that the truth state
is two-valued truth (true, false) and that every goal represents a claim about
the system for which the truth can be determined (e.g., claim expressed as a
temporal logic statement). Thus, for the time being, we preclude more fine-
grained measures of truth (e.g., degrees of confidence) and goals that have fuzzy
truth conditions, and leave as future work. A Solution represents some kind
of evidence about the system and has a validity state that indicates whether
the evidence is applicable or it is “stale” and must be regenerated (e.g., old
test results). A Strategy is used to decompose goals (conclusions) into subgoals
(premises), and its validity state indicates whether the strategy is a valid one
for connecting its premise goals to its conclusion. Finally, a Context element
describes assumptions on the elements it connects to, and also has a validity
state.

We consider two ways that a change to the system can impact the elements of
the safety case: (1) revise – the content of the element may have to be revised
because it referred to a system element that has changed and the semantics of the
content may have changed, and (2) recheck – the state of the element must be
rechecked because it may have changed. For example, the goal “The power sliding
door opens when the function DriverSwitch.RequestDoorOpen() is invoked and
the vehicle speed is not greater than 15 km/h.” (see the class diagram in Fig. 1)
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Fig. 3. Fragment of GSN metamodel
extended with validity states.

Fig. 4. PSD system megamodel and
annotation metamodel.

must be revised if the function name is changed to CommandDoorOpen() since the
goal now refers to an element that does not exist. However, if some aspect of
the system that affects door opening functionality changes, then the goal must
be rechecked because it may no longer hold. We assume that after a revision,
a recheck must take place; thus, at most one of these impacts can apply to an
element. If an element is not impacted by a system change we say that it can be
reused and mark it as reuse.

The purpose of executing our impact assessment algorithm, GSN-IA, on a
safety case is to determine the impact type for each safety case element and to
“mark” the element accordingly. This marking is stored in a simple annotation
model with the metamodel shown in Fig. 4b. Thus, an annotation model consists
of an Annotation element for each GSN element that contains the marking as
its Status attribute.

4.2 GSN-IA: GSN Impact Assessment Algorithm

Figure 5 shows the GSN-IA algorithm both in pseudocode and diagrammatically.
The input to GSN-IA is the initial system model S and a safety case A connected
by a traceability mapping R, the changed system S′ and the delta D recording
the changes between S and S′. Specifically, D is the triple 〈C0a,C0d,C0m〉
where of C0a is the set of elements added in S′, C0d is the set of elements
deleted from S and C0m is the set of modified elements that appear in both S
and S′. These are shown in the top part of the diagram. GSN-IA is parameterized
by the model slicer SliceSys used to determine how change impact propagates
within the system model – that is, we consider this slicer to be given as an input
to GSN-IA. Note that our approach readily applies not only to singleton models
but also to more realistic cases where the system is described by a heterogeneous
collection of related models as a megamodel. We have defined a sound slicing
approach for this case [16]. The output of GSN-IA is the model K that annotates
A to indicate which elements are marked for revise, recheck or reuse.
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GSN-IA uses several model transformations described below. In line 1, the
Restrict transformation extracts the subset R′

A of traceability links from R
that are also valid for S′. Lines 2 and 3 use the model slicer SliceSys to expand
the combined (using Union) set of changed elements in S and S′, respectively, to
all elements potentially impacted by the change. Then, in line 4, these potentially
impacted elements are traced to A across the traceability relationships using the
Trace transformation and combined to identify the subset of elements in A that
must be rechecked. The subset of safety case elements for revision is identified
in line 5 by tracing the deleted and modified elements of S to A. Note that
the elements of A marked revise is a subset of those marked recheck. Only
those that are directly traceable to changed elements of S may require revision;
others only need to be rechecked. In lines 6 and 7, the appropriate GSN slicer
SliceGSNV

(SliceGSNR
) is invoked to propagate each of the revise (recheck)

subsets to dependent elements in A which are added to the recheck subset.
Finally, line 8 invokes CreateAnnotation to construct the annotation model K
from the identified subsets of A. The elements of the subset C2revise are marked
revise; the remaining elements in the subset C3recheck2 are marked recheck,
and all other elements are marked reuse.

Fig. 5. Algorithm for assessing impact of system changes on a GSN safety case.

Our SliceGSNV
slicer uses the dependency rules in Table 1 adapted from

the set of propagation rules described in [11] to identify elements to be marked
for rechecking. For example, GSN1.1 says that all goals and strategies linked to a
goal G on either end of the IsSupportedBy relation are dependent on G (and
are therefore marked “recheck”), if G is marked for revision. On the other hand,
SliceGSNR

only uses two dependency rules to identify elements to be marked
for rechecking: (1) Conclusion goals depend on premise goals they are indirectly
linked to by the same strategy, and (2) Goals depend on solutions they are linked
to by the IsSolvedBy relation.
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Fig. 6. Visualization of GSN-IA algorithm.

Table 1. SliceGSNV dependency rules.

Rule Element Dependent Element(s)

GSN1 Goal G 1. All goals/strategies linked to G on either end of the
IsSupportedBy relation.

2. All solutions linked to G via the IsSolvedBy relation

GSN2 Strategy S All goals linked to S on either end of the IsSupportedBy

relation

GSN3 Context C 1. All goals, strategies and solutions A that introduce C as
the context via the InContextOf relation

2. All goals, strategies and solutions that inherit C as the
context (i.e., all children of A)

GSN4 Solution S All goals related to S via the IsSolvedBy relation

While SliceGSNV
only performs a one-step slice to find the revised elements’

direct dependencies, SliceGSNR
works by continuously expanding a subset of

elements in a GSN model to include its dependent elements until no further
expansion is possible.

4.3 Illustration: Power Sliding Door Example

In our PSD example, the change in the system is the removal of the redundant
switch, so the delta D is 〈∅, (RedundantSwitch), ∅〉. The change directly affects
goals B3-6 shown in Fig. 7, which refer to the Redundant Switch, and are there-
fore marked as revise by GSN-IA. The change also affects solutions SN3-6 which
would include information about the Redundant Switch. Goal B2 refers to the
AC ECU which is traced to the Redundant Switch in the PSD Class Diagram.
SliceSys would have detected that; therefore, B2 is marked recheck. Goal B1
does not link to any system components, so it does not appear in the result
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Fig. 7. An annotated GSN safety case for PSD system after running GSN-IA.

of SliceSys, and is therefore marked reuse. The remaining parts of the safety
case elements are not traced directly to elements in the delta, but get marked
using SliceGSNV

and SliceGSNR
described earlier. The result of GSN-IA is the

annotation given on top of the original safety case and shown in Fig. 7.

5 A More Precise Impact Assessment

The algorithm GSN-IA, presented in in Sect. 4, is conservative, i.e., more ele-
ments are marked recheck and revise than potentially necessary to still be
sound. In this section, we present six different techniques, T1-T6, aimed to
improve the precision of GSN-IA. Together, they form a variant of GSN-IA,
called GSN-IA-i (improved). The improvements in assigning annotation can be
both at the level of safety case elements (goals, strategies, contexts and solu-
tions), or finer, at the level of element identifiers. In order to validate GSN-IA-i,
we use a metric CostIA to compute the cost associated with revision and recheck-
ing after impact assessment. The equation for CostIA is shown in Fig. 8. For
each technique, we describe the current state of GSN-IA, show how to improve
the precision in each case (GSN-IA + Ti), present the prerequisites to ensure its
soundness, and illustrate it on the PSD example. The techniques are summarized
in Table 2.
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CostIA = CostRevise + CostRecheck

= (CostGV + CostCV + CostSolV + CostStrV ) + (CostGR + CostCR + CostSolR + CostStrR)

= (
∑

g∈GV

KV (1 + n(g)) +
∑

c∈CV

KV (1 + n(c)) +
∑

s∈SolV

KV +
∑

s∈StrV

KV )+

(
∑

g∈GR

KR +
∑

c∈CR

KR +
∑

s∈SolR

KR +
∑

s∈StrR

KR)

= KV (
∑

g∈GV

(1 + n(g)) +
∑

c∈CV

(1 + n(c)) + |SolV | + |StrV |) + KR(|GR| + |CR| + |SolR| + |StrR|)

= KV (
∑

g∈GV

(1 + n(g)) +
∑

c∈CV

(1 + n(c)) + |SolV | + |StrV |) + KR(|ER|), where:

• CostRevise (CostRecheck): Cost of all revisions (rechecks).
• EV (ER): Number of total elements marked for revision (rechecking).
• GV (GR): Number of goals marked revise (recheck).
• CV (CR): Number of contexts marked revise (recheck).
• StrV (StrR): Number of strategies marked revise (recheck).
• SolV (SolR): Number of solutions marked for revise (recheck).
• n(x): Number of identifiers in x marked for revise.
• KV (KR): Cost of performing a revision (a recheck).

Fig. 8. Cost equation for effort incurred after an impact assessment.

Table 2. GSN-IA + Ti techniques and improvements.

Technique 1 2 3–6

Improvement n(g) ↓, n(c) ↓ |GV | ↓, |CV | ↓ |ER| ↓

5.1 T1: Increasing the Granularity of Traceability Between
the System and the Safety Case

GSN-IA: Trace links between the system and safety case provided to GSN-IA
are assumed to link entire safety case elements to system elements. That is, if a
change occurs in any of the linked system elements, the entire safety case element
is marked for revision.

GSN-IA+T1: Trace links between the system and safety case connect identi-
fiers in safety case elements to corresponding system elements. Annotations are
then assigned to safety case element identifiers rather than to entire elements.

Improvement: With more fine-grained trace links, GSN-IA+ T1 can identify
which specific identifiers in a safety case element should be marked for revision,
allowing the safety engineer to focus on revising only those parts instead of
the entire element. This in turn decreases the number of unnecessary identifier
revisions, i.e., n(g) and n(c), since only goals and context nodes are assumed to
have identifiers traceable to the system, thus decreasing the overall cost.

Prerequisites: A safety case language that clearly distinguishes identifiers from
other text, ensuring that the finer-grained trace links cover at least all the orig-
inally covered links in order to preserve soundness of the technique.
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Example: In the PSD system, the goal B3 “The VS ECU sends accurate vehicle
speed information to the Redundant Switch” can be traced to both VS ECU and
Redundant Switch components. Currently, when either VS ECU or Redundant
Switch changes, GSN-IA marks the entire goal revise. A more fine-grained
traceability would link the identifier “VS ECU” to VS ECU in the system and
the identifier “Redundant Switch” to the Redundant Switch in the system. Now,
if Redundant Switch changes in the system but VS ECU does not, then only the
identifier “Redundant Switch” in goal B3 needs to be marked for revision, while
the rest of the goal can be reused.

Discussion: Traceability between the system and its safety case can be estab-
lished at different levels of granularity. Formal safety case languages have clearly
defined identifiers, thus they can easily be traced to the appropriate system ele-
ments. For example, the author of [12] defines a six-step approach for creating
well-formed GSN goal structures that in turn aid in a finer-grained system trace-
ability. For languages that only use natural language to describe goals, this fine
grained traceability may not be feasible.

5.2 T2: Identifying Sensitivity of Safety Case to System Changes

GSN-IA: Any change to a system element will cause its associated element in
the safety case to be marked for revision.

GSN-IA+T2: We mark the safety case element for revision only if it is required
by the type of system change.

Improvement: Unnecessary revisions of safety case element are minimized by
identifying cases where a system change should actually impact the element, and
where it can be ignored. This in turn decreases the number of goal (|GV |) and
context (|CV |) elements marked for revision, decreasing the overall cost.

Prerequisites: For each model type in the system megamodel, a sensitivity
table that lists all element types of that model and the kinds of changes that
they can undergo, and, for each trace link between the system and the safety
case, the type of change the link is sensitive to. We assume that the types of
changes that occur as part of the system evolution are captured with each of
the corresponding changes in the Delta we are provided. Since the assignment
of sensitivity to change is performed by the domain expert, we require these
assignments to be correct to preservation of soundness.

Example: In the PSD System, the class Door in the Class Diagram model
has an attribute state, which is an enumeration with possible values open and
closed. Assume a goal such as “If the door state is open and the speed is greater
than 15 km/h, the driver is notified.”. Currently, if we add a new option to the
door state (e.g., “stuck”), that is considered a change in the door state, which
marks the goal for revision. However, such a change (an attribute enumeration
extension) should not impact the goal which is only concerned with the door
state being open. If we do not add that type of change in the sensitivity list of
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that particular trace link between system and goal, we are able to ignore it and
allow the goal to be reused.

Discussion: In the example above, if the goal had been “If the door state is not
closed and the speed is greater than 15 km/h, the driver is notified.”, then the
change should have impacted this goal, as “stuck” is considered “not closed”.
We assume that goals are structured in a way that specific states are identified;
if they are not, T2 cannot be used. Interestingly, in such a case, the goal would
have to be marked revise, which may allow detecting missing test cases or other
evidence for the “stuck” state.

5.3 T3: Understanding Semantics of Strategies

GST-IA: Any truth valuation change of the premise goals of a strategy lead to
rechecking the conclusion goal.

GSN-IA+T3: Here, we use semantic knowledge, i.e., which changes in truth
values of the premises do not affect the truth value of the conclusion.

Improvement: We limit the unnecessary propagation of recheck annotations
across the safety case, thus |ER| decreases, causing the overall cost to decrease.

Prerequisites: Semantics of the strategies connecting premise and conclusion
goals. This applies to a fixed set of known strategies and not to strategies
expressed in natural language. Soundness is preserved since we are using sound
semantics of logical connectives to make decisions.

Example: Assume in the PSD system that SG1 was connected to its subgoals
B1-B6 via an “OR” decomposition strategy (as opposed to an “AND”). Also
assume that currently all of B1-B6 have true states. This means that SG1 is also
evaluated to true. If the system changes so that B5-B6 are marked recheck, we
don’t need to mark SG1 recheck since, due to disjunction, it must still be true.

Discussion: Marking a premise of an “OR” strategy recheck (while other
premises are marked reuse) can impact the overall confidence in the argument,
as the premise can become false after the recheck is performed. We do not take
confidence into account at this point and consider it future work.

5.4 T4: Decoupling Revision from Rechecking

GSN-IA: Forces a recheck every time an element is marked revise.

GSN-IA+T4: By knowing circumstances under which revising a goal will not
impact its truth value, we require a recheck after a revision only when necessary.

Improvement: Eliminating unnecessary rechecks after revisions leads to possi-
bly decreasing |ER| and, therefore, the overall cost.

Prerequisites: An extra column in the sensitivity table described in T2 that
lists if a particular type of change affects the truth value of a goal. We require
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correctness of assignments of changes to their effect on goal truth values as well
as completeness of trace links to ensure soundness of the approach.

Example: In the PSD system, changing the name of a system element such
that it does not conflict with other names (e.g., Redundant Switch is renamed
to Extra Switch) will cause the goals referring to that element (e.g., goal B3)
to be marked for revision. However, since changing the name does not impact
the truth state of the goal, rechecking can be skipped. Other examples include
capitalization of names, spelling corrections or language translations, such that
the renaming is done consistently in both the system and the safety case.

5.5 T5: Strengthened Solutions Do Not Impact Associated Goals

GSN-IA: If a piece of evidence that a solution points to changes, the goal
supported by that solution is always marked recheck.

GSN-IA+T5: A change to a solution that strengthens it should not affect its
support for associated goals.

Improvement: Understanding which changes in solutions do not necessitate a
rechecking of associated goals can reduce the unnecessary goal rechecks. Thus,
|ER| decreases causing the overall cost to decrease.

Prerequisites: A sensitivity table (similar to T2) that identifies, for each type of
evidence, the types of changes it can undergo, and for each “isSupportedBy” link
between a solution node pointing to this kind of evidence and a goal, whether or
not it is sensitive to each kind of change. Assignments of changes to their effect
on goal truth values need to be correct to guarantee soundness.

Example: Assume that B1 was “The VS ECU sends accurate vehicle speed
information to the AC ECU 90% of the time” and that it was linked to a solution
with test cases which showed accuracy 90% of the time. If the system changes
so that the test cases can now demonstrate accuracy 100% of the time, this does
not affect goal B1, meaning that it should not be marked for rechecking.

5.6 T6: Exploiting Knowledge About ASIL Work-Product
Dependencies and ASIL Propagation and Decomposition Rules

GSN-IA: Does not take into account how changes in the system impact ASILs.

GSN-IA+T6: Determine how ASILs should change due to system changes by
using knowledge about ASIL work-product dependencies and ASIL propagation
and decomposition rules.

Improvement: Increase in precision due to distinguishing between changes
to the goals and changes to the ASILs, potentially decreasing the number of
required goal rechecks. This decreases |ER|, thereby decreasing the overall cost.

Prerequisites: Dependency tables from ISO 26262 Part 6 that describe the
types of methods for each work product required to achieve certain ASILs, and
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ASIL decomposition and propagation rules as presented in ISO 26262 (refer
to Sect. 3). We assume the soundness of the tables and ASIL propagation and
decomposition rules in order to guarantee soundness of our approach.

Example: We present two examples in the PSD system:
1. If method 1e (Back-to-back comparison test between models and code)

used for unit testing as part of the Software Verification Report work product
for goal B1 is deleted, the ASIL for B1 supported by Sn1 changes from ASIL
C to ASIL B based on Table 1. This would in turn impact the ASIL on SG1,
since the ASIL propagation rule no longer holds. In this case, claims B1 and
SG1 themselves are not impacted, only their ASIL levels are.

2. With redundancy present in the PSD system, ASIL decomposition was
used to allocate ASIL B to B2 and ASIL A to B4 (decomposed from ASIL C).
B6 was added to demonstrate sufficient independence of the Redundant Switch
element from the AC ECU as required by ASIL decomposition. When the system
changes and the redundant switch is deleted, requirements B4 and B6 are marked
for revision, causing the original decomposition rule to be impacted. B2 is only
marked recheck, but its ASIL level will be marked for revision (from ASIL B to
ASIL C) to respect ASIL propagation rules from SG1. The impact assessment
now flags both C1 2 and Sn2 for revision. Ideally, the safety engineer will revise
Sn2 to be strengthened (e.g., unit testing method 1e is added) to increase the
ASIL on B2 to level C.

5.7 PSD Example Cost Comparison

Assume that the revision cost KV is 2 units and the rechecking cost KR is 1
unit3. On the PSD example, GSN-IA produced an annotation with 8 elements
marked revise (4 goals, 4 solutions) and 4 marked recheck. Goals marked
revise have the following number of identifiers: B3 has 3 (VS ECU, vehicle
speed, Redundant Switch), and similary, B4, B5 and B6 each respectively have
3, 6 and 2 identifiers. The cost incurred after GSN-IA is 2 × ((1 + 3) + (1 + 3) +
(1 + 6) + (1 + 2) + 4) + 1 × (4) = 48 units.

Using T1, changes to the redundant switch link only to the Redundant Switch
identifier in goals B3-B6 (as opposed to the entire goals), dropping the number
of revised elements in each of these goals to only 1 (as opposed to marking all
the identifiers in the goal for revision). The cost after running GSN-IA+ T1 is
2×((1+1)+(1+1)+(1+1)+(1+1)+4)+1×(4) = 28 units, representing a clear
improvement. Due to space limitations, we do not demonstrate the application
of the other techniques.

6 Related Work

Model-Based Approaches to Safety Case Management. Many methods
for modeling safety cases have been proposed, including goal models and require-
ments models [3,6] and GSN [10]. The latter is arguably the most widely used
3 In practice, KV > KR, since revision requires more effort than rechecking.



Safety Case Impact Assessment in Automotive Software Systems 83

model-based approach to improving the structure safety arguments. Building on
GSN, Habli et al. [7] examine how model-driven development can provide a basis
for the systematic generation of functional safety requirements and demonstrates
how an automotive safety case can be developed. Gallina [5] proposes a model-
driven safety certification method to derive arguments as goal structures given
in GSN from process models. The process is illustrated by generating arguments
in the context of ISO 26262. We consider this category of work complimentary
to ours; we do not focus on safety case construction but instead assume presence
of a safety case and focus on assessing the impact of system changes on it.

Safety Case Maintenance. Kelly [11] presents a tool-supported process, based
on GSN, that facilitates a systematic safety case impact assessment. The work by
Li et al. [15] proposes an assessment process to specify typical steps in the safety
case assessment. The authors develop a graphical safety case editor for assessing
GSN-based safety case and use the Evidential Reasoning (ER) algorithm to
assess the overall confidence in a safety case. Jaradat and Bate [9] present two
techniques that use safety contracts to facilitate maintenance of safety cases. As
far as we are aware, none of the approaches provide a structured model-based
algorithm for impact assessment, or consider methods for improving its efficiency.
In the context of safety case maintenance, Bandur and McDermid [1] present a
formalization of a logical subset of GSN with the aim of revealing the conditions
which must be true in order to guarantee the internal consistency of a safety
argument. This provides a sound basis for understanding logical relationships
between components of a safety case and thus to enhance impact assessment.

7 Conclusion

In this paper, we showed how using various sources of knowledge about the
system changes, the particular safety case language and the safety standard
can increase the precision of the previously proposed impact assessment tech-
nique [13], thus reducing the work required by the safety engineer. We presented
six precision improvement techniques and illustrated our ideas using a GSN
safety case used with ISO 26262. In the future, we aim to address the following
problems:

Addressing Additions. Currently, our impact assessment approach addresses
the effect of adding components in the system on the existing parts of the safety
case. However, it currently cannot address how adding components can poten-
tially require additions to the safety case. We plan to study this further and
propose approaches for addressing this in the future.

Exploiting System Design Patterns. We would like to understand whether
our approach can detect certain changes in the system design which change not
the functionality of the system but its level of integrity. For example, consider the
“redundancy pattern”, where a component such as the redundant switch in our
PSD example is added. We would like to study if it is possible to syntactically
identify this case as a redundancy change by witnessing two paths to the actuator
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(one via the VS ECU and one via the redundant switch), and how this can be
exploited for impact assessment.

Design Space Exploration. We believe that our approach can be used for
impact assessment in general, and not just for safety case co-evolution due to
system changes. One application for this is in design space exploration, to enable
answering what-if questions about the impact of changes on safety cases. In this
context, we would like to study the effect of changes, other than just system
changes, on the safety case.

Constructing an Assurance Case for Change. Our impact assessment app-
roach can guide the creation of a Change Argument: an argument for the changes
made to the original safety case, providing evidence for such an argument. For
example, our approach can support a revise marking in a safety case by link-
ing the element to the appropriate counterparts in the system megamodel that
caused this marking to be computed.

Confidence. We would like to augment our approach to handle a confidence
model on top of safety cases. That is, we would like to assess the impact of
changes not just on the safety case elements themselves but on the confidence
level we assign them and on the safety case as a whole.

Tool Support and Validation. We are actively working on extending our
model management framework MMINT [4] to include safety cases and model
management operators for them (e.g., slice). We are also implementing our
impact assessment approach using the workflow language defined in MMINT.
We plan to incorporate the improvement techniques discussed in this paper and
validate their effectiveness on a large scale industrial example.
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