
Stateflow to Tabular Expressions

Neeraj Kumar Singh
IRIT-ENSEEIHT

University of Toulouse
Toulouse, France

nsingh@enseeiht.fr

Mark Lawford
McMaster Centre for Software

Certification
McMaster University

Hamilton, Ontario, Canada
lawford@mcmaster.ca

Thomas S. E. Maibaum
McMaster Centre for Software

Certification
McMaster University

Hamilton, Ontario, Canada
tom@maibaum.org

Alan Wassyng
McMaster Centre for Software

Certification
McMaster University

Hamilton, Ontario, Canada
wassyng@mcmaster.ca

ABSTRACT
Stateflow is a visual tool that is used extensively in industry for
designing the reactive behaviour of embedded systems. Stateflow
relies on techniques like simulation to aid the user in finding flaws
in the model. However, simulation is inadequate as a means of de-
tecting inconsistencies and incompleteness in the model. Tabular
Expressions (function tables) have been used successfully in soft-
ware development for more than thirty years. Tabular expressions
are also visual representations of functions, but include the impor-
tant properties of completeness and disjointness. In other words,
a tabular expression is well-formed only when the input domain
is covered completely (completeness), and when there is no am-
biguity in the behaviour described by the tabular expression (dis-
jointness). The goal of our work is to use the completeness and
disjointness properties of well-formed tabular expressions to aid
us in establishing those properties in Stateflow models. From the
Stateflow models, we generate a new kind of tabular expression
that includes extended output options. We use the informal State-
flow semantics from MathWorks documentation as the basis for
generating our tabular expressions. The generated tabular expres-
sions are then used to guarantee completeness and disjointness. We
provide a transformation algorithm that we plan to implement in a
tool to automatically generate tabular expressions from Stateflow
models.

CCS Concepts
•Software and its engineering → Consistency; Completeness;
Formal software verification; Software notations and tools; Re-
quirements analysis; Software design engineering;

Keywords
Stateflow; Tabular Expressions; completeness; disjointness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SoICT 2015, December 03-04, 2015, Hue City, Viet Nam
c© 2015 ACM. ISBN 978-1-4503-3843-1/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2833258.2833285

1. INTRODUCTION
To hide complexity and to minimize the introduction of errors,

the software development process has changed dramatically over
the last few years. Software engineers and developers prefer to
use model-based development to design complex systems, where
graphical blocks and symbols can represent high level abstraction
of a system. Model-based development supports various tools based
on graphical blocks and symbols, which are used by industries for
design, simulation, and testing. Matlab is one of the tools that is
used worldwide by the automotive, medical and avionic industries
for developing their products.

Stateflow is a complex language with numerous features, but
does not have formal semantics. Its documentation [18] describes
informal semantics of the Stateflow execution based on the Matlab
simulation environment using various examples. Moreover, State-
flow does not support a formal verification tool for checking prop-
erties like consistency, completeness, and disjointness. The exist-
ing problems in Stateflow offer an opportunity to investigate tech-
niques that could provide such properties, as well as the capabil-
ity to verify a model’s consistency, taking into account Stateflow’s
informal semantics. In this paper, we propose the transformation
of Stateflow models into tabular expressions to address these prob-
lems. Tabular expressions have precise semantics [17, 16], and ver-
ification capabilities [8], and have been used for many years in in-
dustry [11, 32, 31]. We use the Stateflow informal narrative seman-
tics to capture precisely the order of execution of different compo-
nents of the Stateflow models. The generated tabular expressions of
a Stateflow model shows precise behavior of the system based on
tabular semantics by preserving the properties of disjointness and
completeness. This operational approach is able to express compli-
cated behaviours of a system in tabular expressions that are likely
to be lost in a state transition table. Moreover, the generated tab-
ular expressions include extended conditions, and behaviours that
are not explicitly clear in the original Stateflow models. These ex-
tended conditions and missing behaviours are identified during the
transformation process. The tabular expressions satisfy required
properties like consistency, completeness and disjointness and this
can be verified by existing tools [8]. The generated tabular expres-
sions contain detailed information that can be used further for an-

Partially supported by: The Ontario Research Fund, and the Na-
tional Science and Engineering Research Council of Canada.

312

alyzing the specific properties of a particular component of a very
large system. Moreover, the tabular expressions can be used by
software engineers and developers to understand desired system
behaviours more precisely.

The remainder of this paper is organized as follows. Section 2
presents related work. Section 3 introduces the characteristics of
Stateflow and tabular expressions. Section 4 shows the transforma-
tion process from Stateflow to tabular expressions. Experiments in
Section 5 demonstrate the applicability and usefulness of our ap-
proach. Section 6 discusses the paper, and Section 7 concludes the
paper along with potential future work.

2. RELATED WORK
Since the late 1950s, tables have been used for various purposes

like analyzing computer code, and developing requirements docu-
ments. In the 1960s, tables first appeared in the literature to show
their usability in software development [4, 20, 21]. All these tables
can be distinguished by their names and forms such as decision
tables, transition tables, etc.

Parnas and others introduced tabular expressions for developing
the requirements document for the A-7E aircraft [13, 6, 12, 22] in
work undertaken for the US Navy. Parnas was the most influential
person to apply tabular expressions in documenting software [27].
Later, tables were used by many others, including at Bell Labora-
tories, and the US Air Force. Starting in the late 1980s tabular no-
tations were applied by Ontario Hydro in developing the shutdown
systems for the Darlington Nuclear Plant [32, 31, 2, 25]. Formal se-
mantics of tabular expressions have been proposed by Parnas [23]
and other researchers [14, 15, 17, 16]. A slightly outdated survey
on tabular expressions is available in [16].

Stateflow is a graphical modelling language that shares many
features with Statecharts [10]. Stateflow semantics are completely
deterministic while Statecharts semantics can handle non-determinism.
For instance, the execution order among parallel states in State-
flow is sequential. Moreover, Stateflow has its own modelling fea-
tures such as defining that a condition action of a transition occurs
before its source state becomes inactive. Therefore, Statecharts
semantics are not applicable to Stateflow. However, several pa-
pers have reported work on formal verification of Stateflow mod-
els. Banphawatthanarak et al. [3] used the SMV model checker to
verify Stateflow models, in which they had not considered mod-
elling multiple hierarchy levels of states. Cavalcanti [5] proposed
verification of Stateflow models using the Circus specification lan-
guage. Scaife et al. [28] converted a subset of Stateflow into a
synchronous language, Lustre, in which inter level transitions were
not allowed. The operational semantics of Stateflow proposed by
Rushby et al. [9] have been used as a foundation for developing a
prototype tool for formal analysis of Stateflow designs.

A transition table is a tabular presentation of a Stateflow model,
that shows only the conditions and actions of transitions, and state
information. This table does not contain other information like
entry, exit and during actions. Due to this lack of information
in the transition table, it cannot be used for analyzing the con-
sistency, completeness and disjointness properties of a Stateflow
model. In order to analyze these properties, our approach is to
transform Stateflow models into tabular expressions or function ta-
bles using the narrative informal semantics of Stateflow that con-
tain detailed information about the actions and transitions. In this
way, entry, exit, during and condition actions also appear in their
proper order in the produced tabular expression. The tabular ex-
pression allows a careful inspection of the Stateflow model through
identifying missing conditions and desired behaviours by checking
completeness and disjointness.

3. PRELIMINARIES

3.1 Stateflow
In this section, we describe how the Stateflow language can be

used for designing complex behaviours of a system. Simulink is
a block diagram environment for modelling, simulating and ana-
lyzing a system, whereas Stateflow is an interactive tool that can
be used for modelling the behaviours of reactive systems. State-
flow models can be included in a Simulink model by placing them
in Stateflow blocks. The syntax of Stateflow is similar to State-
charts [10]. It supports the notions of hierarchy (states may con-
tain other states), concurrency (executes more than one state at the
same time), and communication (broadcast mechanism for commu-
nicating between concurrent components). It also includes com-
plicated features like inter level transitions, complex transitions
through junctions, and event broadcasting. These features allow
us to design complex systems effectively and concisely.

Fig. 1 depicts a simple Stateflow diagram, which contains all the
basic components of Stateflow. A Stateflow model consists of a
set of states connected by arcs called transitions. Each state has a
name and can be decomposed to model a hierarchical state diagram.
States can have different types of actions that can be executed in a
sequential order. These action types are entry, exit, during, and on
event_name.

There are two types of decomposition for a state: 1) OR-states
and 2) AND-states. In the Stateflow diagram, the OR-states are
indicated by a solid border, while AND-states are indicated by a
dashed border. Each hierarchy level of the Stateflow presents either
OR-states or AND-states decomposition (see Fig. 1). It should be
noted that, AND-states do not allow pure concurrency because the
Stateflow model runs on a single thread, therefore only one AND-
state executes at a time. Each AND-state is executed sequentially
according to the execution order, which can depend on the states’
geometric positions or manually assigned priorities. A Stateflow
model can have both data and event input/output ports that can be
defined as local as well as external.

A transition is an arc that connects two states, where one state
is source (state) and another is destination (state). A transition can
be characterized by a label that can consist of event triggers, condi-
tions, condition actions, and transition actions. The ‘?’ character is
the default empty label for transitions. A transition label can have
the following general format:

event [condition] condition_action/transition_action

Each part of the transition label is optional. The event specifies
an event that causes the transition to be taken, provided the con-
dition, if defined, is true. The absence of an event indicates that
the transition is taken upon the occurrence of any event. Multiple
events can be specified using the OR logical operator (see Fig. 1).
A condition is a boolean expression that indicates that the transi-
tion can be taken if the condition expression is true. A condition
action is enclosed in curly braces({}) and executes as soon as the
condition (guard) becomes true before the transition destination has
been determined to be valid. Absence of a condition expression is
implied by true, and the condition action is executed only if the
transition is true. The transition action is always executed after the
transition destination has been determined upon validation of the
provided condition. Each transition also has a priority of execu-
tion, which can be determined based on the geometric position and
hierarchy level.

Stateflow uses two different types of junctions named as connec-
tive and history junctions (see Fig. 1). The connective junctions

313

StateA
StateB

StateC
StateD

StateF

StateG

StateE

StateH
StateI

StateK

StateJ

H

StateP

StateQ

[t>10] {a=a+2;}/s=s+10;
Evt2

[t>5||a>10]

Evt2

Evt1|| Evt2

[t>5]

Evt1

Evt2

entry: a=0;
exit: a=10;
during: a=a+1;

entry: a=0;
exit: a=2;

exit: a=7;
during: s=s+1;

entry: a=0;
exit: a=4;

Default
Transition

Parallel (AND)
State

Exclusive (OR)
State

History
Junction

Transition

Connective
Junction

Transition ActionCondition ActionConditionEvent

State
Actions Transition Label

[t>10] {a=a+2;}/s=s+10;

Figure 1: Stateflow Example.

provide alternative transitions paths for a single transition or de-
sired system behaviour. They are often used to model an if-then-
else structure, a case structure or a for loop. The history junctions
record historical activity information of states or superstates. A his-
tory junction of a superstate stores the state or substate which was
active when the superstate was exited.

3.2 Tabular Expressions
In late 1970s, Parnas et al. [24, 25, 13] used tables to specify the

software system requirements for expressing complex behaviours
through organizing the relation between input and output variables.
These tables were used simply to describe the system requirements
unambiguously. Parnas formally defined ten different types of ta-
bles for different purposes using functions, relations, and predi-
cates [23]. Parnas also called these tables tabular expressions be-
cause the tables use mathematical expressions and recursive defi-
nitions. Some foundational works reported formal semantics [17],
table transformation, and composition of tables [30]. The formal
semantics of tables specify the precise meaning that helps to main-
tain the same level of understanding when tables are used by vari-
ous stakeholders. Similarly, table transformation can be used to get
a desired system behaviour under various system situations, and the
composition of tables can be used to integrate different tables to ob-
tain the final complex behaviour. These tables have been used by
several international projects like Ontario Hydro in the Darlington
Nuclear Plant [7], and the US Naval Research Laboratory [11], etc.

Tabular expressions [26, 27] are not only effective visually, and
an effective and simple approach to documenting the system re-
quirements by describing conditions and relations between input
and output variables, they also facilitate preserving essential prop-
erties like completeness and disjointness. In our work, for trans-
forming Stateflow models into tabular expressions, we use horizon-
tal condition tables (HCT) shown in Fig. 2. The HCT table contains
a group of columns for input conditions and a group of columns for
output results. However, the input column may be sub-divided to

specify multiple sub-conditions. The tabular structure highlights
the structure of predicates, and adjoining cells are considered to be
ANDed (see Fig. 2) that can be interpreted in the tabular structure
as a list of "if-then-else" predicates.

Condition 1

Condition f_name

Sub Condition 1

Sub Condition 2

....

Condition n

Result 1

Result 2

....

Result n

Figure 2: Horizontal Condition Table or Function Table.

4. RULES FOR TRANSFORMING STATE-
FLOW INTO TABLES

Stateflow models can be designed using graphical components
(states and transitions) as well as state transition tables. Both the
graphical representation and transition table of a Stateflow model
often contains inconsistencies and may be incomplete. In this sec-
tion, we describe the general rules for transforming Stateflow mod-
els into tabular expressions according to the narrative executional
semantics of Stateflow, in order to analyze complex behaviours, and
to guarantee essential properties like consistency, completeness and
disjointness through discovering missing information. This miss-
ing information is often considered as not to be part of the system
design. In this paper, we consider simple Stateflow models that can
allow only exclusive (OR) states without hierarchy. But the simple

314

Condition
Actions

Entry
Actions

Exit
Actions

Transition
Actions

During
Actions

ConditionEventSource
State

Destination
State

.....

du_action1 en_action

du_actionn

...
cnd_action1

cnd_actionp

...
ex_action1

ex_actionq

...
tran_action

tran_action

...
1

r en_actions

...
1

Figure 3: Table Architecture for Stateflow.

Stateflow models do allow entry, during, exit, condition and transi-
tion actions. In the following sections, we describe an architecture
of the table and a set of rules for transforming Stateflow models
into tabular expressions.

4.1 Tabular Expression Architecture for State-
flow

To preserve the narrative semantics of Stateflow, we use output
columns of HCT in a specific order. Fig. 3 presents an architecture
of the tabular expressions, which contains the elements of State-
flow model. In the Fig. 3, first three columns contain Source State,
Event, and Condition of a transition. The cells of these columns
can be further split into two or more cells as per the requirement
during the transformation process to cover the possible scenarios
for complex properties. For example, the conditions of a transition
do not contain negation of the given conditions that must be iden-
tified during the generation of tabular expressions. The rest of the
columns of Fig. 3 contain ordered During Actions, Condition Ac-
tions, Exit Actions, Transition Actions, Destination State and Entry
Actions. Let n be the number of user defined program variables
appearing in a Stateflow block. All of the Actions columns may be
split into many sub-columns to record the possible actions on these
n variables. In the Stateflow, a variable can be used many places.
For instance, a variable can be in both Exit Action and Transition
Action, and these actions matter on the execution order. To handle
the multiple times appearance of the same variable, we apply spe-
cialization to distinguish all the Stateflow variables. For example,
we use some extra tags on each variable name as per the type of
action, such as, for Exit Action variable name can be ex_var, where
exit belongs to the Exit Action and var is a variable name. We also
use some fixed keywords like NONE, NC, and CALL that can be
used to fill the cells of the table. The meanings of these keywords
are as follows: NONE when an action is not given, NC for No
Change (a value is not modified after execution), and CALL for
function or events calling in the actions.

It should be noted that we have considered During Action be-
fore the rest of the action columns and destination state, because
the during action(s) of the source state is only allowed when all the
transitions are invalid from the source state to all the possible desti-
nation states. In this case, we need to fill only during action(s) and
the destination state with the same value as the source state, and the
rest of the columns do not change.

4.2 Transformation Rules
This section provides a set of rules for transforming the State-

flow models into tabular expressions. We have identified these rules
through our understanding of the Stateflow executional semantics,
and the rules are then applied to transform the Stateflow models.
Our current rules deal with only simple Stateflow models in which
parallel and hierarchy levels of modelling are not included. How-

ever, this is our first step in applying tabular expressions to analyze
Stateflow models through transformation. In the future, we will
provide transformation rules for other complex Stateflow models,
including parallel and hierarchical models. These transformation
rules will extend the simple Stateflow rules to cover all the required
functional behaviors for checking the properties of disjointness and
completeness. In fact, the simple Stateflow covers all the essen-
tial information that can be required by the parallel and hierarchy
Stateflow models. A set of rules can be applied iteratively to cover
all the states and transitions for transforming the simple Stateflow
models into the specific table format we have defined (see Fig. 3).
The current rules are given in a narrative style as follows:

1. Default / Normal Transition: Identify a default transition
or normal transition.

2. Source State: The next step is to identify a source state of
the identified transition and add it into the source state col-
umn of the table (in case of default transitions set source state
to START).

3. Event: In this step, we analyze the label of an identified out-
going transition from the source state. If this transition con-
tains one or more events then we add them into the event
column of the table, otherwise we place TRUE into the event
column of the table. (The event element is optional so it can
be absent sometimes).

4. Condition: Identify the given condition(s) of the transition
and add it into the condition column of the table (if condi-
tion(s) are absent then set the condition to TRUE).

5. Condition Action: The next step is to identify the given con-
dition action(s) of the identified transition, and add it into the
condition action column of the table (if the condition action
is absent then set the condition action to NC). If more than
one condition action is identified, then with the variable’s
name use specialization and all these new specialized vari-
ables will be added into multiple sub-columns of the action
column of the table. If the given condition action is an event
or predefined function then use CALL function or event.

6. Exit Action: The next step is to identify the exit action(s)
of the source state, add it into the column of exit action of
the table. If more than one exit actions is identified then with
the variable’s name use specialization with exit action(s) to
fill other sub-columns of the exit action column. If the given
exit action is an event or predefined function then use CALL
function or event.

7. Transition Action: This step is used to identify the tran-
sition action(s) and add it into the transition action column
of the table. If more than one transition action is identified,
then with the variable’s name use specialization with transi-
tion action(s) to fill other sub-columns of the transition ac-
tion. If the given transition action is an event or predefined
function then use CALL function or event.

8. During Action: The next step is to identify the during ac-
tion(s) of the source state, and add it into the during action
column of the table. During actions are included only when
there are no valid transitions available, causing the state to
remain active (i.e. source state = destination state). If more
than one during action is identified, then with the variable’s
name use specialization with during action(s) to fill other
sub-columns of the during action. If the given during action

315

Event Condition
Condition

Action
Exit

Action
Default

Transition

True

FalseTrueTrue Transition
Action

Destination
State

Entry
Action

False

During
Action

Source
State

Default
Transition

Default
Transition

FalseTrue

False

Figure 4: Building Tables from Stateflow : Abstract Flowchart.

is an event or predefined function then use CALL function or
event.

9. Destination State: In this step, we identify the destination
or target state and add it into the destination state column of
the table. For any during action(s), the destination state must
be the same as the source state.

10. Entry Action: Finally, we identify the entry action(s) in the
target or destination state and add it into the entry action col-
umn of the table. If more than one entry action is identified,
then with the variable’s name use specialization to fill other
sub-columns of the entry action. If the given entry action is
an event or predefined function then use CALL function or
event.

11. Completeness of Events and Conditions: Corresponding
to the split cells in the columns of event and condition, make
respective entries in the entire row through splitting the rest
of the cells in each column. For example, for input domain
completeness related to an event, add the negation of the
given event(s) in the same column by splitting the cell into
two or more cells (if an event does not exist then this step is
not required); and for completeness of the input domain re-
lated to conditions, add the negation of the condition(s) in the
same column by splitting the cell into two or more cells. It is
important that the identified condition(s) and its negation be
added into the table for the identified event and its negation
as well. It should be noted that in the case of a during action
all the cells will use NC as a cell value except a destination
state cell entry, which will be the same as the source state.

12. Goto Step 1.

The above rules apply iteratively to transform the Stateflow mod-
els into tabular expressions. The textual description of the rules
may appear complex, but the transformation process is actually
quite straightforward. To better understand this process, we have
included an abstract view of the transformation process using a
flowchart (see Fig. 4).

5. CASE STUDY
In this section, we apply the transformation rules for generating

the tabular expressions from Stateflow models. We have applied
this transformation process to several case studies and industrial ex-
amples, in which a system is developed without using hierarchical
and parallel components of Stateflow. However, we would like to
share our experience with a real-time case study related to a robotic
system, which is taken from [1]. It is a small case study that is de-
veloped by researchers for the Field Robot Event 2007. The given

stateflow model is used for designing the behaviour of a robotic
system. Fig. 5 presents a basic exclusive (OR) Stateflow chart of
the robotic system. We applied our transformation process to ob-
tain the tabular expressions from the selected Stateflow models of
the robotic system that captures all the possible activities including
different types of actions, transitions and state information. Fig. 6
shows the generated tabular expression. In Fig. 5, a default transi-
tion is identified that is used initially to start the process for gener-
ating the tabular expressions (see Fig. 6). In Fig. 6, the first row of
the column Source State contains State = START to present the
default transition of the robotic stateflow. In the case of a normal
transition the column Source State contains the name of the source
state in place of START. For example, the next row of the same
column contains State == ManualDrive. The next column
(Event) of the table contains TRUE that shows there is no ex-
plicit event associated with the default transition. The default tran-
sition of the robotic stateflow has three transitions connected by a
junction. These three transitions have transition conditions that are
given in the column Condition of the table in three separate rows.
For example, stateReq == 1 is the condition for the first transi-
tion, stateReq == 2 OR stateReq == 3 OR stateReq == 5
OR stateReq == 12 is the condition for the second transition,
and stateReq == 4 is the condition for the third transition. The
default transition does not have a source state, therefore the During
Actions column of the table contains NC. Similarly, the transitions
do not have condition actions and exit actions so that the next two
columns, Condition Actions and Exit Actions are set to NC. The
next column, Transition Action, contains a list of actions that are
placed in three separate rows, one for each transition. For example,
drivingDirOut = 1; turnCounter = 1; is a list of sequential
actions for the first transition, drivingDirOut = 1; turnCounter = 1;
state = stateReq; is a set of sequential actions for the second tran-
sition and drivingDirOut = 1; turnCounter = 1; state = 4;
is a list of sequential actions for the third transition. To distin-
guish these variables drivingDirOut, turnCounter and state from
other actions (e.g. exit, during), we can use specialization, such
as tran_drivingDirOut, tran_turnCounter and tran_state, in which
tran’ indicates for transition action (see Fig. 3). The next column,
Destination State, is used to set a destination state corresponding
to the selected transition. In the example, three destination states
ManualDrive, drivingRow and Turning are set in the Destination
State column of the table for each transition. Finally, the last col-
umn, Entry Actions, is used to place a list of entry actions of the
destination state in the table. In our running example, there is no
entry action in any of the three destination states ManualDrive,
drivingRow and Turning, therefore we enter NC in each row of
the transitions. In order to satisfy completeness properties in the
table, we need to add an extra row with the negation of the given
transitions conditions. In this case, we make the Destination State
the same as the source state, the During Actions column contains a
list of during actions, and the rest of the columns of the table are
set to NC. In our example, we use negation of all the conditions of
the given transitions as ((stateReq == 1) OR (stateReq == 2
OR stateReq == 3 OR stateReq == 5 OR stateReq == 12)
OR (stateReq == 4)) and the rest of the columns are set to NC
because there is no during action in the source state. The Desti-
nation State column must also be the same as the source state. In
a similar way, we applied all the transformation rules to cover all
remaining states and transitions to produce the tabular expression
in (see Fig. 6). The generated table contains much more significant
information than the transition table. In the generated table, the
condition column has some highlighted boldface conditions. These
conditions do not exist in the Stateflow model. These conditions

316

Figure 5: Stateflow models of a Robotic System [1].

are discovered during the transformation process used to generate
the tabular expression, since we have to ensure that the tabular ex-
pression is disjoint and complete. It should be noted that the asso-
ciated row for each condition is produced in the table according to
‘discovered’ conditions. We have used this transformation process
on several other Stateflow models to generate tabular expressions.
We have observed through this experiment that most of the time
a Stateflow model does not satisfy disjointness and completeness
properties, which are essential for developing critical systems. Our
experiment results have provided enough evidence to assert that
often a Stateflow model does not satisfy essential properties like
completeness and disjointness, and this is not safe for developing
a safe and dependable system. Checking properties like complete-
ness, disjointness and consistency are not easy without tool support.
Therefore, we have used our previously developed tool [8] to check
completeness, disjointness and consistency.

6. DISCUSSION
Simulink is a visual notation that is used by many industries, in-

cluding automotive, avionics and medical, to design complex sys-
tems. Stateflow is a graphical component of Simulink to model the
reactive behaviour of a system. Simulation techniques are a com-
mon approach for checking the validity of, and tracing errors in
Stateflow models. Simulink Design Verifier [19] is an extension of
the MathWorks Matlab / Simulink tool set that uses formal methods
to identify design errors in models. These errors include dead logic,
integer overflow, division by zero, and violations of design prop-
erties and assertions. Moreover, Simulink Design Verifier is also
used to analyze Simulink models to check the correctness of given
properties. These properties are specified directly in Simulink and
Stateflow in the form of assertions. Simulink Design Verifier uses a
prover plug-in to prove the given properties by searching for possi-
ble values for Simulink and Stateflow functions. It cannot be used

to check unsupported elements that may cause incomplete anal-
ysis or that will be stubbed out during analysis. According to [9],
Simulink does not support an interpretation of concurrency in terms
of a nondeterministic interleaving of concurrent events. Hence, the
Simulink Design Verifier does not check safety properties related
to concurrency, like race conditions. Moreoever, Simulink Design
Verifier does not support checks for disjointness and completeness
in the system requirements. In fact, simulation, like testing, cannot
guarantee the safe and reliable behaviour of a system that is devel-
oped with the help of Stateflow. It is obviously useful to be able
to complement these approaches by mathematical analysis. Unfor-
tunately, we do not have formal semantics for Stateflow. It should
be noted that the operational semantics presented in [9] are not suf-
ficient to check disjointness and completeness properties. We do
have some narrative semantics provided by MathWorks [18]. The
narrative semantics are not easy to comprehend and apply, and this
is why practitioners have relied on simulation to understand the
meaning of Stateflow models. As we have demonstrated, Stateflow
models often lack of disjointness and completeness properties, and
it is easy to miss subtle behaviours in the graphical presentation of
a complex and large Stateflow model, because the developer has
to keep in mind the complex semantics governing the ordering of
actions. Regulators and certification bodies are striving for reli-
able techniques [29] to guarantee the safe behaviour of systems
that are developed using Stateflow. In this context, we have pro-
posed the idea of generating a tabular expression from a Stateflow
model to address the described issues. In this paper, we have pre-
sented a list of translation rules to generate a table that contains
more significant information than the Stateflow model from which
it was derived. This approach has three primary benefits: firstly,
we have spent the time and effort necessary to understand the in-
formal semantics provided by MathWorks [18], and will generate a
consistent interpretation of Stateflow models, compared with what
happens now when different groups have slightly different inter-

317

ConditionEventSource
State

State == START

State = ManualDrive

State == drivingRow

State == endOfRow

State == sequencEnded

State == Turning

TRUE

stateReq == 1

stateReq == 2 OR
stateReq == 3 OR
stateReq == 5 OR
stateReq == 12

stateReq == 4

¬ ((stateReq == 1) OR
(stateReq == 2 OR
stateReq == 3 OR
stateReq == 5 OR
stateReq == 12) OR
(stateReq == 4))

NC

NC

NC

NONE NONE

TRUE

rowEnd == 1 OR
rowEnd == 2

¬(rowEnd == 1 OR
rowEnd == 2)

rowEnd == 0

rowEnd == 2

(stateReq == 3 OR
stateReq == 5)

¬ ((rowEnd == 0) OR
(rowEnd == 2))TRUE

NONE NONE

TRUE

¬(stateReq == 5)

(stateReq == 5)

NC

NC

NC

NC

NC

NC

During
Actions

state=1;
state_internal=6;

controlOut=controlIn;
drivingDirOut=drivingDirIn;
CALL weedKilling();
CALL calcAvgDir();
state_internal=1;

CALL slowDown();
CALL calcAvgDir();
state_internal=2;
playSound=0;

controlOut=0;
state_internal=5;

Condition
Actions

Exit
Actions

Transition
Actions

Destination
State

Entry
Actions

NC

drivingDirOut=1;
turnCounter=1;
state=stateReq;

tempDist=
traveledDist

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

ManualDrive

drivingRow

Turning

State

State

endOfRow

State

drivingRow

sequenceEnded

Turning

State

State

sequenceEnded

hitRow

drivingDirOut=1;
turnCounter=1;
state=4;

drivingDirOut=1;
turnCounter=1;

NC

NC

NC

NC

NC

NC

NC

NC

controlOut=0;

NC

NC

NC

controlOut=0;

endRapu=0;
avgDirN=0;

State == hitRow TRUE

¬(rowEnd == 2)

(rowEnd == 2) NC

NC

sequenceEnded

State

endRapu == 1

¬(endRapu == 1) CALL driveForwards();

turnCounter=
turnCounter+1;
nextRow=
turnArray[turnCounter];

drivingRow

controlOut=0;

NC

NC

NC NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

turnCounter=
turnCounter+1;
nextRow=
turnArray[turnCounter];

¬(stateReq == 3 OR
stateReq == 5)

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

Figure 6: Generated tabular expressions of the Robotic System.

pretations of the informal semantics; secondly, the generated table
is very easy to comprehend and it contains self explanatory details
for system behaviour according to those informal semantics; and
thirdly, the generated table satisfies disjointness and completeness
properties. Thus, the generated tabular expression of a complex
and large Stateflow model shows system behaviour equivalent to
the Stateflow narrative semantics in a way that makes the complete
behaviour more readily understandable, and also satisfies disjoint-
ness and completeness properties on the input predicates. This ap-
proach can assist in the construction, clarification, and validation of
Stateflow models. It should be noted that during the generation of
tabular expression from the robotic Stateflow model, we have found
some unwanted or incomplete transition conditions, which may al-
low some undesired behaviours. In fact, these unwanted or incom-
plete conditions prevent the generated table from being complete
and disjoint. We have rewritten the transition conditions without
changing the original behaviour to achieve disjointness and com-
pleteness properties in our generated table. However, we are still
investigating such types of unwanted or incomplete design patterns
in other Stateflow models that can be removed with the help of our
proposed solution. Moreover, this approach has the potential to
help regulators and certification bodies asses the quality of systems

that are developed using Stateflow models.

7. CONCLUSION AND FUTURE WORK
The use of model based development is growing extremely rapidly,

and some of the associated tools hide important system complex-
ities. These tools may provide a very rich set of graphical block
diagrams or symbols for developing complex behaviours. Mat-
lab/Simulink is one of the tools that has been adopted by many
industries for developing complex products. Stateflow is a com-
ponent of Simulink, and its narrative executional semantics cannot
guarantee essential properties like completeness, disjointness and
consistency, and often leads to the introduction of design flaws dur-
ing system modelling.

In this paper, we proposed the idea of transforming Stateflow
models into tabular expressions, in order to analyze the complete-
ness, disjointness, and consistency of Stateflow models. We are
interested primarily in guaranteeing completeness and disjointness
properties of Stateflow. Our proposed approach for transforming
Stateflow models into tabular expressions can identify missing be-
haviour to make it complete, and to identifying overlapping be-
haviours, so that we can make it disjoint. Moreover, we are still
developing semantics of the table to cope with the action columns

318

(not covered by tabular expression semantics). At the present time,
we have transformed the Stateflow models into tabular expressions
manually, but we have used a formal tool for checking consistency,
completeness and disjointness properties.The given transformation
rules in this paper are applicable for generating tabular expressions
from simple Stateflow models in a restrictive way. Our current
transformation rules do not cope with hierarchy and parallel state
models, including connective and history junctions. However, the
transformation rules do preserve the simulation semantics of the
Stateflow behaviour in the defined architecture of the table, and are
an indication of what we should be able to achieve once we have
built a more complete set of rules. The proposed transformation
rules are well suited to automatic processing.

In future work, we plan to investigate rules for transforming hier-
archical level Stateflow models and parallel Stateflow models into
tabular expressions, and then develop a tool to automate the trans-
formation process. Another possible direction to extend this work
is to consider the timing behaviour in Stateflow models.

8. REFERENCES
[1] http://autsys.aalto.fi/en/fieldrobot2007.
[2] G. Archinoff, R. Hohendorf, A. Wassyng, B. Quigley, and

M. Borsch. Verification of the shutdown system software at
the darlington nuclear generating station. In International
Conference on Control and Instrumentation in Nuclear
Installations, Glasgow, UK, 1990.

[3] C. Banphawatthanarak, B. Krogh, and K. Butts. Symbolic
verification of executable control specifications. In Computer
Aided Control System Design, 1999. Proceedings of the 1999
IEEE International Symposium on, pages 581–586, 1999.

[4] H. N. Cantrell, J. King, and F. E. H. King. Logic-structure
tables. Commun. ACM, 4(6):272–275, June 1961.

[5] A. Cavalcanti. Stateflow diagrams in circus. Electron. Notes
Theor. Comput. Sci., 240:23–41, July 2009.

[6] P. Clements. Function Specifications for the A-7E Function
Driver Module. NRL Memorandum Report. Defense
Technical Information Center, 1981.

[7] D. Craigen, S. Gerhart, and T. Ralston. Case study:
Darlington nuclear generating station. IEEE Softw.,
11(1):30–39, 28, Jan. 1994.

[8] C. Eles and M. Lawford. A tabular expression toolbox for
matlab/simulink. In NASA Formal Methods, pages 494–499,
2011.

[9] G. Hamon and J. Rushby. An operational semantics for
stateflow. Int. J. Softw. Tools Technol. Transf., 9(5):447–456,
Oct. 2007.

[10] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231–274, June 1987.

[11] C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj. Scr: A
toolset for specifying and analyzing software requirements.
In A. Hu and M. Vardi, editors, Computer Aided Verification,
volume 1427 of Lecture Notes in Computer Science, pages
526–531. Springer Berlin Heidelberg, 1998.

[12] K. Heninger. Specifying software requirements for complex
systems: New techniques and their application. Software
Engineering, IEEE Transactions on, SE-6(1):2–13, 1980.

[13] K. Heninger, J. Kallander, and S. J. E. Parnas D. L. Software

Requirements for the A-7E Aircraft. NRL Memorandum
Report 3876. Naval Research Laboratory, 1978.

[14] R. Janicki. Towards a formal semantics of parnas tables. In
Proceedings of the 17th International Conference on
Software Engineering, ICSE ’95, pages 231–240, New York,
NY, USA, 1995. ACM.

[15] R. Janicki, D. Parnas, and J. Zucker. Tabular representations
in relational documents. In C. Brink, W. Kahl, and
G. Schmidt, editors, Relational Methods in Computer
Science, Advances in Computing Sciences, pages 184–196.
Springer Vienna, 1997.

[16] R. Janicki and A. Wassyng. Tabular expressions and their
relational semantics. Fundam. Inform., 67(4):343–370, 2005.

[17] Y. Jin and D. L. Parnas. Defining the meaning of tabular
mathematical expressions. Science of Computer
Programming, 75(11):980 – 1000, 2010. Special Section on
the Programming Languages Track at the 23rd {ACM}
Symposium on Applied Computing 08.

[18] Mathworks. Stateflow and Stateflow Coder, User’s Guide,
2003.

[19] Mathworks. Simulink Design Verifier, User’s Guide, 2011.
[20] M. Montalbano. Tables, flow charts, and program logic. IBM

Syst. J., 1(1):51–63, Sept. 1962.
[21] R. C. Nickerson. An engineering application of

logic-structure tables. Commun. ACM, 4(11):516–520, Nov.
1961.

[22] D. L. Parnas. A generalized control structure and its formal
definition. Commun. ACM, 26(8):572–581, Aug. 1983.

[23] D. L. Parnas. Tabular representation of relations. Technical
report, McMaster University, 1992.

[24] D. L. Parnas. Inspection of safety-critical software using
program-function tables. In IFIP Congress (3), pages
270–277, 1994.

[25] D. L. Parnas, G. J. K. Asmis, and J. Madey. Assessment of
Safety-Critical software in nuclear power plants. Nuclear
Safety, 32(2):189–198, June 1991.

[26] D. L. Parnas and J. Madey. Functional documents for
computer systems. Sci. Comput. Program., 25(1):41–61, Oct.
1995.

[27] D. L. Parnas, J. Madey, and M. Iglewski. Precise
documentation of well-structured programs. IEEE Trans.
Softw. Eng., 20(12):948–976, Dec. 1994.

[28] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and
F. Maraninchi. Defining and translating a "safe" subset of
simulink/stateflow into lustre. In Proceedings of the 4th ACM
International Conference on Embedded Software, EMSOFT
’04, pages 259–268, New York, NY, USA, 2004. ACM.

[29] N. K. Singh. Using Event-B for Critical Device Software
Systems. Springer-Verlag GmbH, 2013.

[30] M. von Mohrenschildt. Algebraic composition of function
tables. Formal Aspects of Computing, 12(1):41–51, 2000.

[31] A. Wassyng and M. Lawford. Lessons learned from a
successful implementation of formal methods in an industrial
project. In FME, pages 133–153, 2003.

[32] A. Wassyng, M. Lawford, and T. S. E. Maibaum. Software
certification experience in the canadian nuclear industry:
lessons for the future. In EMSOFT, pages 219–226, 2011.

319

