Software Engineering for Model-Based Development
by Domain Experts

Monika Bialy?, Vera Pantelic?, Jason Jaskolka®, Alexander Schaap?,
Lucian Patcas®, Mark Lawford®*, Alan Wassyng?

aMcMaster Centre for Software Certification, McMaster University, 1280 Main St W,
Hamilton, ON, Canada, L8S 4K1
bCenter for International Security and Cooperation, Stanford University, 616 Serra St,
Stanford, CA 94305, USA

Abstract

Model-Based Development (MBD) has been gaining traction in the
development of embedded software in many industries, especially in safety-
critical domains. The models are typically described using domain-specific
languages and tools that are readily accessible to the domain experts.
Consequently, domain experts, despite not having formal software
engineering training, find themselves creating models (designs) from which
code is generated, thus effectively contributing to the design and coding
activities of software development. This new role for domain experts as
software developers can have a direct impact on the system safety if the
domain experts do not follow software engineering best practices. In this
paper, we describe our experiences as software engineers in multi-year
collaborations with domain experts from the automotive industry, who are
developing embedded software with the MBD approach. We provide
guidelines that strengthen the collaboration between domain experts and
software engineers and improve the quality, and hence safety, of embedded
software systems developed using MBD. We clarify the role of some of the
most commonly used software engineering principles and artefacts, while
also addressing issues and misconceptions encountered in adopting software
engineering practices in MBD. Although the paper focuses on the model-
based development of automotive embedded software in Matlab Simulink,
the guidelines we provide are applicable to the model-based development of
software in general.

Keywords: Software engineering; domain experts; functional safety;
embedded software; model-based development; Simulink;
automotive

*Corresponding author
Email addresses: bialym2@mcmaster. ca (Monika Bialy), pantelv@mcmaster.ca (Vera
Pantelic), jaskolka@stanford.edu (Jason Jaskolka), schaapal@mcmaster.ca (Alexander
Schaap), patcaslm@mcmaster. ca (Lucian Patcas), lawford@mcmaster. ca (Mark Lawford),
wassyng@mcmaster.ca (Alan Wassyng)

Preprint submitted to Handbook of System Safety and Security June 30, 2016

1. Introduction and Motivation

Early in the computer age, it was recognized that an ad hoc programming
approach was not suitable for developing non-trivial software systems. In the
words of a famous computer scientist, Edsger Dijkstra: “To put it quite
bluntly: as long as there were no machines, programming was no problem at
all; when we had a few weak computers, programming became a mild
problem, and now we have gigantic computers, programming has become an
equally gigantic problem.” Therefore, a systematic engineering approach
including planning, problem understanding, requirements gathering and
specification, design, programming, and verification became necessary. This
is how software engineering was born. According to ISO/IEC/IEEE Standard
24765 [1], software engineering is defined as, “The application of a
systematic, disciplined, quantifiable approach to the development, operation,
and maintenance of software, that is, the application of engineering to
software.”

Unfortunately, decades later, software development and maintenance is
still not practised with the same discipline exercised in other engineering
fields. Developing software is often deemed trivial by non-practitioners. This
perception is mostly due to software’s malleability. Since software itself is not
physical, a modification to software is considered “merely a code change.”
This perception, however, is wrong. Experience teaches us that software
should be modified with the same rigour as any other engineering product,
e.g., an engine, power inverter, or airplane brakes. The effect of a change
should be evaluated on a design first, and then thoroughly verified. This is an
approach especially necessary in modern systems, which increasingly rely on
software. Software accounts for 80% of military aircraft functions [11] and
80% of innovations in vehicles [7]. Software has also grown to be a significant
source of accidents and product recalls [20]. Moreover, numerous examples
of software-related accidents span the safety-critical domains of aerospace
(e.g., [22]), medical (e.g., [23]), and automotive (e.g., [9]), with many more
examples listed in [26, 30]. For such safety-critical systems, errors can
potentially result in loss of life, environmental damage, and/or major
financial loss. Therefore, practising software engineering with the same
rigour and discipline recognized in other areas of engineering is crucial to the
successful development and safe operation of modern software-intensive
systems.

Model-Based Development (MBD) has become a predominant paradigm
in the development of embedded systems across industries, including
aerospace, automotive, and nuclear. This is mostly due to its appeal of
automatic code generation from models, early verification and validation,
and rapid prototyping. Furthermore, domain-specific modelling languages
used in MBD are easily learned and used by domain experts (experts in the
field of the application), allowing them to design, generate code, and verify
their own algorithms, using familiar terminology and abstractions. Therefore,
the MBD paradigm assigns domain experts a different role than the one they
typically have in a traditional software development process. However,
domain experts have backgrounds in mechanical engineering, electrical
engineering, or other related fields, but typically have no formal education in

3

software engineering. For example, many leading Japanese software
specialists believe the majority of Japanese software developers have not
been formally educated in software engineering [10].

Our work builds on experience drawn from collaborations between our
team of software engineers and domain experts in the automotive industry.
While working on multi-year projects with automotive Original Equipment
Manufacturers (OEMs), we have interfaced with a number of domain experts
from both academia and industry.

First, we have witnessed a large difference in terminology used by
software engineers and automotive domain experts!. We (partially) address
this communication gap between the two communities by explaining the
terminology originating in software engineering that is commonly used in
development of embedded systems.

Second, domain experts use and/or help develop various software
artefacts, often without a clear picture of their intent and their ultimate effect
on the quality of software.

This paper clarifies the role of some of the most commonly used (and
those that are not, but should be) software engineering principles, practices,
and artefacts by viewing them from a software engineering perspective, and
presenting how they affect software correctness, safety, and other software
qualities. Therefore, this paper aims at strengthening the collaboration
between software engineers and domain experts, by offering domain experts
a high-level understanding of software engineering practices and artefacts,
enabling their more effective use. In the process, a number of MBD
misconceptions and limitations are addressed. Further, we discuss issues in
the industrial practice of MBD, and suggest solutions whenever possible, or
point to avenues for research to address issues for which a solution currently
does not exist. The paper is focused on the development of embedded
software using Matlab Simulink, the de facto standard in model-based design
of embedded systems. Ironically, Simulink itself neglects some major
software engineering principles, and this issue is also discussed in this paper.
While the focus of this paper is on the model-based development of
embedded systems using Matlab Simulink, many of the discussions are
applicable to software engineering in general. Therefore, we view this paper
as a useful tutorial primarily for domain experts involved in the development
of software intensive systems, but also for software practitioners in general,
managers in related fields, and any staff involved in software and/or
software development.

The remainder of this paper is organized as follows. Section 2 describes
the overall MBD software engineering process and serves as a prelude to the
subsequent sections. The subsequent sections, Sections 3, 4, 5 and 6, then
provide insight into commonly encountered questions and misconceptions in
industry regarding requirements, design, implementation, and verification &
validation, respectively. Finally, Section 7 presents conclusions and directions
for future work.

n fact, the term domain experts is widely known and used within the software engineering
community, while domain experts themselves are largely unaware of the term.

REQUIREMENTS ACCEPTANCE

TESTING
X
VERIFY
\
ARCHITECTURAL INTEGRATION
DESIGN TESTING
N
VERIFY
\
SOFTWARE UNIT
DESIGN TESTING
N
VERIFY
\
CODE
GENERATION

Figure 1: V-model development process for MBD

2. Development Process: How Do You Engineer Software?

Software is not only code, and developing software is not just
programming. Software includes requirements, design, test reports, and
other documentation which are artefacts resulting from the different phases
in the engineering process. As with all engineering disciplines, well-defined
processes must be followed in order to construct quality systems which
operate safely. The most common description of the software engineering
process within the model-based development of embedded software is
known as the V-model, shown in Figure 1. Although many process models
exist for software systems, the V-model is the most widely accepted model
for embedded safety-critical systems because of its focus on testing at
different levels. Moreover, standards such as the automotive standard ISO
26262 [2] prescribe its use. In this section, we provide a summary of the
phases of the V-model which are further elaborated in the sections that
follow.

2.1. What are the phases of the engineering process? How are domain experts
involved?

The development process begins with the gathering and specification of
requirements. In this phase, a high-level description of what the system
should do is determined, without providing any details as to how it is done.
As a result of the requirements phase, a software requirements specification
(SRS) is produced and agreed upon in order to act as a contract between
stakeholders and developers, that is, a mutual agreement of the expectations

from the system. This phase typically involves close collaboration between
software engineers, analysts, managers, with domain experts providing
technical breadth and depth within their respective domains. For example,
our experience is that a separate team of safety experts plays an integral role
in contributing to the development and analysis of safety requirements for
automotive systems.

Once a working set of requirements for the system has been established, a
high-level architectural design is planned. The architectural design should
strive to integrate principles of software engineering (e.g., modularity and
encapsulation), that will be further explained in Section 4, in order to minimize
complexity and facilitate component reusability. Again, managers, software
engineers, and domain experts are primarily involved at this stage, with
third-party suppliers also participating where necessary. Architectural design
is then verified by way of reviews, simulations (if the corresponding
executable specification exists), etc. Next, a software solution that satisfies the
requirements and conforms to the architectural design is developed. In MBD,
this is largely done by constructing models in accordance with language
guidelines and standards. This phase includes defining the necessary
component modules, algorithms, data structures, and other detailed design
elements necessary for the implementation (or in the case of MBD, code
generation). In practice, one or more components or modules are assigned to
an individual to “own”, that is, to develop and maintain. In current MBD
practice, we have found that domain experts design software and rapidly
prototype designs, which are later transferred to other engineers to prepare
for production as well as maintain. Ideally, these software development
activities should be performed by software engineers. They will be well-
versed in implementing software using accepted engineering best practices
and principles. Close collaboration with a domain expert, knowledgeable
about the domain-specific context, will provide guidance towards a solution.

A major benefit of the MBD approach is the ability to automatically
generate the implementation code from design models. This significantly
reduces implementation errors and development time when compared to
traditional programming [8], and also enables domain experts’ deep
involvement in the development process. The same component “owners”
responsible for designing the software will generate its corresponding code.
If needed, another separate team of engineers may be responsible for code
generation rule customization, which typically comes from the
recommendations and suggestions of domain experts. After generating an
implementation of the software system, verification takes place to ensure that
the system that is implemented is the one that was designed and expected.
MBD offers the ability to perform tests early in the development cycle, at
different levels, before the software even makes it onto the hardware. There
are various stages of testing which occur throughout the development
process. For example, unit testing verifies each software component
individually and independently from the rest of the system, whereas
integration testing combines software components to verify the system as a
whole, and acceptance testing verifies that the system satisfies its requirements
and performs as expected. In general, the embedded system under
development is modelled as a controller, which aims to control some physical
system using supervisory logic. The physical system is described in a plant

6

model, which provides the controller with inputs. Depending on the
development stage of the controller and the platform upon which the plant is
simulated, different testing strategies can be utilized throughout the MBD
process:

Model-in-the-Loop (MiL): The controller and plant models are simulated in
their development environment (e.g., Simulink).

Software-in-the-Loop (SiL): The controller embedded code, generated from
the model into hardware-dependent code, is simulated with the plant
model, both on the same machine, typically on PC hardware.

Processor-in-the-Loop (PiL): The controller embedded code is loaded onto
the embedded processor (hardware), and is simulated with the plant
model in real-time.

Hardware-in-the-Loop (HiL): The controller embedded code is run on the
final hardware, an electronic control unit (ECU), with a simulated plant
model in real-time.

The phase following software release is maintenance (not depicted in Fig.
1), where either defects are fixed or software is modified to satisfy new
requirements. In fact, ease of maintenance (maintainability) is one of the very
important qualities of software, that, although often not explicitly required,
motivates many of the activities in the development process from Fig. 1.
Software is maintained through collaborative efforts between domain experts
and software engineers. For example, in some companies, a software
engineer will be in charge of maintaining a software feature (Simulink
model). The software will be modified in collaboration with a domain expert,
typically in charge of several similar features (Simulink models).

2.2. How important are the tools?

Appropriate tool support in each phase of the process by way of a
comprehensive tool-chain that facilitates different activities, including change
management, build management, bug tracking, etc., is crucial for the success
of a development process [15]. Engineering a system often requires many
iterations of the development process and its phases. For example, as the
software design is developed, requirements can change, making it necessary
to go back and repeat the requirements phase. In fast-paced industries such
as automotive, performing such iterations quickly is greatly facilitated
through the use of tool-chains which span the entire process, and can fully- or
semi-automate designing and implementing changes.

2.3. An lllustrative Example: Transmission Control Software

For the purpose of illustrating and highlighting the software engineering
process for model-based development described in the remainder of the
paper, we will consider a small automotive example that was provided by
one of our industrial partners. Suppose that we need to design and develop
the embedded software to control the automatic transmission system of a
hybrid-electric vehicle based on requests made by the driver to change gears
between park (P), reverse (R), neutral (N), and drive (D) via a “PRND”
shifter, typically in the form of a lever or knob within the vehicle console.

7

When using the vehicle, a driver makes requests to change the transmission
gear via the shifter (e.g., switch from park to drive), at which point the
embedded software needs to decide whether or not to grant the driver’s
request based on a number of system conditions, such as faults and the
availability of certain components. In the subsequent sections of this paper,
we will use this simple illustrative example to demonstrate how to specify
software requirements, to translate those requirements into suitable model-
based designs, and to verify and validate that the implemented design
exhibits the expected system behaviour.

3. Requirements: What Does Your Software Do?

3.1. How important are good requirements?

Contrary to common belief, software rarely fails. More often than not, the
software behaved exactly as it was designed to, but it was the requirements
that were flawed [21]. Some sources assert that over 90% of software issues
result from deficient requirements, leaving merely 10% of issues to be caused
by design and coding problems [18]. Therefore, experience teaches us that
getting requirements right as well as precisely specifying them is essential for
the establishment of safe and effective systems [25]. The terms
“requirements” and “requirements specification” are taken from software
engineering, and are not a part of domain experts’ jargon. Our experience
shows that domain experts would rather refer to it as “specification” or
“spec” only.

3.2. What is the purpose of a requirements specification? Who uses it?

Before building a safe and usable system, an understanding of what it is
meant to accomplish and what qualities it should posses is required.
Requirements specify what the system should do, and a Software
Requirements Specification (SRS) is an artefact in which software
requirements are documented and maintained. A requirements specification
acts as a contract between users and software developers. It is also used by
verifiers to show that the software satisfies its requirements and by managers
to estimate and plan for resources. In our experience, the requirements
specification is essential for helping mitigate the impact of developer
turnover, especially within the automotive industry which experiences
frequent movement of personnel.

3.3. Simulink Models are NOT requirements

Requirements should state what the system should do, whereas design
and code state how. In practice, however, while the line between the two is
not always clear, even in traditional development approaches, it is
significantly blurred in MBD. For example, a Simulink model is often
considered both the requirements specification and the detailed design
specification. Graphical models are often used to help understand
requirements. They may also provide a convenient means for facilitating
communication between domain experts and software developers. However,
Simulink models are not requirements. Simulink models contain too many
design (implementation) details, making it difficult to see the black-box

8

behaviour of a system. Furthermore, a Simulink model lacks a means for
specifying non-functional requirements and properties of the system (e.g.,
confidentiality).

3.4. What is wrong with requirements specifications today?

Many organizations using MBD recognize the importance of separating
requirements specification from design. However, the requirements are often
written using natural language, and are therefore bound to be ambiguous.
Furthermore, the requirements are often incomplete, that is, they specify the
required functionality of the system for particular combinations of inputs, but
often fail to specify the functionality for all the combinations.

We have also often seen inconsistent requirements specifications, that is,
those containing contradictory statements. Using a language with precise
syntax and semantics (meaning) helps alleviate these issues. Consider, for
example, the requirement captured in the tabular expression [19] shown as
Table 1. Tabular expressions are one of many ways to specify requirements.
However, they offer precise and concise semantics, and are used in the
nuclear and aerospace industries due to their understandability. They can be
interpreted straightforwardly as if-then-else statements. Consider writing a
requirement for driver request arbitration from the Park position in the
illustrative example described in Section 2.3 that states: “If there is no fault
and the component is unlocked, grant the driver’s request; otherwise, stay in
the current gear.” This requirement can be compactly specified as a tabular
expression for the Park position as shown in Table 1, where each row
represents a subexpression of the function such that if a Condition is
evaluated to be true, the corresponding Result cell value is the returned
output.

Given the requirement specified in Table 1, it is straightforward through
the use of tool support (e.g., [12]) to verify that the requirement is complete
(requiring consideration of all possible inputs) and consistent (ensuring
determinism through non-overlapping input cases), both of which are
integral to safety-critical systems, as they raise the confidence in correct
system performance in all conditions, and also aid in detecting gaps for the
input cases considered.

fArbRequestFromPark(eDrvrRequest:enum, bUnlocked, bFaulty:bool): enum =

Result
Condition eArbRequest
bFaulty cPark
bUnlocked eDrvrRequest
~bFaulty ~bUnlocked cPark

Table 1: Requirement for driver request arbitration from Park

3.5. Who writes the requirements specification?

Ideally, domain experts would write the requirements specification
themselves, without the help of software engineers. However, this is seldom
the case, with software engineers producing the requirements specification
based on communication with domain experts. The knowledge of the domain
experts is instrumental to the specification of requirements, but the developer
possesses the knowledge of how to specify the requirement precisely and
succinctly. While getting requirements right necessitates continual interaction
between domain experts and software engineers, there is commonly a
disconnect, as they often do not “speak the same language.” Specifying
requirements such that they are understandable to domain experts, and the
use of notations like the aforementioned tabular expressions are integral to
the development of a quality requirements specification. MBD notations like
Simulink/Stateflow have proven to be useful in this regard, given that they
are readable by both domain experts and software engineers.

3.6. What information should an SRS contain?

The structure and content of a software requirements specification (SRS)
have been thoroughly investigated, with several standards and templates
available (e.g., [17]). At minimum, an SRS typically consists of the following
elements:

Purpose: A clear statement of the system’s fundamental reason for existence.
This is meant to provide a rudimentary understanding of the system
and why it is needed.

Scope: Includes a brief overview of the system to be developed and should
indicate the goals and benefits of building the system. It also specifies
the boundaries within which these gaols are met. An accurate scope
definition is important since it is often used by project managers to
determine timing and budget estimates.

Functional Requirements: A functional requirement specifies an action or
feature that needs to be included in the software system in order for the
system to be fit for purpose. Table 1 is an example of a functional
requirement.

Non-Functional Requirements: A non-functional requirement specifies a
property or quality that the software system shall possess in order to
judge its operation. Non-functional requirements often specify the
performance, security, and usability requirements of the software
system, among others.

An SRS should also contain specifications of the tolerances on accuracies of
outputs, rationale justifying the reason for the existence of requirements (with
alternatives considered, if any), specifications of interfaces documenting how
the software communicates with its environment, and documentation of
anticipated changes to existing requirements so that they may be better
accommodated by the eventual design.

Once a preliminary set of requirements can be agreed upon by the domain

10

experts and other stakeholders, and there is a general understanding of what
the system must do, thought can start being put into how the system is going
to do what it does. It should be noted that requirements specification is an
iterative process that continues in subsequent phases.

4. Design: How Will Your Software Do What it Does?

Designing software is similar to design activities in other engineering
fields. It is the process of determining how a system will perform its intended
functions. The software design process is regularly comprised of two stages:
architectural design and detailed software design. The design starts with
determining the software architecture, which is the description of the high-
level decomposition of the system into its main components, their interfaces,
and interactions between the components. Software architecture is then
gradually refined into a detailed design of modules and algorithms. In MBD,
the software design refers to the modelling of the software in a language such
as Simulink/Stateflow, with the models effectively serving as blueprints for
the software implementation, done via automatic code generation.

4.1. How is design different from requirements?

Design is directly driven by the requirements gathered in the previous
phase. Models are created and continually modified until a design has been
achieved that meets all the requirements. Although closely tied together, it is
important to emphasize again that requirements are not the same as design
models. As previously mentioned, this is one of the most prevalent
misconceptions when it comes to MBD, with MathWorks also perpetuating
this idea in the recent past [4]. Requirements and design must be viewed as
separate entities, and we can illustrate exactly why using the automotive
example given in Section 2.3.

fArbRequestFromPark(eDrvrRequest:enum, bUnlocked, bFaulty:bool): enum =

| Condition 112|3|4|5]6[7|8|9|10|11
1 | eDrvrRequest == cPark T F|F|F|F|F|F|F|F|F| -
2 | eDrvrRequest == cReverse F|T F|F|T|F|F|T|F|F| -
3 | eDrvrRequest == cNeutral F|\F|\T|F|F|T|F|F|T|F| -
4 | eDrvrRequest == cDrive F|\F|\F|T|F|F|T|F|F|T]| -
5 | bUnlocked S| TV T|T|-|-|-|-|-1]-1|-
6 | bFaulty -|F|F|F|T|T|T|-|-|-]-

Actions 112341111 1|1]|1

Action
eArbRequest = cPark

eArbRequest = cReverse

eArbRequest = cNeutral

B W[N] H*

eArbRequest = cDrive

Table 2: First design Stateflow truth table

11

Table 1 specifies a requirement, while Tables 2 and 3 provide two detailed
Stateflow designs which both satisfy this requirement. These Stateflow truth
table designs are structured in two sections, where the top sub-table defines
conditions to check. Should the conditions be evaluated to the values given in
the columns (T, F, or -, representing true, false, or “don’t care,” respectively),
the corresponding action for the column is executed. Actions are defined in
the bottom sub-table. It is apparent that pinpointing the requirement within
these designs is difficult due to the additional design details also included.
Moreover, this example demonstrates that multiple, yet distinct, designs can
implement the same requirement in different ways. For these reasons, it is
imperative to document requirements separately from design. Just as in
engineering in general, the motivation for choosing one design over another
will lie in the added need to satisfy other requirements or accommodate
constraints. For example, if the component containing design implementing
the requirement from Table 1 has a tight timing requirement, the second
design may be used due to its more efficient condition checking. However, if
maintainability over different, but similar, software versions containing this
component, is the bigger concern, the first design will more likely be used, as
will be explained later in this section.

fArbRequestFromPark(eDrvrRequest:enum, bUnlocked, bFaulty:bool): enum =

Condition 1123
1 | bFaulty T|F
bUnlocked -| T|F
Actions 1121
Action
1 eArbRequest = cPark
2 | eArbRequest = eDrvrRequest

Table 3: Second design Stateflow truth table

4.2. What are important principles of software design?

It is well known in software engineering that good designs lead to high-
quality software systems. For systems other than trivial examples, it is
necessary to decompose, or break up, the system into manageable modules in
order to improve its reusability, overcome complexity, and to divide labour.
There are typically several ways of decomposing a system. The criteria used
in the decomposition of a system plays a significant role in the determining
the quality of a design. One of the most important principles in software
design is design for change [28] which prescribes that a developer needs to be
able to anticipate changes that the system might undergo, and design
software capable of accommodating those changes. For example, when
designing powertrain software, engineers need to anticipate powertrain

12

configurations that might have to be supported in the future, and design
software so that, if the change is made, the effect of the change will be
localized as much as possible. Closely related to the design for change and
anticipation of change principles is the concept of a software product line. A
product line necessitates a core architecture of common functionality across
the various configurations, but will also provide the ability to include
variations in order to create different products within the line. For example, a
large part of electrified powertrain software can be reused throughout
different powertrain configurations. All of the software versions
corresponding to different powertrain configurations will constitute products
within a software product line. As another example, the model shown in
Table 2 was developed to satisfy the requirement from Table 1, but was also
devised with the product line approach in mind, because the logic it
implements varies only slightly with different vehicle variants. More
precisely, while the conditions listed in the columns of the first table of Table
2 remain the same for each product in the product line, the set of actions on
these conditions is the only part of the design that varies throughout the
different products within the product line. Roughly speaking, the actions are
encoded as calibrations, so that they are easy to change, and maintain.
Calibrations, in fact, are often used to implement variability in software
across products within a software product line.

The mechanism crucial in implementing design for change in software
engineering is information hiding [28]. Information hiding seeks to decompose
a system such that modules each “hide” a requirement or design decision
that is likely to change, that is, the interface of the module does not reveal its
inner workings. Typically, design decisions creep into the interfaces of the
modules, making them context-dependent, and not easily modifiable or
reusable. Design decisions typically correspond to hardware, behaviour, and
software design decisions which are likely to change in the future, and hiding
their details within a module will make future changes easier to
accommodate. Continuing with the aforementioned electrified powertrain
software example, a module that will “hide” the powertrain architecture from
the rest of powertrain software represents a hardware hiding module. However,
while the principle of information hiding has fared well in traditional
software development paradigms, it might not be as useful and widely
applicable in MBD. We are currently undertaking research into the role of
information hiding in MBD.

4.3. How does Simulink support the application of software engineering principles?

For MBD, Simulink enables the introduction of various levels of hierarchy
in order to decompose a system into various levels of abstraction.
Unfortunately, a challenge in Simulink is understanding how to employ
information hiding, how designs will benefit from it, as well as how to
decompose a system into reusable modules. The subsystem is the accepted
Simulink equivalent of a module, however, they are neither reusable, nor do
they effectively encapsulate their internal design. Degrees of reusability can
be achieved with other mechanisms such as libraries, model references,
function-call subsystems, code reuse subsystems, and Simulink functions,
however, they all fail to encapsulate their internals with respect to hidden
data flow [5]. For example, Data Store Memory blocks are able to bypass the

13

typical inport/outport interface of a subsystem, and read/write data directly
from/in the subsystem. Adding explicit interfaces which include Data Store
Memory blocks such as those described in [5] can alleviate this problem.
However, a new block mechanism within the Simulink language is needed;
one which restricts hidden data flow to effectively encapsulate data, as well
as be easily reused in multiple locations of a model. Such a mechanism is not
currently available and presents itself as a challenge when employing
information hiding in Simulink designs. Research into the development of
such mechanisms is needed.

Furthermore, Simulink lacks self-documenting capabilities of imperative
programming languages. For instance, an analogue of a module interface in
C, as defined in C header files, does not exist in Simulink [5].

4.4. How can guidelines help?

When it comes to achieving a good design, as with most languages, there
are conventions and guidelines available which give best practices that
should be adhered to. Likewise, for Simulink/Stateflow, standards such as [3,
29] have been developed with the aim of facilitating desirable model
qualities, mostly readability. Making models readable with appropriate block
colours and positions is comparable to including whitespaces and newlines in
textual languages, and makes a difference when it comes to achieving
qualities such as modifiability and maintainability.

Nevertheless, in working with industrial-sized models from OEMs and
the currently available guidelines, we have noticed shortcomings in the
guidelines in addressing actual design principles, such as modularity. For
example, using global variables in traditional programming languages is
strongly regarded as bad practice because global variables hinder
encapsulation, reuse, and understandability. However, modelling guidelines
for Simulink typically do not recommend against the use of analogous
constructs such as Data Store Memory blocks at the top-level of models
(which would be analogous to them being declared as global variables), or
above their needed scope. Such a recommendation can easily be formulated
and automated, as done in [27] with the Data Store Push-Down Tool. In
general, more guidelines and supporting tools are needed, which aim to
increase the use of other important software engineering principles.

4.5. What information should an SDD contain?

As with other traditional development approaches, designs in MBD must
be properly documented. A software design document (SDD) is an artefact
documenting the design of the software system and describing how the
system will be structured in order to satisfy its requirements. An SDD
effectively translates the requirements from the SRS into a representation
using software components, interfaces, and data. Commonly used templates
which outline the content and format of compiling an SDD exist (e.g., [16]).
At minimum, an SDD typically consists of the following elements:

Purpose: A clear statement describing what the system is ultimately meant to
accomplish. It is meant to reinforce the understanding of why the
system needs to be developed.

Rationale: Provides justification for the chosen design. This often includes a

14

description and justification of the design decisions that were made in
the development of a module, and a list of the alternatives that were
considered, along with reasons why they were rejected.

Interface Design: Describes the intended behaviour of a module from an
external viewpoint, such that other entities can interact with the module
without knowing its internal design. This should include the any
imported modules, inputs, outputs, and their types, ranges, etc.

Internal Design: Describes the internal structure of a module, including
subsystems, algorithms, internal variables/data, and constants.

Anticipated Changes: A list of the ways in which a module is expected to
change in the future. This offers insight into the future direction of the
development of a module. In this way, one can design for change so that
when requirements of the system change, the design can accommodate
those changes with only moderate modifications, rather than with
complete overhauls.

Although the need for documenting Simulink models has been
recognized in industry, to the best of our knowledge, there has not been any
research on how this is to be done. Our own efforts show that the principles
and content of an SDD from traditional software engineering equally apply
to documentation of Simulink models, and we have been working to develop
a template for an SDD for Simulink models.

4.6. Are models documentation?

In MBD, we are often met with the “models are documentation” fallacy
that we believe has further perpetuated the lack of proper documentation
across industries using MBD. However, any engineer responsible for
maintaining real-world industrial-size Simulink models understands that a
Simulink model is notoriously hard to reverse engineer or maintain without
additional information about the model that can be documented in an SDD.
For example, Simulink lacks facilities to explicitly represent the interface
inputs/outputs of a model/subsystem. This issue was discussed and
suggestions were made in [5]. Also, a model does not contain rationale for
design decisions. However, experience teaches us that documenting rationale
is crucial for proper software development and maintenance.

We illustrate the importance of having a good SDD by an anecdotal story
from our collaboration with one of our industrial partners. Their newly-hired
engineer was tasked with maintaining a Simulink model implementing
algorithms within his expertise area. There was no documentation associated
with the model. Although the engineer was very familiar with the model’s
algorithms and their application, comprehending the model took
approximately two months due to the fact that no requirements specification,
and particularly, design documentation, existed for this model. As a result,
every part of the model had to be manually examined and understood. After
reverse engineering the model, the engineer asked for our help with
documenting the model in order to significantly ease the maintenance efforts
in the future. This is not the only instance of such setbacks we saw, and it
clearly illustrates that even a domain expert, with all of the relevant
background knowledge, is still hampered significantly by a lack of

15

documentation. Again, this is a clear example that the Simulink model is not
the requirements, nor effective documentation in and of itself.

4.7. What is wrong with software design documentation today?

In general, it is a common attitude that SDDs are ultimately non-essential
to the deployment of embedded software. The companies that develop and
maintain large and complex embedded software in Simulink, also develop
and maintain a large number of SDDs documenting the designs. For
example, a company we worked with documents every software feature (i.e.,
a large Simulink model) with an SDD. In order to improve the
documentation, the company developed a template defining the format and
content of SDDs and then distributed it to developers in charge of models’
maintenance. However, the template very loosely defined the content of
SDDs, partly due to the use of undefined terminology. This resulted in
developers subjectively interpreting the template, leading to inconsistent
documentation throughout different features of the same software. The SDDs
are also consequently ambiguous and incomplete. Under-defined content of
documentation is a general (not only SDD) software documentation problem,
ultimately rendering the resulting documentation meaningless. Instead, the
template for documentation should define the structure of the
documentation, using well-defined terminology that includes explanation of
all relevant terms, as well as the instructions for the developers on the
required content. Improving documentation is not a short-term project—
consequently, the managers consider it a burden on the
development/maintenance process already under tight resource constraints.
We feel, however, that the benefits of producing and maintaining proper
documentation would by far outweigh its costs.

Additionally, a challenge we have encountered in industry, especially
those with fast development cycles, is that SDDs are not always kept up-to-
date. We contend that every model change should also necessitate a change
in the associated SDD. Ideally, the change management should be built into
software development environments with revision control, with rules
requiring that changes to models are not allowed without an updated SDD.

5. Implementation: Generating Code

5.1. Why is code generation crucial to the success of MBD?

Automatic code generation in an MBD process is vital to the cost-
effectiveness of development. It eliminates the manual effort in coding from
design, therefore, accelerating the process while decreasing the chance of
errors when compared to manual coding from requirements or models. For
example, GM has attributed the success of the Chevrolet Volt's development to
automatic code generation [24]. Since code is automatically generated from
design, traceability links are also automatically generated. Tools exist that
automatically generate code from Simulink models and have been widely used
in the industry (e.g., MathWorks Embedded Coder, dSPACE TargetLink). Any
manual modification of the code after code generation is strongly not
recommended, given the high chance of introducing errors, and
maintainability issues—the manual modifications will be overwritten upon

16

code regeneration.

While verification that the code implements the Simulink design is still
needed (performed by, e.g., back-to-back testing® that is well supported by
current tools), verification efforts can typically be reduced by using the
“proven in use” argument behind commercial code generation tools — the fact
that those tools have extensively been successfully used in different
applications for a reasonable amount of time. Some industries go further by
certifying code generators, additionally reducing the effort needed for
verification of code against design.

Automatic code generation enables a variety of applications including SiL,
PiL, HiL, and rapid prototyping. It allows for quick generation of code from
Simulink controller implementations for deployment on a desktop machine,
instruction set simulators, or target (the microprocessor). Furthermore, for
HiL, for example, the plant model can also be coded into C (whether from
Simulink or another physical modelling tool more appropriate for plant
modelling) and used in real-time. The embedded code generated for ECUs
should also run in real-time, satisfy efficiency requirements (speed, memory
usage), integration with legacy code requirements, etc.

5.2. What are the limitations of code generation?

Not all of the Matlab language and Simulink constructs are supported by
code generation tools. Furthermore, while efficiency of model-generated code
is comparable to hand code?, the efficiency of code can typically be increased
by hand coding when the code is manually developed by a skilled embedded
developer that is knowledgeable about the importance of using proper data
types, memory alignment, etc. Consequently, if the size of code, or RAM
usage, or speed of execution, is a major concern, developers may decide to
hand code the critical parts of system. The integration of hand code with
other legacy or generated code is supported by existing tools. However, our
experiences confirm that, whenever possible, automatic code generation is
strongly preferred given its cost-effectiveness.

2Back-to-back testing checks whether the outputs of the model and code are the same for the
same inputs.

3In fact, model-generated code can outperform handwritten code [14].

17

6. Verification & Validation: How Do You Know Your Software is Good?

Although the terms wverification and wvalidation are often used
interchangeably, the difference between the two is significant. While
verification answers the question, “Are we building the system right?”,
validation answers, “Are we building the right system?” Typically,
verification and validation (V&V) activities are classified into two large
groups: testing and analysis, where testing is dynamic, and analysis is static.

Domain experts are typically involved in a number of V&V activities. For
instance, they are involved in the validation of requirements by either e.g.,
manual inspection of requirements specifications and/or by simulation of
requirements, if their specification is executable. They might also be further
involved in developing test cases at different software levels. However,
domain experts might lack the understanding of automatic generation of tests
and its impact on the quality of software. Furthermore, they may not have a
clear picture of the V&V activities throughout the development process as a
whole. In this section, we strive to present a brief overview of V&V
techniques used in traditional software engineering, and, in particular, how
they map to and impact MBD practices.

In the remainder of this section, we will not distinguish between the terms
verification and validation.

6.1. Why is early verification important? Does MBD help?

The cost of fixing software bugs increases dramatically with respect to
how late they are found during the development of the system. A bug
discovered post-release can cost 100 times more to find and correct than if it
were found and corrected at the requirements or early design phase [6]. The
cost-effectiveness is precisely one of the main reasons for the widespread
adoption of MBD in practice. MBD enables a significant part of the V&V
activities to be moved from after the code phase to the design phase, leading
to a significant reduction of development costs. For example, because a
model in Simulink representing a design is an executable specification,
testing can be performed at the model level (MiL testing) before testing at the
code level. In fact, as will be discussed in this section, MBD was able to
leverage some of the most promising verification techniques that came out of
computer science research but previously found only limited application in
traditional software development.

6.2. Is testing software different than testing other engineering products?

Testing software is very different from testing systems in other
engineering products. This is due to the lack of the continuity property of
software functions: if the inputs of a function change slightly, the outputs
might change drastically [13]. This also means that exhaustive testing is not
possible for any non-trivial software system, because it is infeasible to test a
system for all the possible combinations of inputs and sequences of inputs.
Therefore, testing can never show the absence of bugs, only their presence.

6.3. How do you choose tests? When do you stop testing?

18

Unfortunately, the question of when to stop testing is still one of the most
significant open problems in software engineering. However, strategies exist
to help cleverly choose test inputs, so as to increase confidence that an
adequate set of representative behaviours of the system has been exercised.
Both domain experts and software engineers determine appropriate test
cases?, given their complimentary skills and roles in the development. While
domain experts typically manually develop cases based on their intimate
knowledge of the application, software engineers are accustomed to using
tools to automatically generate test cases based on requirements and/or
models/code. The tools use software testing measures as criteria to maximize
the probability that representative behaviours of the system have been
covered. The notion of coverage criteria was first used for testing programs in
traditional =~ programming languages, and then adapted to
Simulink/Stateflow, allowing early verification at the design level, before the
testing at the code level as in traditional development paradigms. For
example, decision coverage for Simulink/Stateflow targets all decision points
in a Simulink/Stateflow model (e.g, Switch, If, While blocks,
Triggered/Enabled subsystems, as well as Stateflow transitions) such that
each decision has been exercised, that is, every decision evaluates to true and
false. For the design given in Table 2, that means that test cases
corresponding to each of the 11 columns evaluated to true and false will be
generated.

A number of good commercial tools exist to automatically generate tests
for both Simulink models and the C-code generated from it. For example,
Reactis by Reactive Systems tests Simulink designs by trying to maximize the
coverage of both the requirements and the design in a number of coverage
metrics, while requirements, also specified in Simulink, are used as a testing
oracle—a means of defining expected outputs for each test case. This
emphasizes the importance of having formalized requirements—
requirements specified using notations with well-defined meaning and
syntax, such that they can be checked by a computer.

Testing tools too have limitations when it comes to supporting all the
various design constructs of Simulink. For example, for the Stateflow truth
tables shown Tables 2 and 3, Reactis will not aim to exercise the decision
behaviour of the tables, but will merely seek to execute the table at least once.

%A test case includes a test sequence of inputs and corresponding outputs.

19

6.4. What other verification techniques are used in MBD?

As in any traditional engineering, MBD relies on manual inspection of
relevant artefacts (requirements, design specifications, etc.) by experts. For
example, the requirements specification is typically written by software
engineers, and then reviewed by domain experts. For this reason, it is very
important to choose a notation readable by domain experts, as previously
noted. A specification can also be reviewed for completeness and consistency.
For example, simple manual inspection of the requirements specification
from Table 1 reveals that the specification is complete and consistent. Given
that the notation from Table 1 is formal—has a precisely defined meaning
and syntax —the check for completeness and consistency can be automated.
In fact, a Simulink toolbox exists that allows the tabular expressions to be
used within Simulink designs, where tables can be checked for completeness
and consistency with the push-of-a-button [12].

MBD leverages a number of tools that examine models/code in much the
same manner that a human reviewer would. For example, automatic static
checks can be run on models and code to check for conformance to rules
defined in modelling style guidelines and coding guidelines, respectively, as
discussed in Section 4. Furthermore, MBD uses a number of tools that
discover run-time errors, such as division by zero, overflow, out-of-bound
array index, etc.,, at both the model and the code levels. For example,
Simulink Design Verifier (SDV) by MathWorks can be used to discover run-
time errors at the model level. Also, MathWorks” PolySpace can be used to
find run-time errors at the code level. These tools leverage formal verification.
Formal verification uses mathematics to verify software.

A formal verification technique called model checking has been successfully
used by e.g., MathWorks” Simulink Design Verifier (SDV) to prove that
Simulink designs meet their requirements, where the requirements are also
specified in Simulink.®° The significant difference between verifying Simulink
designs with respect to their requirements in Reactis (based on testing), and
verifying with SDV is that SDV exhaustively verifies the system using
mathematical techniques. However, model checking suffers from scalability
issues, and is often infeasible for very large systems. Nevertheless, it can still
be used on industrial models, particularly for the safety-critical parts of
designs. We also note that we have found the term “model checking” to be
quite misused in MBD to mean either checking models for compliance to
modelling guidelines, or for testing models against their requirements. A
question that naturally arises next is whether testing is needed at all if models
have been previously exhaustively verified. The answer is in the positive,
because formal verification is performed on a model of the system, not on the
actual system.

SDV also supports an alternative, C-like notation, for specifying requirements.

20

7. Conclusion and Future Work

With the advent of MBD, we have seen a shift in the role of domain
experts in the embedded software engineering process. Despite not having
formal software engineering training, domain experts often find themselves
creating models from which code is generated, thus effectively significantly
contributing to the design and coding activities of software development. At
the moment, MBD does not completely relieve the software developer from
having to know software principles that help us develop safe and dependable
systems. The adoption of sound software engineering practices by domain
experts is thus very important for the safety of those systems.

In this paper, we addressed common misconceptions that domain experts
encounter when adopting software engineering practices in MBD. We also
aimed to clarify some of the most widely used software engineering
principles, and their links with well-known concepts from MBD.
Nevertheless, in some cases it is not clear how specific well-established
software engineering principles translate to MBD. For example, research is
needed to better understand the effectiveness of the information hiding
principle in MBD.

We expect that the guidelines we provided will increase the effectiveness
of the interaction between software engineers and domain experts, which is
crucial for the successful development and operation of software-intensive,
safety-critical, embedded systems. Although the examples and discussions in
the paper centre around the development of safety-critial automotive
embedded software in Simulink, the guidelines are applicable to the model-
based development of embedded software in general.

21

[1] International Organization for Standardization (IST/15). (2010).
ISO/IEC/IEEE 24765:2010.

[2] International Organization for Standardization/Technical Committee 22
(ISO/TC 22). (2011). ISO 26262-6:2011. Geneva, Switzerland.

[3] Orion Crew Exploration Vehicle Flight Dynamics Team. (2011). Orion
Guidance, Navigation, and Control MATLAB and Simulink Standards, 15
edition.

[4] Barnard, P. A. (2005). Software development principles applied to
graphical model development. In AIAA Modeling and Simulation
Technologies Conference and Exhibit, San Francisco, CA, USA. American
Institute of Aeronautics and Astronautics.

[5] Bender, M., Laurin, K., Lawford, M., Pantelic, V., Korobkine, A., Ong, J.,
Mackenzie, B., Bialy, M., and Postma, S. (2015). Signature required: Making
Simulink data flow and interfaces explicit. Science of Computer Programming,
113, Part 1, 29-50. Model Driven Development (Selected & extended
papers from MODELSWARD 2014).

[6] Boehm, B. W. (1981). Software engineering economics, volume 197.
Prentice-hall Englewood Cliffs (NJ).

[7] Broy, M., Kruger, 1. H., Pretschner, A., and Salzmann, C. (2007). Engineer-
ing automotive software. Proceedings of the IEEE, 95(2), 356-373.

[8] Broy, M., Kirstan, S., Krcmar, H., Schitz, B., and Zimmermann, J. (2014).
What is the Benefit of a Model-Based Design of Embedded Software Systems
in the Car Industry?, chapter 17, pages 310-334. Software Design and De-
velopment: Concepts, Methodologies, Tools, and Applications. IGI Global,
Hershey, PA, USA.

[9] Charette, R. N. (2009). This car runs on code. http://spectrum.ieee.
org/transportation/systems/ this-car-runs-on-code. [Online; accessed Feb-
2016].

[10] Cole, R. E. (2013). Killing innovation softly: Japanese software challenges.
Manufacturing Management Research Center (MMRC) Discussion Paper Se-
ries.

[11] Dvorak, D. L. (2009). NASA study on flight software complexity.
American Institute of Aeronautics and Astronautics.

[12] Eles, C. and Lawford, M. (2011). A tabular expression toolbox for Mat-
lab/Simulink. In M. Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi,
editors, Proceedings of the 3rd NASA Formal Methods Symposium, volume
6617 of LNCS, pages 494-499. Springer Berlin Heidelberg.

[13] Ghezzi, C., Jazayeri, M., and Mandrioli, D. (2002). Fundamentals of Soft-
ware Engineering. Prentice-Hall, 2 edition.

22

[14] Ginsburg, S. (2008). Model-based design for embedded systems.
http://www.embeddedcomputingconference.ch/download sec/
3B-Ginsburg.pdf. Slides of a talk given at the Embedded Computing
Con- ference, September 2, Winterthur, Switzerland [Online; accessed Apr-
2016].

[15] Hunt, A. and Thomas, D. (2002). Ubiquitous automation. IEEE Software,
19(1), 11.

[16] IEEE (2009). Standard for information technology - systems design -
software design descriptions. IEEE STD 1016-2009, pages 1-35.

[17] IEEE (2011). Systems and software engineering - life cycle processes -
requirements engineering. ISO/IEC/IEEE 29148:2011(E), pages 1-94.

[18] Jackson, D. (2007). Why is software so hard? And what can we do about
it? https://people.csail. mit.edu/dnj/talks/accenture07/ accenture-india-
07.pdf. Slides of a talk given at Accenture’s India Delivery Center,
November 29, Bangalore, India [Online; accessed Apr-2016].

[19] Jin, Y. and Parnas, D. L. (2010). Defining the meaning of tabular mathe-
matical expressions. Science of Computer Programming, 75(11), 980-1000.

[20] Koopman, P. (2014). A case study of Toyota unintended acceleration and
software safety. Presentation. [Online; accessed Apr-2016].

[21] Leveson, N. G. (1986). Software safety: Why, what, and how. ACM Com-
puting Surveys (CSUR), 18(2), 125-163.

[22] Leveson, N. G. (2004). Role of software in spacecraft accidents. Journal of
Spacecraft and Rockets, 41(4), 564-575.

[23] Leveson, N. G. and Turner, C. S. (1993). An investigation of the Therac-
25 accidents. Computer, 26(7), 18-41.

[24] Liang, T. (2015). Automatic code generation for embedded control
systems. https://www.mathworks.com/company/events/
conferences/matlab-conference-
australia/2015/proceedings/ automatic-code-generation-
for-embedded-control-systems.pdf.

Slides of a talk given at MathWorks” MATLAB Conference 2015, May 19 -
June 3, Australia & New Zealand [Online; accessed Apr-2016].

[25] Murugesan, A., Heimdahl, M. P., Whalen, M. W., Rayadurgam, S,
Komp, J., Duan, L., Kim, B.-G., Sokolsky, O., and Lee, 1. (2014). From
requirements to code: Model based development of a medical cyber
physical system. In Proceedings of the 4th International Symposium on
Foundations of Health Information Engineering and Systems (FHIES) and the
6th International Workshop on Software Engineering in Healthcare (SEHC),
Washington, DC, USA.

[26] Neumann, P. G. (1995). Computer-Related Risks. Addison-Wesley.

23

[27] Pantelic, V., Postma, S., Lawford, M., Korobkine, A., Mackenzie, B., Ong,
J., and Bender, M. (2015). A toolset for Simulink: Improving software en-
gineering practices in development with Simulink. In 3rd International Con-
ference on Model-Driven Engineering and Software Development (MODEL-
SWARD), pages 50-61. IEEE.

[28] Parnas, D. L. (1972). On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12), 1053-1058.

[29] The MathWorks (2012). MathWorks Automotive Advisory Board (MAAB):
Control Algorithm Modeling Guidelines Using MATLAB, Simulink, and
Stateflow, Version 3.0.

[30] Wong, W. E., Debroy, V., and Restrepo, A. (2009). The role of software in
recent catastrophic accidents. IEEE Reliability Society 2009 Annual Tech-
nology Report, 59(3).

24

