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Abstract Although widely used in embedded systems
design, Matlab/Simulink is not considered a state-of-the-art
design environment by the software engineering community.
This paper is aimed at improving design with Simulink from
the software engineering perspective by developing auto-
mated support for the application of some traditional software
engineering principles when developing with Simulink. We
present four tools: the Signature Tool, the Reach/Coreach
Tool, the Data Store Rescope Tool, and the Auto Layout
Tool. The Signature Tool extracts the interface of a Simulink
subsystem, enabling developers to better understand the
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implicit data flow in Simulink models and use it more effec-
tively, while also producing useful documentation. The Data
Store Rescope Tool improves modularity of Simulink mod-
els by properly scoping data stores, the Simulink equivalent
of variables in traditional languages. The Reach/Coreach
Tool highlights data and control dependencies in Simulink
models, making them easier to understand. Also, the tool sup-
ports debugging, reverse-engineering, refactoring, and static
analysis of the models. Finally, the Auto Layout Tool auto-
matically improves the layout of Simulink models, reducing
the effort developers invest in graphical layout to comply
with modeling guidelines and improve readability of their
models.

Keywords Model-based development - Simulink - Tools -
Software engineering - Refactoring - Model transformation -
Data flow - Model slicing

1 Introduction

Matlab/Simulink is a model-based design environment
widely used in embedded systems development in numer-
ous domains, including automotive. Its popularity can be
attributed to its rich modeling and simulation capabilities,
automatic code generation, and availability of a large num-
ber of MathWorks and third-party tools that aid development
within the environment (e.g., MathWorks’ Control System
Toolbox). While a major part of the code base running in
modern cars is automatically generated from Simulink, the
environment still lacks proper support for the application of
some traditional software engineering practices. For exam-
ple, data stores, Simulink’s analog of variables in traditional
programming languages, cannot be declared read-only. Fur-
thermore, Simulink lacks self-documenting capabilities of

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-017-0450-9&domain=pdf

V. Pantelic et al.

imperative programming languages. For instance, an analog
of a module interface in C, as defined in C header files, does
not exist in Simulink.!

The main contribution of this work is the introduction
of a set of tools which help developers apply some well-
known software engineering principles in development with
Simulink. Proper automatic support is crucial for the suc-
cessful application of these principles [10]. We also note that
it is not our intention to undertake a comprehensive analysis
of how each software engineering principle is supported in
Simulink, neither do we compare the model-based design
of Simulink to more traditional development paradigms.
Rather, we draw on our experience from working with
production-scale Simulink models to suggest mechanisms
and appropriate tool support to improve the application of
some well-known software engineering practices and prin-
ciples in development with Simulink. The toolset to be
presented in this paper helps a developer adhere to some
well-known software engineering practices in an automated
manner, allowing for the proposed principles to be seamlessly
integrated into an existing Simulink model-based software
development process. We introduce four tools: the Signature
Tool, the Reach/Coreach Tool, the Data Store Rescope Tool,
and the Auto Layout Tool. The tools were developed as aresult
of collaboration with an industrial partner, a large automo-
tive OEM (Original Equipment Manufacturer); however, the
tools are not automotive-specific but general in that they can
be applied in any model-based design with Simulink.

The Signature Tool extracts a Simulink subsystem’s signa-
ture. A signature is arepresentation of a subsystem’s interface
[2,3]. Signatures identify implicit data flow mechanisms in
Simulink, enabling their more effective use in design, anal-
ysis, and testing. Furthermore, signatures can be used as an
indication of the quality of modularization of a Simulink
design. Finally, the tool can be used to automatically generate
parts of software documentation: our automotive industrial
partner uses it to automatically document subsystem inter-
faces as part of a subsystem’s software design description.

The Reach/Coreach Tool highlights, for the specified
Simulink blocks, the parts of the model which are affected
by the specified blocks (Reach functionality), or parts of
the model that the specified blocks depend upon (Coreach
functionality). The tool accounts for both data and control
dependencies. To the best of our knowledge, there exist two
other tools for slicing Simulink models that take into account
both data and control dependencies: the tool presented in
[18], and MathWorks’ Model Slicer (available since Mat-
lab R2015a as part of Simulink Design Verifier (SDV)). In

! It might seem that the input and output signals of a block in Simulink
are obvious from the block diagram; however, there is hidden data flow
in Simulink not evident on the diagram as will be discussed in Sect. 2.
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Sect. 3.2.3, a detailed comparison between our tool and the
two aforementioned tools is presented.

The Data Store Rescope Tool (formerly the Data Store
Push-Down Tool) properly scopes Simulink’s data stores.
Data stores are analogous to variables in traditional pro-
gramming languages, and algorithms exist for localizing their
usage in languages such as C [20,21]. Our tool identifies the
data stores that have scopes larger than necessary. Then, for
each identified data store, its declaration is “pushed down”
the model hierarchy to the lowest level possible, such that all
the references to the data store are still within the data store’s
scope. The push-down operation improves the modularity of
Simulink designs. The tool was introduced in [3] as the Data
Store Push-Down Tool and was also used in [3] to illustrate
the effectiveness of a software complexity metric introduced
in that paper.

Finally, the fourth tool to be presented in this paper focuses
on increasing readability of Simulink models by improving
their layout. Surprisingly, there does not exist a comprehen-
sive commercial automatic layout tool for Simulink models.
While novel Simulink automatic layout algorithms have been
proposed (e.g., [7,11,12]), no tools based on these algorithms
are available for use in Simulink. Our approach with the Auto
Layout Tool reuses a third-party graph drawing algorithm
implemented in the open-source tool Graphviz, and further
builds on it to address Simulink-specific layout requirements,
as well as to automate some useful transformations valuable
in every-day design with Simulink (flattening a subsystem,
transforming a signal line into a Goto/From connection and
vice versa, efc.).

This paper is an extended version of the conference paper
[14]. The following contributions have been added to the
work presented in [14]. Firstly, an industrial automotive
model is used to illustrate the application and benefits of each
of the four tools. The use of the real-world industrial exam-
ple demonstrates the diversity of the tools’ applications in a
model-based development process, and more importantly, it
provides evidence of the tools’ applicability and practicality
in an industrial setting. Additionally, a number of features
have been added to the tools, and the current paper presents
their applications and benefits in detail:

— While the main idea behind the Signature Tool is to iden-
tify the data items that are contained within the interface
of a Simulink subsystem, the current version of the tool
enhances this interface by including the data types of each
of the data items contained in the signature.

— The Data Store Rescope Tool now includes the Data
Store Repair transformation: when one or more refer-
ences to a data store are not within its scope, the data
store is properly rescoped. Further, the tool now gener-
ates information about the results of the its operations.
More precisely, for each data store that was moved, its
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destination and source block are listed, as well as the
total number of moved data stores in the model. Also,
this paper demonstrates the application of the tool in the
detection of data stores that are declared, but unused.

— When it comes to the Reach/Coreach Tool, the common
assumption for If/Switch Case blocks that all inputs
affect all outputs has now been removed. Consequently,
the tool has been enhanced to identify the fine-grained
dependencies between the blocks’ inputs and outputs.
While the improvement is conceptually rather simple, it
has been shown to provide some subtle static analysis of
real-world industrial models, as will be illustrated in this
paper. Furthermore, the Reach/Coreach Tool is shown
to provide an additional data view whose application is
demonstrated when the tool is used as an impact anal-
ysis tool. Also, starting from Matlab R2015a, Simulink
Design Verifier,a MathWorks’ Matlab/Simulink toolbox,
includes Model Slicer which has capabilities similar to
those of the Reach/Coreach Tool. In this paper, we present
a detailed comparison between the capabilities of the
Reach/Coreach Tool and Model Slicer.

— The Auto Layout Tool has been significantly extended.
Firstly, it now supports a number of minor, yet very
practical transformations: transforming a From/Goto
connection to a signal connection (and back), as well
as flattening of a model’s hierarchy. Secondly, the layout
engine itself has been significantly enhanced to increase
model readability, while following some of the best prac-
tices for layout of Simulink models as prescribed by the
MAAB guidelines [28].

Also, it is worth noting that all four tools have been signif-
icantly improved in terms of usability. While they were ini-
tially Matlab command line functions, they are now invoked
directly from the context menu. Furthermore, the Signature
Tool and the Reach/Coreach Tool now feature simple graphi-
cal user interfaces. All the tools are available through Matlab
Central, under open-source licenses [1,5,16,19].

All the tools have been successfully used on large indus-
trial automotive models: the models contained between 3671
and 73044 blocks, with hierarchy depths between 8 and 16.
However, for simplicity of exposition, smaller examples have
been chosen in this paper to illustrate the tools’ capabilities.

The outline of this paper is as follows. Section 2 analyses
data flow in Simulink and presents an industrial model that
will be used throughout the paper to demonstrate the applica-
tion of the tools in an industrial setting. The Signature Tool,
the Reach/Coreach Tool, the Data Store Rescope Tool, and
the Auto Layout Tool are presented in Sects. 3.1, 3.2, 3.3,
and 3.4, respectively. For each of these tools, we explain and
illustrate their main capabilities, implementation, and possi-
ble applications in model-based design with Simulink. We
also present the execution times of the tools when run on

various real-world industrial automotive models. The tools
were run on a Windows 7, Intel 13-2120 @ 3.30 GHz, 8.0 GB
RAM machine. Section 4 summarizes the role of the tools in
model-based development processes and their link with soft-
ware engineering principles. Section 5 concludes the paper,
with avenues for future work.

2 Data flow in Simulink and example

This section first presents an analysis of data flow in
Simulink, which will serve as the necessary background
knowledge for a reader to understand the tools’ capabilities
presented in Sect. 3. Afterward, a real-world industrial model
is presented. This model will be used throughout the paper to
illustrate the applicability of our tools in an industrial setting.

2.1 Analysis of data flow in Simulink

The notion of a subsystem is used in Simulink to repre-
sent systems inside systems in order to provide hierarchical
modeling. A Simulink subsystem has inports and outports—
explicit links to and from the subsystem, respectively. We
view inports and outports as the explicit interface of the
subsystem. However, there are hidden data dependencies in
the Simulink’s subsystem: we will refer to those as the sub-
system’s implicit interface. Hidden dependencies stem from
two particular Simulink data mechanisms: data stores and
Goto/From blocks.

Data stores Data stores are used in Simulink as memory
and are analogous to variables in traditional programming
languages. Data stores allow subsystems and referenced
models? to share data without having to use inports and out-
ports to pass the data from subsystem to subsystem, or level
to level. A data store can be defined in Simulink using a Data
Store Memory block. The data store is then referenced using
Data Store Read blocks (for reading from the data store) or
Data Store Write blocks (for writing into the data store). The
scope of a data store is the subsystem where the Data Store
Memory block is located, and all the subsystems below it in
the model hierarchy, excluding referenced models. In Fig. 1,
data store B is defined using Data Store Memory B block.
The scope of this data store is the top level of the model and
subsystem Subl. The data store is accessed using Data Store
Write B at the same level where it is defined, and it is read
using Data Store Read B in subsystem Sub1 (the contents of
subsystem Subl are shown in Fig. 2). Also, a data store can
be implemented in the base workspace using a signal object:
it is then called a global data store as it can be accessed
from anywhere in the model, including referenced models.

2 A referenced model is a model referenced from another model using
a Model block.
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Fig. 2 Subsystem Subl from Fig. 1

There may also be multiple read and write blocks for a single
Data Store Memory block within one simulation step. This
introduces issues with the order of access to a data store (for
an explanation of order of access errors and corresponding
Matlab’s diagnostics, an interested reader is referred to [25]).

When a data store is located higher in the hierarchy than
the current subsystem, it will be referred to as an inherited
data store for the subsystem. It should be noted that while
signatures have previously been defined only for virtual sub-
systems [2], the current implementation of the Signature
Tool is extended to support the extraction of signatures of
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non-virtual subsystems as well. Non-virtual subsystems are
subsystems executed as a single unit (atomic execution). A
virtual subsystem, on the other hand, is flattened in order to
derive the block update order, with Simulink ignoring the
subsystem’s boundaries when determining this order. That is
to say, the subsystem’s boundaries do not impact the model’s
behavior.

Goto/From mechanism Another mechanism for implicit
data flow in Simulink is the Goto/From mechanism. The
data fed into a Goto block is passed to its corresponding
From blocks (the From blocks with the same rag), with-
out a signal line between them. Goto/From blocks are used
to implicitly connect blocks, simplifying the visual presen-
tation of models. A single Goto block may have multiple
From blocks, but a From block may only receive data from
a single Goto block. The scope of the Goto block is deter-
mined by the Goto block’s Tag Visibility parameter, which
can take on the following values:

— Local: Goto and From blocks with the same tag are in
the same subsystem.

— Scoped: The scope of the Goto block is determined by
the position of the corresponding Goto Tag Visibility
block. The Goto block and its From blocks have to be
in the same subsystem as the Goto Tag Visibility block
or lower in the model hierarchy, while not crossing a
non-virtual subsystem boundary, i.e., the boundary of an
atomic, conditionally executed or function-call subsys-
tem, or a model reference. In Fig. 1, scoped tag Scoped1
is defined using a Goto Tag Visibility block. This block
affects the scope of the Goto block Scoped1, found to its
immediate left at the same level, while the corresponding
From is found in Subl, as shown in Fig. 2.

— Global: Goto and From blocks with the same tag can
be anywhere in the model, except in locations that span
non-virtual subsystem boundaries.

2.2 Industrial example

This section introduces the obfuscated version of the indus-
trial model that will be used as a running example in this
paper. The original model was obfuscated for confidentiality
purposes. The model is a subsystem of a larger model that
itself implements a portion of the gear selection functionality
in a hybrid electric vehicle. The model is shown in Fig. 3a-h.

3 Tools

This section presents the tools. For each tool, its basic
capabilities are presented in detail and illustrated on a toy
example. Afterward, the application of the tools is demon-
strated on the industrial model. Using both the simple toy
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model and the industrial model enables us to first show the
basic capabilities of the tools in a simple manner, and then
showcase their applicability and practicality on a real-world
industrial automotive model.

3.1 The Signature Tool

The Signature Tool extracts the signature of a Simulink sub-
system. The concept of signatures was first introduced in [2].
A signature represents the inferface of a Simulink subsystem
by making all of the data flow into and out of the subsystem
explicit.

Further building on this work, we now view global
From/Gotos and global data stores as special cases of scoped
From/Gotos and data stores. This is due to the fact that global
tags can be replaced by scoped tags, with a corresponding vis-
ibility tag placed in the top-level subsystem. Likewise, global
data stores can be replaced by normal data stores, with the
corresponding declaration moved to the top-level subsystem.

3.1.1 Signature

The signature identifies the elements of the interface for a
given Simulink subsystem:

— Explicit interface: Inports and outports,

— Implicit interface: Inherited data stores, and scoped tags
defined higher up in the model hierarchy,

— Imposed interface: Data stores and scoped tags defined
in the subsystem

The Signature Tool identifies two useful signatures for a
subsystem: the strong signature and the weak signature. In
general, the strong signature identifies the data mechanisms
that are accessed by the subsystem or any of its children.
The weak signature identifies the data mechanisms that a
subsystem can access (those which are declared locally or
higher up in the hierarchy), but is not necessarily using. Note
that the question of whether or not these are in fact accessed
during the execution of a model is difficult, and requires deep
analysis of control and signal flow. What we aim to create,
for the first view, is a useful approximation of a subsystem’s
actual inputs and outputs simply by checking for the presence
or absence of read blocks and write blocks. The signature
approach for Simulink provides data flow analysis in a setting
where semantics are not available.

More precisely, the strong signature of a subsystem con-
tains:

— Inputs:

— Inports
— Implicit Inputs:
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e All inherited data stores that are only read from
in the subsystem or any of its children.

e Scoped tags with Goto Tag Visibility defined
higher in the model hierarchy that have the cor-
responding From block located in the subsystem
or in any of its children, unless the Goto block
is also in the subsystem or any of its children.

— Outputs:

— Outports
— Implicit Outputs:

e All inherited data stores that are only written to
in the subsystem or any of its children.

e Scoped tags with Goto Tag Visibility located
higher in the model hierarchy, that have the cor-
responding Goto block located in the subsystem
or any of its children.

— Updates: All inherited data stores that are both read from
and written to in the subsystem or any of its children.

— Declarations: All data stores declared in the subsystem,
and scoped tags located in the subsystem.

In the description of a strong signature’s inputs, it is impor-
tant to note that the rationale for excluding scoped tags with
both From and Goto blocks from the inputs is due to the
fact that when the Goto block is located in a subsystem or
below it in the hierarchy, it is considered local, since no other
subsystem can write into it.

A Simulink model and the contents of its subsystem Sub1
are shown in Figs. 1 and 2, respectively. The strong signature
for subsystem Subl as generated by the Signature Tool is
given graphically on the left side of Fig. 4. The strong signa-
ture of Sub1 specifies the data mechanisms that the subsystem
or its children access. The subsystem Subl both reads from
and writes to the inherited data store A; hence, the data store
is included in the Updates set of the signature. Subl, how-
ever, only reads from the data store B, thus the data store is
in the Inputs set of the signature. The subsystem only reads
from Scoped! tag, and for this reason the tag belongs to the
signature’s Inputs.

The weak signature is about a subsystem’s context—
identifying the data mechanisms the subsystem has access
to, but is not necessarily using:

— Inputs:

— Inports
— Implicit Inputs:
e For virtual subsystems, scoped tags declared
higher in the hierarchy with the corresponding
Goto declared higher in the hierarchy
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e For non-virtual subsystems, this set is empty
since From and Goto blocks cannot cross
boundaries of non-virtual subsystems

Outputs:

— Outports.

Updates:

— Inherited data stores

— Scoped tags located higher in the model hierarchy
that do not have corresponding Goto declared higher
in the hierarchy.

Declarations: All data stores declared in the subsystem
and scoped tags located in the subsystem

The weak signature of Sub1 from Fig. 2 (the subsystem of
the root system in Fig. 1), as extracted by the Signature Tool,
is given on the left side of Fig. 5. Since the weak signature
pertains to the resources that are at Sub1’s disposal, all inher-
ited data stores (A and B) are included as Updates since they
can be both read from and written to. Subl cannot write into
Scoped! since the root level model is already writing into it
and, as noted earlier, there cannot be two Goto blocks for the
same tag. For this reason, the tag is placed in the signature’s
Inputs.

The Signature Tool can extract a subsystem’s signature
(strong or weak), and then either include it in the subsystem
itself, as was done in Figs. 4 and 5, or export it to external doc-
umentation in the form of a table. The tool supports virtual
and non-virtual subsystems. The data items in the signature
generated by the Signature Tool are presented in the follow-
ing way (see Figs. 4 and 5) for the case when the signatures
are included in the subsystem: Data Store Read blocks and
Data Store Write blocks and scoped Froms are fed into ter-
minators; all input ports are fed into local Gotos, and output
ports are fed from local Froms (our industrial automotive
partner uses this technique whenever a port needs to be used
multiple times in a model). It is argued in [2] that the behav-
ior of the subsystem does not change for either simulation or
code generation purposes when the signature is included in
the subsystem.

3.1.2 Implementation and applications

The Signature Tool is implemented using Matlab functions
executed from either the command line or the context menu.
The weak signature is implemented as a recursive top-
down algorithm on the system tree of a model, while the
strong signature is implemented with a bottom-up recursive
algorithm [3]. The tool has been used on large industrial
automotive Simulink models, each implementing a vehicle
function. For models containing between 3671 and 7792
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blocks, with hierarchy depths between 7 and 10, the total
signature extraction function runtime that includes signature
extraction for all subsystems in the model’s hierarchy was
below 53s; for the largest analyzed model (the model con-
tained 73044 blocks with hierarchy depth of 16), the signature
extraction function runtime was 14 min.

The benefits and applications of signatures are numerous.
Signatures represent a simplified view of data flow in and out
of the subsystem, explicitly identifying hidden dependencies
in Simulink models and allowing for easier comprehension
of models. For the industrial example subsystem in Fig. 3b,
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the signature as extracted and then included in the model is
shown in Fig. 6.

The signature eliminates the need to search vertically and
horizontally through the model’s hierarchy in order to under-
stand the model’s data inflow and outflow. In this particular
example, the user would have had to inspect seven subsys-
tems at three hierarchy levels to gain such an understanding
of the data flow.

Also, the Signature Tool has the capability of extracting
strong signatures into external documentation. The generated
documentation effectively represents the interface specifica-
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Fig. 7 Software documentation generated automatically by the Signature Tool. a Strong signature of Gear Processing subsystem exported into
text file output. b Strong signature of Gear Processing subsystem extracted into a IATEX table

tion of a subsystem as a part of the subsystem’s software
design description documentation. Therefore, this capabil-
ity automates part of the process of software documentation
production, and this is precisely how our industrial partner
uses the tool. In Fig. 7, the signature of the subsystem Gear
Processing is extracted into external documentation in two
different formats: a text file and a IATEX table. Note that the
external documentation includes the data types of the sig-
nature’s data items. The type information is automatically
extracted from the model.

Software requirements and design descriptions of Simu-
link models are often generated using Simulink Report
Generator, a MathWorks tool built into Matlab, that partially
automates documentation production from Simulink models
and simulations. It supports a number of different formats for
generated documentation including Microsoft Word, Rich
Text Format (RTF), PDF, DocBook (XML) and IATEX. The
tool offers a number of Simulink-specific components that
correspond to typical Simulink content, enabling the extrac-
tion of relevant information from Simulink models directly
into documents in a highly automated manner. For example,
a snapshot of a Simulink subsystem can be included in the

design documentation through the use of the System Snap-
shot component, and will be updated as the model itself
changes. In a similar manner, the documentation can also
include tables with information extracted from the model
using the Array-Based Table component. A table can be
populated with the data items and their data types from a sub-
system’s signature programmatically by using our Signature
Tool, in a straightforward manner. More precisely, the table
is generated through Simulink Report Generator’s Array-
Based Table component, which then calls the appropriate
functions of the Signature Tool in order to populate the table
with the names of signature’s data items and types. The gen-
erated table for subsystem Gear Processing can be identical
to that shown in Fig. 7b, and included in e.g., a Word docu-
ment.

The use of the Signature Tool, appropriately extended
where needed, can go far beyond a comprehension aid and
documentation generator:

— Signatures can be used to instill software engineering
discipline in design with Simulink. For example, the
actual interface of a subsystem can be refined from its
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weak signature generated by the tool, e.g., a data store
should be removed from the signature’s Updates and
included in Inputs if it is to be read-only by the sub-
system. The signatures therefore encourage information
hiding and encapsulation within a Simulink model. Fur-
ther, if a (interface) specification of a subsystem is given
as its signature, and if its weak signature (as extracted
by the Signature Tool) has mechanisms not contained
in the specification, this is an indication of the subsys-
tem’s potential to access data flow mechanisms that may
cause unintended interference with other subsystems in
the model hierarchy. In fact, a metric based on signatures
has been defined in [3] that measures the difference in
the number of mechanisms in the subsystem’s weak and
strong signature. A larger value for the metric indicates
a potentially problematic design, as the subsystem has
access to far more resources than it is actually using. The
tool supports the calculation of this metric.

— A lack of proper consideration of implicit data flow in
tools for testing Simulink models was first noted in [2].
Existing testing tools typically neglect to account for data
flow via data stores when generating a test harness for
a subsystem. For example, a Data Store Read/Data
Store Write block referencing a data store defined out-
side of a subsystem is a part of the subsystem’s implicit
input/output, which some testing tools fail to properly
include in the generated test harness. To tackle this issue,
the subsystem’s strong signature extracted by the Sig-
nature Tool can be used to generate a test harness that
properly accounts for all the incoming/outgoing signals,
with the additional benefit of the harness being eas-
ily detachable. In fact, we have demonstrated a large
improvement in a subsystem’s testability (increased cov-
erage and decreased testing effort) when the Signature
Tool is used to augment test harnessing before automatic
test generation with a commercial testing tool [3]. The
test harness augmentation is completely automated using
the Signature Tool [3].

— Signatures can be used to classify dynamic inputs (inputs
that often change through a simulation run) versus static
(inputs that rarely change through a simulation run).
Since signatures make scoped tags as explicit (visi-
ble) as inports, applying the discipline of e.g., using
scoped Goto/Froms for static inputs and using inports for
dynamic inputs, would significantly declutter the explicit
interface of the subsystem.

— When the subsystem signatures are included in the model,
they can be used to incorporate strong typing into subsys-
tems’ interfaces. For more details, an interested reader is
referred to [2].
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3.2 The Reach/Coreach Tool

In this section, we present the Reach/Coreach Tool. First,
basic capabilities of the tool are introduced. Then, its imple-
mentation and applications are explained. Finally we provide
a comparison with related tools.

3.2.1 Tool’s capabilities

The Reach/Coreach Tool identifies dependencies in a
Simulink model in two different ways:

— Reach: For a specified set of blocks (e.g., a set of inports),
the tool identifies the blocks and lines of the model which
are affected by the specified blocks. The reachable model
(the submodel of the original model that consists of the
identified blocks, and signal lines that connect them) is
then highlighted.

— Coreach: For a specified set of blocks (e.g., a set of out-
ports), the tool identifies the blocks and lines of the model
which affect the specified blocks. The coreachable model
(the submodel of the original model that consists of the
identified blocks, and signal lines that connect them) is
then highlighted.

The dependencies identified by the Reach/Coreach include
both data and control dependencies as will be detailed later
in this section.

Once the Reach/Coreach submodel is identified and
marked in the Simulink model, the unmarked parts of the
model can be trimmed away. The remaining submodel rep-
resents a model slice.

The application of the tool on a simple example is illus-
trated in Figs. 8 and 9. The coreachability analysis for outport
Outl results in the submodel marked in gray as shown in
Fig. 8a (with subsystem WhileSub from Fig. 8a shown in
Fig. 8b). The reachability analysis done on inports Inl, In2,
and In3 would result in the same submodel being highlighted.
The reachability analysis for Data Store Write A in Fig. 9a
is highlighted in gray, with the subsystem Subl shown in
Fig. 9b. Both reachability and coreachability analyses pre-
serve the hierarchical structure of the model.

The Reach/Coreach Tool tracks and highlights both data
flow (data dependencies) and control flow (control depen-
dencies) in the model:

Data flow Data flow in Simulink is explained in more detail
in Sect. 2. The Reach/Coreach Tool tracks the explicit data
dependencies — the data flow through signal lines. Assum-
ing that changes to an input propagate to changes in any
output for any block (except for Subsystem, If, Switch
Case, Bus Creator, and Bus Selector blocks), that is, any
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input can influence any output of a block, and by deducing
the input—output influence relation of a subsystem from the
structure of its components, it is possible to construct the
signal line dependency of the model. The Reach/Coreach
Tool provides fine-grained tracking of the data flow through
Simulink buses (see Fig. 8a). Tracing dependencies through
If and Switch Case blocks will be explained in the next
paragraph. Further, as elaborated in Sect. 2.1, there are hid-
den data dependencies in Simulink in the form of implicit
data flow through data stores and Goto/From blocks. The
Reach/Coreach Tool tracks these data dependencies as well.
For example, in Fig. 9a, the flow from the Data Store Write
A block is tracked to Out2, due to the fact that the data store
is being read in Subl. Therefore, the Reach/Coreach Tool
accounts for implicit data flow in that it not only tracks the

data flow through inports/outports, but also the data flow via
data stores, and Goto/From blocks. This is a major differ-
ence between our tool and that of [18], as the definition of
data dependency in Simulink in [18] does not account for the
implicit data flow.

Control flow Control flow logic in Simulink can be imple-
mented using a variety of mechanisms. For if-then-else logic,
an If block is used to implement the if-then-else conditions.
When evaluated true, a condition triggers the correspond-
ing If Action Subsystem (see Fig. 10). Likewise, for switch
logic, a Switch Case block is used to implement case condi-
tions, which when evaluated trigger attached Switch Action
subsystems corresponding to each case. Loops are straight-
forwardly implemented through the use of While lterator
and For lterator subsystems.
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Fig. 10 Coreach on Subsystem 1: first output of If block is affected by
first input only

For an example of control flow dependencies tracked by
the tool, consider the outputs of an If block that are used to
trigger If Action Subsystems, depending on the evaluation
of a specified condition on inputs of the If block (for an illus-
tration, see Fig. 10, where Subsystem 1, Subsystem 2, and
Subsystem 3 are If Action Subsystems). In early releases
of the Reach/Coreach Tool, we assumed that for If (Switch
Case) blocks, all inputs affect all outputs—this, however,
was a very rough approximation of actual dependencies. For
example, in Fig. 10, only In1 affects the first output of the If
block. For a condition at an output port of an If block, our
tool currently finds its dependencies on the If block’s inputs
based on the existence of the block’s input names within the
condition and within the If block’s conditions at the ports
above (since the conditions are evaluated top down): if the
name of an input is found in the condition for an output or
in any of the If block’s conditions above, then there exists
a dependency between the input and the output; otherwise,
there is no dependency. Note, however, that this is still an
overapproximation of actual dependencies. For instance, if
the condition at the first output of the If block in Fig. 10
is ul A —ul, the output signal is obviously not affected by
the value of u1 although our tool would still highlight the
dependency of the output on u1.

An If Action Subsystem block executes when the input
atits Action Port block evaluates to true. If a signal is tracked
to an output of an If block, then it further propagates to the
If Action Subsystem connected to the output, and all of the
If Action Subsystem’s outputs. Similarly, if the coreacha-
bility analysis is performed from a block whose input is the
output of an If Action Subsystem, it will trace back to its
Action Port, as well as the data input(s) of the If Action Sub-
system as determined by the coreachability analysis inside
the subsystem.

When it comes to an lterator subsystem, each block in
the subsystem is (control) dependent on the Iterator block
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in the subsystem, and, therefore, on its inputs. For example,
in Fig. 8a, Outl is dependent on all the inputs of WhileSub
subsystem, since the While lterator (Fig. 8b) executes the
contents of the subsystem based on IC (initial condition) and
cond inputs.’

The conditional subsystems Enabled Subsystem, Trig-
gered Subsystem, Enabled and Triggered Subsystem,
and Function-Call subsystems also have a control input in
addition to data inputs. When the control input satisfies a
condition, the subsystem is executed. For each conditional
subsystem, outputs are dependent on the control input. This
means that when the Coreach analysis is performed on a sub-
system’s output, it traverses back through the subsystem’s
control input (as well as through any relevant data inputs, as
determined by the Coreach analysis inside the subsystem).
Similarly, if the reachability analysis traverses to the control
input of a conditional subsystem, it is further propagated to
all of the subsystem’s outputs.

Finally, we note that the dynamics of one part of a model
can influence the simulation behavior (simulation results) of
another part of the model even if no control or data depen-
dencies exist between the model’s parts. More precisely, if
a variable-step solver is used for simulation, different time
constants of different parts of a model will have impact on
the times at which simulation results are produced, and on
the accuracy of the solution. The Reach/Coreach Tool does
not track this kind of dependency. However, given that the
target models of the tool are discrete-time control systems
from which code is generated via a fixed-step solver, the
dependency via a solver is not relevant.

3.2.2 Implementation and applications

The Reach/Coreach Tool is implemented using Matlab’s
object-oriented programming facilities. The Reach and Core-
ach algorithms are fixed-point algorithms, that identify the
immediate reached/coreached blocks of a current set of
blocks, starting from the initial specified set of blocks on
which the Reach/Coreach analysis is to be performed. The
average execution time of the Reach algorithm run from a
top-level inport of several large industrial models containing
between 3671 and 21206 blocks, and on average 6236 blocks,
was 62.3 s; for the largest model (the model containing 73044
blocks with hierarchy depth of 16), the Reach runtime was
almost 18 min.

Next, we elaborate on how the tool can be used in a model-
based software development process.

3 At the beginning of a time step, if the IC input does not hold, the
subsystem is not executed in that time step. If the IC input does hold,
the subsystem gets executed, and then, if the cond input is true, the
iterator executes the subsystem again. The iterations continue while
cond input is true and the number of iterations is less than or equal to
the Maximum number of iterations.
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Fig. 11 Subsystem Mode Processing after Coreach was run on all outputs of Gear and Mode Processing

Comprehension While signatures address the comprehen-
sion issue at the subsystem level, the Reach/Coreach Tool
offers an abstracted view of data and control flow from given
blocks backwards to inputs, or forwards to outputs. Both the
views generated by the Signature Tool, and the views gener-
ated by the Reach/Coreach Tool, are data flow views, and, as
claimed in [15]: “such views can be very helpful for track-
ing data flows through a system — especially when there are
additional hidden dependencies.” Furthermore, by trimming
the extraneous blocks from a model, it is possible for a user
to gain a greater understanding of the structure of the model.
Reach/Coreach analyses can assist developers, testers and
reviewers to fully grasp data and control dependencies in a
model, as understanding the flow in complex models is very
hard without proper abstractions even when the models are
reasonably well-documented.

Dead/unreachable code The tool can be used to find
unreachable parts of a model. When reachability analy-
sis is performed on all of the model’s inputs, unmarked
blocks/signals approximate unreachable parts of the model.
When the coreachability analysis is performed on all of the
model’s outputs, the extraneous blocks are unnecessary in
the sense that they have no (data or control) effect on the
outputs of the model. For example, running coreachability
analysis on the outputs of subsystem Gear and Mode Pro-
cessing from Fig. 3a revealed the Data Store Read block
of data store bPoweredState inside the Mode Processing sub-
system does not have any impact on the If GearState block’s
outputs (see Fig. 11). Moreover, the combination of both
Reach and Coreach analysis revealed a data store in the Gear
and Mode Processing subsystem that is declared, but never
used (data store eSpeedState, see Fig. 12). The same issue
can also be discovered using the Data Store Rescope Tool as
will be shown in Sect. 3.3.

Impact analysis Since the tool identifies the parts of a model
affected by a change of a given block, it supports impact
analysis. Impact analysis can be of great value in indicat-

ing what effect a change in requirements or design can have
on system’s design. During both initial design and refac-
toring, the tool can be used for preliminary evaluation of
different designs with respect to the extent that the future
anticipated requirements/design changes will have on the
system’s design. Therefore, the tool would help the developer
design for change. Further, after a change to the design has
been applied, the impact analysis can be extremely beneficial,
focusing and possibly reducing verification efforts, which are
typically very large, especially in the case of safety-critical
systems. Verification efforts can be reduced by focusing on
the parts of the system affected by the change—thus we
view the Reach/Coreach Tool as a useful means of providing
impact analysis to help avoid costly reanalysis and testing of
the unaffected parts of the system.

For example, a developer refactoring the logic regard-
ing driver requests for Gear 2, Gear 3, Gear 4, and Gear 5
inside the Gear Processing subsystem from Fig. 3b might be
inclined to group or change the order of corresponding con-
stants at the inputs of the If GearState block (last four inputs).
The developer may believe that the If Action Subsystem If
Gearl will not be affected by the change, as there is no obvi-
ous dependency between the subsystem and any of the last
four inputs of the If GearState block, since the execution of
the If Gear1 subsystem is dictated by a condition that depends
only on the first two inputs of the If Gearl block. However,
application of the Reach analysis on the four constants sug-
gests that there is some implicit dependency between the
last four inputs of the If GearState block and If Gearl sub-
system. If the developer wishes to learn the origin of this
dependency, he/she can use the results of the Reach analy-
sis on this subsystem (including its descendant subsystems).
This view (Fig. 13a), however, is overloaded with other infor-
mation as it also contains dependencies that the developer
expected (dependencies of If Gear2 and If Gear345 or Else
on the last four inputs of the If GearState block). Therefore,
we used the Reach/Coreach Tool to generate a simplified
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eSpeedMode
Speed Mode

Fig. 12 Subsystem Gear and Mode Processing after Reach and Coreach were run on all its inputs and outputs, respectively

view of the system that identifies the effects of the four con-
stants on the If Gearl subsystem only, without showing the
constants’ effects on If Gear2 and If Gear 345 or Else except
dependencies that are relevant to If Gearl. Using this view,
as shown in Fig. 13b—d, one can see that If Gear2 subsystem
(Fig. 13c) writes into data store eGrantedState (Fig. 13d), and
If Gearl (Fig. 13b) reads from this data store. Therefore, the
developer is offered a model view in which only the relevant
dependencies (in this case, the ones that were not initially
foreseen) are highlighted. In general, after a user specifies
the subsystems that should not be affected by a change, the
tool can be used to generate a view of the undesired depen-
dencies, if they exist.

Refactoring The tool can be used to find independent/weakly
dependent data flows. These may be candidates for sepa-
ration into different subsystems. Likewise, some seemingly
independent data flows can be shown to have hidden depen-
dencies, as shown in the previous paragraph.

3.2.3 Comparison with similar tools

A Simulink model slicing tool is presented in [18], although,
to the best of authors’ knowledge, the tool itself is not
available for use. In [18], data dependencies are calcu-
lated by traversing signal lines, and control dependencies
are derived from the calculation of Conditional Execution
Contexts — Simulink schedules for the execution of blocks
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modeling conditional dependence. Compared to the model
slicing approach of [18], our tool accounts for not only
the data flow through signal lines, but also the data flow
through Simulink’s data stores and From/Goto blocks. Fur-
thermore, the Reach/Coreach Tool provides fine-grained data
flow tracking through Simulink buses, which is not supported
in the tool of [18].

With the release of Matlab 2015a came the introduction of
Simulink Design Verifier’s (SDV) Model Slicer tool, which
identifies dependencies between blocks with many of the
same motivations as the Reach/Coreach Tool. It is no sur-
prise then, that the core functionality is similar between these
tools. With respect to a block, they both support slicing to
discover the blocks which are dependant on it (termed Reach
and Downstream for our tool and MathWorks’ tool, respec-
tively), those blocks which it depends on (Coreach/Upstream
for our tool and Mathwork’s tool respectively), as well as
slicing in both these directions (bidirectional). In the three
cases, the tools both support highlighting in various colors,
as well as the actual extraction of a slice from the remainder
of non-dependant blocks in the model.

Nevertheless, our use and evaluation of Model Slicer has
revealed several distinguishing factors between the two tools.
Firstly, it is commonly the case that large companies have
long and complex tool chains which evolve slowly. Specif-
ically, our industrial partner relies on an older version of
Matlab for its control software development, across multiple
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teams and projects. For this reason, backward compatibility
with older versions of Matlab is necessary in practice. With
Model Slicer being newly added to the Mathworks product
line in Matlab 2015a, it is not possible to run this tool on an
earlier version. In contrast, the Reach/Coreach Tool is sup-
ported for previous versions of Matlab up to and including
Matlab 2011b.

Additionally, the difference in costs for acquiring these
tools is considerable. While the Reach/Coreach Tool is free
for use on Matlab Central, the price for single and concur-
rent licenses of SDV are approximately $8,500 CAD and
$34,000 CAD, respectively. The Model Slicer tool is but a
small component of SDV; however, it cannot be acquired
without purchasing SDV in its entirety. For smaller compa-
nies, the price of purchasing SDV as a whole just to access its
model slicing capabilities may not be justifiable nor feasible
from a financial standpoint.
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on If Gearl only (If Gear2 subsystem). d Effect of last four inputs of If
GearState on If Gearl only (If Gear2’s Current Entry subsystem)

Several shortcomings in SDV Model Slicer’s ability to
trace certain dependency paths have been revealed during our
use of the tool on industrial models. Most notably, the tracing
of dependencies beginning at so-called virfual blocks is not
supported. Virtual blocks are considered by Simulink to be
those blocks which do not affect the execution of the model,
but rather facilitate the visual structuring of the model [27].
Blocks considered to be always virtual include Goto/From,
Mux, Demux, and Terminator. Save for some very spe-
cific circumstances, inport, outport, and subsystem blocks
are also virtual. For instance, inport blocks are only ever
non-virtual if they are located inside a conditionally exe-
cuted subsystem or an atomic subsystem, and are directly
connected to an outport block. Outports are virtual unless
they are located at the root level of the model, i.e. outports
located within subsystem blocks are virtual. Thus, a major
hindrance in using this tool is that for the majority of cases,
slices beginning from inports and outports are not permit-
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Fig. 14 Data store push-down: before

ted. This severely restricts one’s ability to view how inputs
affect the computation of outputs, and vice versa. Replicat-
ing the results of Fig. 8a is not possible with Model Slicer,
as the subsystem is not located at the top level of the model,
causing the outports to be virtual, and therefore a slice is not
permitted to begin at these outports.

Moreover, in the case of subsystem blocks, Model Slicer
handles slices beginning at these blocks inconsistently.
Simulink considers subsystems to be virtual in any situa-
tion where they are used in non-conditionally executed and
non-atomic subsystems. Nonetheless, generating slices with
subsystems as starting points in such cases is supported,
contradicting the assertion that all virtual blocks cannot be
starting points.

Furthermore, Model Slicer neglects to account for some
finer details of control flow in Simulink: it does not provide
the same level of precision in tracking control flow depen-
dencies as the Reach/Coreach Tool. More precisely, for the
mechanisms dealing with control flow, such as If and Switch
Case blocks, Model Slicer assumes that all inputs affect all
the outputs, which, in general, is a much rougher approx-
imation of actual dependencies than that generated by the
Reach/Coreach Tool as discussed in Sect. 3.2.1.

3.3 The Data Store Rescope Tool

In working with the industrial models of our automotive part-
ner, we observed that many models defined the majority of
their data stores at the top level of a model’s hierarchy. This
practice is analogous to programming using a large number
of global variables, and it is widely considered a bad software
engineering practice. Data stores, like variables in traditional
programming languages, should be properly scoped in order
to disable inadvertent/unwanted access to the data stores.
Also, proper scoping declutters the interface of a subsystem
by hiding low-level details of the subsystem, therefore pro-
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Fig. 15 Data store push-down: after

viding proper encapsulation. Proper data store scoping also
reduces the number of (implicit) inputs for testing, result-
ing in possibly fewer generated tests involving fewer test
steps. Therefore, proper scoping of data stores enhances com-
prehensibility, maintainability, testability, and reusability of
Simulink subsystems.

In this section, the concepts of data store rescope opera-
tions are discussed, and their implementations and applica-
tions are detailed.

3.3.1 Illustration of data store push-down operation

The scope associated with data stores and Goto/From blocks
was previously discussed in Sect. 2.1. A block falls within
the scope of another block b if it is contained in a system that
belongs to the scope of block b. Our goal is to limit the scope
of data stores as much as possible. For example, if a Data
Store Memory block occurs high up in the model hierarchy,
and there are two data store references (Data Store Read
or Data Store Write blocks) lower in the hierarchy, the goal
is to push-down the data store (Data Store Memory block)
in the model hierarchy to the smallest subsystem such that
both references are still within the scope of the data store.

In Fig. 14, a system is shown before the data store push-
down operation has been applied. The circle nodes represent
systems, and rectangular elements are blocks. Gray blocks
are subsystem blocks, and circles with a gray line pattern are
reference blocks (blocks that refer to a block in another file,
here denoted by a patterned rectangle). Black nodes labeled
DSM;, DSR;, and DSW; correspond to Data Store Memory,
Data Store Read, and Data Store Write blocks, respec-
tively. Arrows emanating from systems to blocks denote
membership of the block in the system, that is, if A and B are
systems, A — B denotes that subsystem A contains subsys-
tem B. A similar relationship exists for references and files.
Figure 15 shows the system after the data store push-down
operation has been applied to it.
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3.3.2 Implementation and application

The push-down algorithm is implemented as an iterative Mat-
lab function. Firstly, the algorithm searches the model for all
Data Store Memory blocks. Then, it searches for all the
corresponding Data Store Read and Data Store Write
blocks. The addresses of these corresponding Data Store
Read and Data Store Write blocks are then parsed to find
their lowest common ancestor. Lastly, unless the lowest com-
mon ancestors reside in a library linked subsystem, the Data
Store Memory blocks are then pushed-down to their respec-
tive lowest common ancestors. The longest execution times
of the algorithm on the large industrial models we analyzed
was 8.7s; the model contained 7792 blocks and 94 Data
Store Memory blocks out of which 62 were rescoped.

The application of the tool on the industrial example from
Fig. 3a results in one data store being pushed-down: the data
store eGrantedState’s declaration is moved from the subsys-
tem from Fig. 3a (see Fig. 16a), and placed in the subsystem
from Fig. 3b, as shown in Fig. 16b. Further, the application of
the tool on the same system revealed another potential issue
with the model from Fig. 3a: data store eGrantedGear has no
references. The issue of declared, but unused data stores is
ignored by Matlab, and, to the best of our knowledge, there
exists no tool to detect the problem.

Given its importance, we propose the proper scoping
of variables to be included in the modeling style guide-
lines for Simulink. With Simulink/Stateflow emerging as
a leading environment for model-based design of embed-
ded systems, a number of guidelines have been created to
assist designers in modeling. Guidelines typically provide
a wide range of rules/recommendations (e.g., naming con-
ventions, usage of Simulink patterns for different constructs
such as case constructs, grouping of blocks into subsystems,
etc.). In the automotive industry, the most notable model-
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ing standard is published by The MathWorks Automotive
Advisory Board (MAAB) [28]. In addition, companies use
in-house guidelines to improve the quality of their soft-
ware. In-house guidelines typically contain a number of
checks from standard guidelines. Adherence to these rules
improves software testability, understandability, and main-
tainability. Also, compliance enhances simulation and code
generation capabilities. For example, each of the MAAB
rules/recommendations for Simulink/Stateflow is justified by
one or more of the following:

— Easily understood algorithms (readable models, uniform
appearance of models, code, and documentation, clean
interfaces, professional documentation)

— Effective development process and workflow (ease of
maintenance, rapid model changes, reusable compo-
nents)

— Efficient simulation and analysis

— Generation of code that is efficient and effective for
embedded systems

— Ability to verify and validate a model and generated code
(requirements traceability, testing, problem-free system
integration, clean interfaces)

In order to include proper scoping of data stores in model-
ing guidelines, a rule can be formulated to require that each
data store (with certain exceptions) be defined at the lowest
hierarchy level such that all the references to the data store are
still within its scope. The exceptions account for situations
where a developer might desire to leave a data store defined at
ahigher hierarchy level than currently needed, foreseeing that
the data store will be used in the future by other subsystem(s)
at the same or higher hierarchy levels. Therefore, the user of
the tool should be able to choose the data stores that should
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elseifu1 == u3)

If GearState

f Goarass or Else
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Fig. 16 Illustration of push-down operation. a Subsystem from Fig. 3a after push-down operation. b Subsystem from Fig. 3b after push-down

operation
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Fig. 17 lIllustration of data store repair operation. a Before. b After: data store eGrantedState has been moved to subsystem Gear Processing (from

Fig. 3b)

Table 1 Push-down metric

Model Number of Number of Push-down
data stores data stores metric
pushed

Model, 82 55 87
Model, 195 111 334
Modelz 14 11 33
Modely 13 13 37
Models 12

Modelg 13

Model; 62 36 96
Modelg 15 15 24

not be moved down the hierarchy. Our tool supports this fea-
ture. A straightforward modification of our tool can then be
used to check for the compliance of a Simulink model with
the rule, and then correct the model (perform the push-down
operation) if needed so that the model adheres to the rule.
The guidelines published by the Japan MathWorks Automo-
tive Advisory Board (JMAAB) include a rule which strongly
recommends positioning Data Store Memory blocks as low
as possible in the model hierarchy, and discourages top level
use [26]. This is an example where our tool can serve as an
autocorrection tool and assist in achieving compliance with
published industry guidelines.

The Data Store Rescope Tool performs another useful
operation. Assume that the declaration for data store eGrant-
edState has been erroneously moved to subsystem Mode
Processing (Fig. 17a). The references to the data store are
now outside of its scope and Simulink throws an error upon
diagram update. Our tool can then be used to repair the model:
the declaration is first moved to the model’s top level, and
then it is rescoped downwards to minimize the data store’s
scope, as described in Sect. 3.3.1 (see Fig. 17b).

When it comes to the push-down operation, both the num-
ber of data stores and the numbers of levels data stores have
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been pushed down the hierarchy represent a useful indication
of the improvement in modularity of a model after the push-
down operation has been applied to it. That is why we define
the Push-Down metric as the total number of levels that all
the data stores in a model were pushed-down. Our tool cal-
culates the metric. The results presented in Table 1 represent
the metric values after a number of industrial models have
been rescoped.

An interesting synergy between signatures and the push-
down operation was demonstrated in [3]. The push-down
operation was applied on an industrial automotive model
shown in Fig. 18a. The number of data stores at the root
level (data stores are represented by rectangles at the bot-
tom of the figure) has been significantly decreased by the
push-down operation, as illustrated by Fig. 18b (the details of
both these models are not legible in the figures for confiden-
tiality purposes). From a software engineering perspective,
the push-down operation clears the interfaces of the model’s
subsystems at different hierarchy levels. Given the large num-
ber of data stores defined at the top level of the model, the
impact of the push-down operation is largest for the sub-
systems located at the model’s top level. This change in
subsystems’ interfaces is obvious with simple visual inspec-
tion of their signatures as generated by the Signature Tool.
Further, the Signature Tool was used on the model’s subsys-
tems to calculate the difference in the number of data items
in a subsystem’s weak and strong signature. This metric as
formalized in [3] and, as explained in Sect. 3.1, indicates the
quality of modularization of designs in Simulink. The values
of the metric for the model’s subsystems, before and after the
push-down operation, indicate the significant improvement
in modularity realized by the push-down operation.

Finally, we note that the scoped and global Goto/From
mechanisms can be properly scoped in much the same man-
ner as data stores. The rescope operation of the scoped and
global Goto/From tags is planned for a future release of the
tool.
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Fig. 18 Push-down on a large industrial model. a Top level of the industrial model before push-down operation. b Top level of the industrial model

after push-down operation

3.4 The Auto Layout Tool

In a modeling environment such as Simulink, the read-
ability of models is largely determined by the graphical
layout of blocks and lines in the model. This is similar to
traditional textual programming languages and the visual for-
matting their IDEs (Integrated Development Environments)
prescribe. However, in the case of Simulink’s graphical nota-
tion, achieving a good visual layout requires more effort.
Since most refactoring operations perturb model layout,
and readjustment of model layout is a tedious and error-
prone process if performed manually, automatic layout is
viewed as an essential component of model refactoring. How-
ever, while there are tools which increase the readability of
Simulink models, there does not exist a commercial tool that
comprehensively tackles the automatic layout of Simulink
models. For example, there exist commercial tools that check
Simulink models for compliance with respect to modeling
style guidelines (MXAM by Model Engineering Solutions
[13], Simulink Model Advisor by the MathWorks [22] with
the Verification and Validation Toolbox [23], etc.). For some
of the rules from the guidelines, these tools also automatically
repair models so that they adhere to the rules. However, the
repair capabilities of these tools are modest at best. While
a number of layout algorithms have been proposed (e.g.,
[11,12]), to the best of authors’ knowledge, no tools based on

these papers are available for download for Simulink. Fur-
ther, a layout tool is available via Matlab Central [24]. The
tool cleans up Simulink models without significant changes
to their layout structure (positioning of blocks), but rather
focuses on line transformations. While the tool is very useful
in certain cases, it struggles with very messy layouts that need
comprehensive restructuring (block displacements), and is
much slower than our tool.

The Auto Layout Tool consists of the Layout Engine
and some minor transformations. The Layout Engine uses
an existing graph drawing algorithm [8] implemented in
Graphviz. Graphviz is a set of open-source tools for drawing
graphs represented by the DOT graph description language.
More precisely, our tool harnesses Graphviz’s layout engine
dot for the auto-positioning of model blocks; signal lines
are then auto-generated using Simulink’s built-in automatic
line positioning support. Graphviz’s dot tool uses the algo-
rithm of [8] to rearrange blocks and lines in a consistent and
organized manner to maximize readability (the same algo-
rithm is also partially used by [11]). The tool resizes blocks
based on the number of inputs and outputs, and organizes the
lines such that the number of crossings is minimized. Fig-
ure 19a presents the Gear and Mode Processing subsystem
with a perturbed layout, and Fig. 19b depicts the model after
the Auto Layout Tool was run on it. Note that model com-
prehension and readability have markedly improved. Also,
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Fig. 19 Illustration of Auto Layout Tool. a Before. b After

the Layout Engine accommodates some Simulink-specific
layout requirements. For example, one of the important rec-
ommendations for Simulink diagrams’ layout as suggested
in the MAAB guidelines [28] states that inports and outports
should be placed on the left and right side of the model,
respectively, unless they are moved to prevent crossings.

The execution time of the tool on the model from Fig. 19a
was 2.7s. On a larger subsystem (also an industrial model’s
subsystem) containing 351 blocks and 243 lines, the tool’s
execution time was 53s.

The current version of the Auto Layout Tool also features

a number of refactoring transformations that were found to
be very practical:
Signal Line to/from Goto/From Two simple related trans-
formations have been proven very useful in every-day
development with Simulink: Signal Line to Goto/From and
Goto/From to Signal Line transformations. As stated in
Sect. 2, the Goto/From mechanism in Simulink is used to
replace signal lines to avoid line crossings that impede the
readability of models. However, although some guidelines
on the usage of the mechanism exist [28], the decision on
whether to use a Goto/From or a signal line in a specific
instance is often subjective and left to developer’s discre-
tion. Figure 20 illustrates an application of Signal Line to
Goto/From that eliminates two line crossings.

The transformations can be useful in many different sit-
uations. For example, we have seen industrial models that
heavily use local Goto/Froms in order to avoid multiple
line crossings. However, the heavy use of Goto/From also
impairs readability given that a Goto/From connection is
implicit and has to be traced by matching the names of
the Goto block and its corresponding From blocks. The
developer can try to maximize the readability of diagrams
by transforming some of the Goto/From blocks to signal
lines, and then using the Layout Engine to minimize the
number of crossings, and improve readability in general.
Similarly, a model that suffers from an overuse of signal
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lines leading to a large number of line crossings, could use
an introduction of Goto/From blocks to increase readability.
Also, standard or company-specific guidelines might impose
or restrict the usage of Goto/From in certain instances. Then,
our tool can be used to automate a required transformation
to ensure that the model conforms to the standard/company
rules/recommendations.

A transformation identical to Goto/From to Signal Line
was implemented in the tool presented in [29]. To the best of
our knowledge, this tool is not publicly available.
Subsystem flattening Use of the Flatten Subsystem transfor-
mation is illustrated in Fig. 21. The transformation replaces
a virtual subsystem with its content. Figure 21 illustrates the
flattening of subsystem Mode Processing. Figure 21b shows
an intermediate stage of the transformation, when the content
of subsystem Mode Processing is copied over to its parent
diagram. As seen in the figure, the layout of the diagram
has become significantly perturbed and hard to read, with
a number of blocks overlapping and lines crossing. Conse-
quently, the Layout Engine is run to improve the layout, with
the resulting model as shown in Fig. 21c. The intermediate
stage (Fig. 21b) is not evident to the user: we show it here
just to demonstrate the inner workings of the transformation.

Starting from Matlab 2015a, MathWorks offers the Expand
Subsystem transformation which is identical to our Flatten
Subsystem. However, our tool works on older versions of
Matlab, up to 2011b. Given the slowly evolving tool chains
of larger companies as discussed in Sect. 3.2, the backwards
compatibility of our transformation enables those compa-
nies to immediately benefit from the transformation. Another
flattening tool was developed in [7]. The tool is imple-
mented outside of the Matlab environment, necessitating one
to export the model before performing the transformation,
and then re-import it. It also does not adjust the visual lay-
out of the model afterward. Further, to the best of authors’
knowledge, this tool is not publicly available.
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4 Software engineering rationale for the tools

In order to apply software engineering principles, software
engineers must be equipped with appropriate tools and tech-
niques [9]. While the previous section elaborated on the role
of each of the tools in model-based development and how
the tools are related to some traditional software engineering
practices and principles, this section offers a brief summary
of how the tools are used in model-based development, while
making the link between the tools and integral software engi-
neering principles more concrete. Further, we clarify how the
concepts of module and component from traditional software
engineering map to Simulink’s constructs.

The set of tools described in this paper act upon the
primary design artifact of the model-based development
approach: the model. A Simulink model can be thought of
as a component—a self-contained and independent grouping
of related functions. The various functionalities of a compo-
nent are typically implemented as modules, or in the case of
Simulink, (virtual) subsystems. Subsystem blocks are often
implicitly identified as the Simulink equivalent of a mod-
ule (e.g., [4,6,17]). The interfaces of a model are generally
stable as development takes place, and remain intact through
the code generation process (e.g., a C file is generated for
each model), whereas subsystem boundaries are abstracted
away during code generation. For this reason, we have found
that in industry, modularity at the subsystem level is not a
major concern. Nevertheless, in our experience with a major
automotive OEM, we have observed that changes in require-
ments and design are mainly reflected within a model, across
subsystems. Therefore, software engineering principles, such
as those concerning modularity, are also necessary at the
subsystem level. As a result, the tools focus on supporting
software engineering practices for models and their subsys-
tem levels.

The Signature Tool can be used by software engineers
during several phases of the development process: design,
implementation, testing and documentation. The signature
concept introduces self-documenting capabilities of imper-
ative programming languages into Simulink. In explicitly
identifying data dependencies, the tool provides engineers
with a clear understanding of what data are available to them
at any level in the model hierarchy, facilitating the design
and implementation of features. Signatures support the prin-
ciple of modularity by providing well-defined interfaces of
subsystems. Moreover, in analyzing the difference between
a system’s weak and strong signatures, the tool can guide
refinement of an interface in order to minimize access, thus
supporting encapsulation and the principle of information
hiding. This also can be viewed as a way of instilling the
principle of least privilege, as constraining an interface to its
strong signature will eliminate access to data which is not
essential to its functionality, thus removing the potential for
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unintended data modification. In the testing phase of devel-
opment, the Signature Tool’s ability to create test harnesses
which account for hidden data flow is beneficial in supporting
unit testing, ultimately increasing coverage with less effort
for the test engine. Lastly, the tool can be used for automatic
generation of subsystem interfaces in design documentation.

The Reach/Coreach Tool is applied in the design, imple-
mentation, verification, and maintenance phases of model
development. Its different dependency analyses are useful for
identifying how changes to the design will impact other areas
of the model. The tool supports the principle of the separa-
tion of concerns by allowing engineers to concretely visualize
and ensure separation. In particular, it can identify areas of
models that are weakly dependant on each other, providing
candidates for separation into independent subsystems. Fur-
ther, the tool promotes the design for change principle as it
allows developers to estimate the impact of potential require-
ments or design changes on a design and then make design
decisions, as well as focus subsequent verification efforts
accordingly. Finally, the tool helps with standards and mod-
eling guidelines compliance by identifying dead/unreachable
code and unused data stores.

The Data Store Rescope Tool is beneficial when it comes
to the implementation of models. While the Signature Tool
can be used to identify instances where hidden data flow
is available (i.e., present in the interface) but not actually
needed, the Data Store Rescope Tool may be able to remedy
this situation by rescoping the data store to a lower level in
the model hierarchy. In general, this tool expedites the proper
scoping of data stores and helps enforce the principles of
modularity and least privilege throughout a model.

The Auto Layout Tool focuses on the implementation
and maintenance phases of the model development process,
automating the substantial yet tedious task of model format-
ting. Changes to a model will often perturb the graphical
layout of its elements, and this tool facilitates the model
readjustment which follows suit. Just as with textual pro-
gramming languages, consistency is an integral principle for
graphical programming languages. Models are the primary
design artifact, and so increasing their readability and under-
standability via consistency is necessary. The Auto Layout
Tool is the graphical equivalent of Integrated Development
Environment auto formatting of textual programming lan-
guages that we now take for granted.

5 Conclusions

Automation is an essential part of any software development
process. This paper presents a set of tools that help auto-
mate some traditional software engineering practices when
designing with Simulink. The practicality of the tools has
been proven on large industrial models from the automo-
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tive industry as demonstrated in the paper. The concepts
presented in this paper, and tools based on the concepts, rep-
resent only a first step in our investigation of the issues of
integrating some traditional software engineering practices
in design with Simulink.
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