
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 12, DECEMBER 2005 2015

Technical Notes and Correspondence_______________________________

Robust Nonblocking Supervisory Control of
Discrete-Event Systems

Sean E. Bourdon, M. Lawford, and W. M. Wonham

Abstract—In this note, we generalize a robust supervisory control frame-
work to deal with marked languages. We show how to synthesize a super-
visor to control a family of plant models, each with its own specification.
The solution we obtain is the most general in that it provides the closest ap-
proximation to the supremal controllable sublanguage for each plant/spec-
ification pair. We end the note by extending these results to deal with timed
discrete-event systems.

Index Terms—Adaptive control, discrete-event systems, robust control,
supervisory control.

I. INTRODUCTION

As with many other areas of control theory, the notion of robust
control has been introduced to discrete-event systems (DES) in order
to cope with situations in which a plant’s dynamics are not precisely
known. The true plant model is assumed to be one among a set of pos-
sibilities, none of which can be dismissed as unlikely or impossible.
In this note, we describe a synthesis procedure to compute the optimal
nonblocking controller for a family of plant models, each one with its
own specification. The controller thus obtained is optimal in that it is
maximally permissive when constrained by the combined control ob-
jectives imposed by each of the plant/specification pairs. The first part
of the note in which we deal with untimed DES is closely based on
[1]. Afterwards, we extend these results to deal with the timed dis-
crete-event systems of [2].

There are three distinct frameworks in which robust supervisory
control has previously been studied. The first paradigm is one in
which robustness is specified in terms of arbitrary performance
measures defined via metrics on the set of states. This work is
focused on resilience or error recovery properties of fault-tolerant
systems. See [3]–[5] for representative papers in this area. A good
survey of related work in the area of manufacturing systems can be
found in [6]. The remaining two paradigms for robust supervisory
control focus on the specific case in which performance is measured
in terms of the largest possible language within specified behavior.
Cury and Krogh [7], [8] and Takai [9], [10] start with a nominal
model of the system dynamics. Their control objective is to synthesize
a controller which maximizes the family of plants for which the
closed-loop behavior is within specified bounds. This family of
plants must necessarily include the nominal plant model. Park and
Lim [11] also formulate their framework based on the use of
a nominal plant model, although robustness is introduced via a
�-transition representing internal and unobservable events of the

Manuscript receivedMay 14, 2003; revised February 8, 2005. Recommended
by Associate Editor A. Giua.

S. E. Bourdon and W. M. Wonham are with the Systems Control Group, Ed-
ward S. Rogers Sr. Department of Electrical and Computer Engineering, Uni-
versity of Toronto, Toronto, ON M5S 3G4, Canada (e-mail: bourdon@con-
trol.toronto.edu; wonham@control.toronto.edu).

M. Lawford is with the Department of Computing and Software, McMaster
University, Hamilton, ON L8S 4K1, Canada (e-mail: lawford@mcmaster.ca).

Digital Object Identifier 10.1109/TAC.2005.860237

system. The final framework in which robust supervisory control
is studied assumes that while the plant dynamics are not precisely
known, they are among a finite set of possibilities. The underlying
assumption in this robustness framework is quite similar to the one
used in developing program families or product-line software [12].
The results of this note are presented within the context of the

latter robustness paradigm since this choice seems most natural in
the context of DES. For example, a designer with limited resources
may not be able to construct a controller for each of n similar, yet
distinct, robots in a given factory. This note provides a framework
in which we are able to synthesize a single controller for the entire
group of robots.
Lin [13] was the first to study robustness in this context. He

considered the case in which the specification language K is a
subset of the language of each of the plants belonging to the set of
possibilities. His paper gives a necessary and sufficient condition
under which the closed-loop behavior of each of the plants is equal to
K . The note also provides an adaptive control scheme under which
the supervisor can be refined in the presence of observations of the
system’s behavior. Takai [14] generalized these results to the case
where the legal behavior is no longer necessarily a sublanguage of
each possible plant language. Takai later generalized his results to
deal with timed DES in [15]. Park and Lim [16], [17] generalized
Lin’s results to deal with nondeterministic automata with marked
languages. The specialization of their work to the deterministic
case does not yield any significant new results.
The work we present in this note is an extension of Lin’s work to

the most general case and is closely related to Takai’s. As in [14],
we deal with the case where both the event set and the language for
a given model of the plant may contain elements that do not belong to
any other model in the family. Also, as will become clear later, super-
visors obtained using the current robustness framework can result in
significant improvements over supervisors obtained using the results
in [13]. Although our work is similar to Takai’s, there are two distinct
differences. First, we deal with marked behaviors and hence we must
prevent blocking in the closed-loop system. Secondly, our framework
represents a more natural setting in which tomodel robust DES, a claim
we develop in Remark 12.

II. SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS

We begin with a brief introduction to the supervisory control theory
initiated by Ramadge andWonham [18]. Let� be a nonempty finite set
of event symbols, or alphabet, and �� be the set of all finite sequences
of events, or strings, over � including the empty string, ". Any subset
of �� is called a language over �.
SupposeL is a language over�. A string u 2 �� is a prefix of s 2 L

if there exists w 2 �� such that uw = s. In this case, we write u � s.
The prefix closure (or simply the closure) of L consists of the set of
strings which are prefixes of strings in L. More precisely, the closure
of L, denoted L, is defined as follows:

�L := fu 2 �� ju � s for some s 2 Lg:

Given a language L � �� and a string s 2 ��, the set of eligible
events at s in L is given by

�L(s) := f� 2 � j s� 2 �Lg

0018-9286/$20.00 © 2005 IEEE

Authorized licensed use limited to: McMaster University. Downloaded on May 28, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

2016 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 12, DECEMBER 2005

A discrete-event system, or plant, is modeled via a deterministic au-
tomaton

G := (Q;�; �; qo; Qm)

where Q is the (finite) set of states, � is the event set, the partial func-
tion � : Q��! Q is the transition function, qo is the initial state, and
Qm � Q is the set of marked states of G. The function � is extended
to � : Q��� ! Q in the obvious way. The closed language generated
by G is

L(G) := fs 2 ��j�(qo; s) is definedg

and the marked language ofG is Lm(G) := fs 2 L(G) j �(qo; s) 2
Qmg. All languages in this note are assumed to be regular, i.e., gener-
ated by finite automata.

A state q 2 Q is reachable if there exists a string s1 2 �� such that
�(qo; s1) = q and coreachable if there exists a string s2 2 �� such
that �(q; s2) 2 Qm. The DES G is reachable (coreachable) if every
state q 2 Q is reachable (coreachable). Finally, we have thatG is trim
if it is both reachable and coreachable. Throughout the note, we assume
that all automata (as well as their graphical representations) are trim,
deterministic in their transition structures, and that their state size is
minimal. This ensures that the correspondence between the automaton,
the generated language, and the graphical representation ofG is unique
up to isomorphism.

A control theory of DES is based on partitioning the event set� into
two disjoint subsets, of controllable and uncontrollable events, �c and
�u respectively. A language K � �� is controllable with respect to
G if

�K�u \ L(G) � �K (1)

or, equivalently

�u \�L(G)(s) � �K(s)

for every s 2 �K . Note that (1) is also equivalent to �K�u \ L(G) �
�K\L(G). Namely, the controllability condition onK only constrains
strings in the set �K \ L(G).

Control is achieved by means of a controller, or supervisor, which
is allowed to disable any subset of controllable events after having ob-
served an arbitrary string s 2 L(G). Formally, a supervisory control
for G is any map V : �� ! ��, where

�� = f 2 P(�) j�u � g

represents the set of all control patterns on�. Here, as in the remainder
of the note, P(�) denotes the power set notation. In this specific in-
stance, P(�) represents the set of all subsets of �. Note that this is
an extension of the original definition from [18] where the mapping
V is only defined on strings in L(G). The extension is precisely what
allows us to control multiple plants simultaneously. With either defini-
tion, an event � 2 �c is enabled after s if � 2 V (s) and disabled oth-
erwise. Uncontrollable events can never be disabled. The closed-loop
system is denoted V=G; the closed behavior of V=G is the language
L(V=G) � L(G) obtained inductively as follows:

• " 2 L(V=G);
• for any s 2 �� and � 2 �; s� 2 L(V=G) if and only if

� 2 V (s) and s� 2 L(G).
The marked behavior of V=G is obtained as

Lm(V=G) = L(V=G)\ Lm(G):

In addition, we say that V is nonblocking if Lm(V=G) = L(V=G).
We now present two results from [18]. The first characterizes the

supremal controllable sublanguage of a specification language E,
while the second gives conditions under which Lm(V=G) = K , for
some K � ��.
Proposition 1: Given a language E � ��, the set

CG(E) := fK � E jKis controllable with respect to Gg

is nonempty and is closed under arbitrary unions. In particular, CG(E)
contains a supremal element supCG(E).
A supervisor implementing the supremal element is maximally per-

missive in that it disables the least number of controllable events while
maintaining legal behavior in the closed loop. Before stating the second
result, we need one more definition. LetK � L � ��. The language
K is L-closed if K = �K \ L.
Theorem 2: LetK � Lm(G);K 6= ;. There exists a nonblocking

supervisory control V forG such that Lm(V=G) = K if and only if
K is controllable with respect toG andK is Lm(G)-closed.
The statement of Theorem 2 requires a test of Lm(G)-closedness in

order to ensure that there exists a nonblocking supervisory controller V
such that Lm(V=G) = K . However, this property can be guaranteed
a priori. Given a language E � ��, we defineRG(E) to be the set of
sublanguages of E that are Lm(G)-closed. Namely

RG(E) := fK � EjK = �K \ Lm(G)g:

We then have the following characterization of RG(E). See, for ex-
ample, [19].
Proposition 3: The setRG(E) is closed under arbitrary unions and

supRG(E) = E � (Lm(G)� E)��:

We end this section by presenting three results which are simple ex-
tensions of results previously obtained in [20]. We say that languagesL
andM are nonconflicting if L \M = �L\ �M . The first result, Lemma
4, characterizes the largest sublanguage of E � �� that is noncon-
flicting with languages Li � �� for all i in some finite index set I .
Lemma 4: Given languages E;Li � �� for i in some finite index

set I = f0; 1; . . . ; n � 1g, let L := fL0; . . . ; Ln�1g and

NL(E) := fM � EjM \ Li = �M \ Li for all i 2 Ig:

Then, supNL(E) is well-defined and

supNL(E) = lim
k!1

Ek

where

E0 := E

Ek+1 := �k(Ek)

and, for each nonnegative integer k;�k is defined by

�k(X) := X � �X \ �L[k] �X \ L[k] ��

with

[k] := k(mod n):

Authorized licensed use limited to: McMaster University. Downloaded on May 28, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 12, DECEMBER 2005 2017

Before presenting the proof, we note that from [20, Th. 3(ii)] it can be
deduced that �k(Z) is the largest sublanguage of Z which is noncon-
flicting with L[k]. For future reference, we call an element in NL(E)
a nonconflicting language with respect to Li for all i 2 I . The next
lemma adds controllability andLm(G)-closedness requirements to the
previous result.

Lemma 5: Given languagesE and Li as in Lemma 4 and a DESG
defined over �, let

RNCG(E) := RG(E)\ NL(E)\ CG(E): (2)

Then, supRNCG(E) is well-defined and is the largest fixed point of
the operator (on sublanguages of E)
 : P(E)! P(E) defined by

(Z) := supRG(supNL(supCG(Z))):

The fixed point from Lemma 5 can be computed by iteratively
imposing the nonconflicting, controllability, and Lm(G)-closedness
properties as follows.

1) Let E0 = E.
2) Compute E3k�2 = supCG(E3k�3); E3k�1 = supNL

(E3k�2), andE3k = supRG(E3k�1) for every positive in-
tegerk untilE3m = E3m�3 forsomeintegerm > 0.

Lemma 6: The above iteration scheme terminates after a finite
number of steps and E1 := limk!1Ek = supRNCG(E).

III. ROBUST NONBLOCKING SUPERVISORY CONTROL

In the sequel, we assume that the plant dynamics are not precisely
known. Rather, we suppose that the true plant modelGtrue belongs to
the set G := fGiji 2 Ig, where I is a finite index set. For max-
imum flexibility at the modeling stage, each of the plant models is
equipped with its own alphabet �i, which may or may not have ele-
ments in common with the other plant models in G. Namely, we have
that L(Gi) � ��i for each i 2 I . The set of all events � is defined via

� :=
i2I

�i:

As usual, we denote the set of controllable and uncontrollable events
by�c and�u, respectively. In addition, we require that all plants agree
on which events are controllable and which are uncontrollable. Hence
we have that for each i 2 I , the subset of controllable events of�i can
be computed by (�c)i = �c \ �i.

We now define the set V of robust nonblocking supervisory controls
(RNSCs). Specifically, V consists of supervisors which guarantee that
the closed-loop behavior is nonblocking for each plant. Thus, we have

V := fV : �� ! ��jLm(V=Gi)

= L(V=Gi) for each i 2 Ig (3)

Notice that we have a slight abuse of notation in the previous definition.
In our setting, a supervisor forGi is a map Vi : ��i ! �� , where the
equality �i = � need not hold. However, obtaining a supervisor Vi
from V 2 V is straightforward (simply let Vi(s) := V (s) \ �i for
every s 2 ��i) and hence we will not distinguish between V and Vi
when the context is obvious.

We now seek to characterize the set of languages over � that admit
a robust nonblocking supervisory controller. To this end, we define a
DES G via

Lm(G) :=
i2I

Lm(Gi) and L(G) :=
i2I

L(Gi):

We can now state the following theorem.
Theorem 7: Suppose K � Lm(G) and K 6= ;. There exists

V 2 V such that Lm(V=G) = K if and only if K is controllable
with respect to G; Lm(G)-closed, and nonconflicting with respect to
Lm(Gi) for each i 2 I .
Throughout the sequel, we assume that Li = Lm(Gi) in the defi-

nition of NL(E) and in (2). The theorem then says that given a spec-
ification language E � ��, the set RNCG(E) consists precisely of
all sublanguages of E that admit an RNSC. Before proving this result,
we present Lemma 8, a straightforward generalization of [7, Prop. 2].
It provides us with a property that is useful in the proof of the above
theorem.
Lemma 8: Suppose G and G0 are DES over � with L(G0) �

L(G) and Lm(G0) � Lm(G). If V : �� ! ��, then Lm(V=G0) =
Lm(V=G) \ Lm(G

0).
SupposeK is a controllable sublanguage of Lm(G) and that V is a

supervisory controller (not necessarily robust) such that Lm(V=G) =
K . Lemma 8 says that Lm(V=Gi) = K \Lm(Gi). Namely, through
Theorem 2, we know that ifK \Lm(Gi) 6= ;, then the languageK \
Lm(Gi) is controllable with respect toGi and that V is a supervisor
synthesizing this language. The following lemma additionally says that
ifK \Lm(Gi) is controllable with respect toGi for each i 2 I , then
K is controllable with respect to G.
Lemma 9: Suppose K � Lm(G) and K 2 NL(E). Then K is

controllable with respect toG if and only if Lm(Gi) \K is control-
lable with respect to Gi for each i 2 I .
We can now introduce the modeling framework for our robustness

paradigm. This naturally leads to the robust nonblocking supervisory
control problemwhich is themain thrust of this note. In our setting each
of the plant models has its own specification languageEi � ��i which
constitutes the set of legal behaviors for that given model. Clearly, it
is unreasonable to expect that in general there exists a RNSC V satis-
fying Lm(V=Gi) = supCG (Ei \ Lm(Gi)) for each i 2 I . Thus,
we always seek the best approximation to this idealized case. In this
context, we make the following definition.
Definition 10: We call V 2 V a maximally permissive robust

nonblocking supervisory control (MPRNSC) for f(Gi; Ei)ji 2 Ig if
for each i 2 I; Lm(V=Gi) � Ei and Lm(V 0=Gi) � Ei implies
Lm(V

0=Gi) � Lm(V=Gi) for every V 0 2 V .
We are now able to state the robust nonblocking supervisory control

problem which is the focus of this note.
Robust Nonblocking Supervisory Control Problem (RNSCP):

Given the plants Gi and specifications Ei with L(Gi); Ei � ��i for
each i 2 I , synthesize a maximally permissive robust nonblocking
supervisory control V : �� ! ��, where � =

i2I

�i.

Suppose V 2 V and s 2 L(V=Gi). The key to solving the above
problem is the observation that if the string s 2 Lm(Gi) for some
i 2 I , we must then have that s 2 Ci := supCG (Ei \ Lm(Gi)).
Fig. 1(a) shows this for the case where there are two plants, each with
its own specification. The white areas in the diagram indicate which
strings are necessarily prevented from occurring based on the above ob-
servation. In Theorem 11,E :=

i2I
(Ci[(�

��Lm(Gi)))\Lm(G)
is used as the initial point of a fixed point calculation aimed at solving
the RNSCP. Note thatE represents the largest sublanguage of Lm(G)
satisfying Lm(Gi) \ E � Ci for each i 2 I . Thus, from the defi-
nition of E, we also see that in this robustness framework the strings

Authorized licensed use limited to: McMaster University. Downloaded on May 28, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

2018 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 12, DECEMBER 2005

Fig. 1. Construction of E for two plant, two specification arrangement.

w 2 (�� � Lm(Gi)) are used to enlarge the closed-loop behavior of
our plant under the control of V 2 V in the presence of the constraints
simultaneously imposed byGi andEi for each i 2 I . The shaded area
in Fig. 1(b) shows the language E for the two plant, two specification
arrangement of Fig. 1(a). This language is obtained by taking the inter-
section of the shaded region in Fig. 1(a) with Lm(G1) [Lm(G2).

Theorem 11: Let Ci := supCG (Ei \ Lm(Gi)), for each i 2 I ,
and let

E :=
i2I

(Ci [(�� � Lm(Gi)))\ Lm(G): (7)

Further, let K be the largest fixed point of the operator (on sublan-
guages of E)
 : P(E)! P(E) defined by

(Z) := supRNCG(Z): (8)

If K 6= ;, a supervisor V 2 V solves the RNSCP if and only if
Lm(V=G) = K .

The result says that the RNSCP has a solution for the given
plant/specification pairs if and only if the supremal controllable
sublanguage of E that is nonconflicting with each of the plants Gi

is nonempty and Lm(G)-closed. Notice that the solution K must be
computed using the fixed point operator
. This is necessary since we
cannot otherwise guarantee that the resulting supremal controllable
sublanguage of E will be nonblocking with respect to the individual
plants Gi.

Proof: Suppose V solves the RNSCP. By definition of Ci, we
must then have that

Lm(V=Gi) � Ci

for each i 2 I . By Lemma 8, this implies that

Lm(V=G) \ Lm(Gi) � Ci

from which it follows that

Lm(V=G) � Ci [(�� � Lm(Gi))

for each i 2 I . Since we also have that Lm(V=G) � Lm(G), it
follows from (7) that

Lm(V=G) � E

Appealing to Lemma 5, we conclude that Lm(V=G) �
supRNCG(E) = K .
Also, since K is controllable, nonempty, and Lm(G)-closed, The-

orem 7 says there exists V 2 V such that Lm(V=G) = K . From
Lemma 8, we note that Lm(V=Gi) = Lm(V=G) \ Lm(Gi) =
K \ Lm(Gi) which in turn implies that

Lm(V=Gi) � E \ Lm(Gi)

� Ci

� Ei:

Thus, if V solves the RNSCP, then Lm(V=G) = K .
In order to prove the converse implication, we note that the second

paragraph of the proof implies that any solution to the RNSCP must
satisfy the relationship Lm(V=G) � K . However, the first paragraph
of the proof showed thatLm(V=G) � K . Therefore, we conclude that
the V 2 V satisfying Lm(V=G) = K solves the RNSCP.
Remark 12: Lin [13] gave necessary and sufficient conditions for

the existence of amarking robust nonblocking supervisory controllerV
such that Lm(V=Gi) = K for each i 2 I whenK �

i2I
Lm(Gi)

and �i = � for each i 2 I . Hence, his work is much more restrictive
in general than that presented here. Specifically, in this case we have
that (7) is replaced by the more restrictive conditionE =

i2I

Ci while

(8) reduces to
(Z) = supRG(supCG(Z)) since K and Lm(Gi)
are nonconflicting by definition. Thus, we have that ifK 6= ; andK is
Lm(G)-closed, a supervisor V 2 V solves the RNSCP if and only if
Lm(V=G) = K . If in addition, we place the burden of marking on the
controller V , we can drop the Lm(G)-closedness requirement on K .
(See [18] for additional details.) Park and Lim’s work [16], [17] deals
with a problem very similar to Lin’s, only they extend Lin’s framework
to deal with nondeterministic systems.
Takai meanwhile relaxes the assumption onE in much the same way

we do here, although he begins with a closed specification language E
(Klegal in [14]) and only considers the case where Lm(Gi) = L(Gi)
for each i 2 I . He provides necessary and sufficient conditions for the
existence of a maximally permissive robust supervisory controller. In
this case, we find that L(Gi) and Lm(V=G) are automatically non-
conflicting. Moreover, the Lm(G)-closedness condition is also auto-
matically satisfied and so (8) reduces to
(Z) = supCG(Z). In this
case, we deduce that ifK 6= ;, a supervisory controller V 2 V solves
the RNSCP if and only if L(V=G) = K .
Another fundamental difference in the approach of [14] and the cur-

rent note is that Takai assumes from the outset that the specification
language Klegal is given. The framework of this note provides a nat-
ural setting for the modeling of plant/specification pairs. Namely, each
specification is tailored directly to the plant to which it pertains. This
note provides a systematic way of computing the language E from
the plant/specification pairs, a task that may prove difficult in Takai’s
framework when there are competing requirements.
We end this section with a discussion of the adaptive supervisory

control scheme first introduced in [13]. In particular, we note that the
framework introduced earlier in this section resolves some model un-
certainties without having to recompute the supervisory control.
Adaptive supervision seeks to eliminate uncertainties in the plant

model using observed strings of the system’s behavior. If the string s
has been observed in the closed-loop behavior and s =2 L(Gj), then we
know that Gtrue 6= Gj and we can recompute an optimal supervisor
working only with the subset of plants fGiji 2 I � fjgg. In [13], the
proposed scheme requires that the optimal supervisor be recomputed
after each new event appears in the string. However, in our framework

Authorized licensed use limited to: McMaster University. Downloaded on May 28, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 12, DECEMBER 2005 2019

this is unnecessary. It is obvious from the definition of language clo-
sure that if s =2 L(Gj), then sw =2 L(Gj), for every w 2 ��. This
means that after having observed the string s, the MPRNSC obtained
via Theorem 11 is no longer constrained by L(Gj) and also no longer
disables events in �j � i2I�fjg �i. In this case, uncertainty in the
system is automatically resolved and the controller becomes optimal
given its information regarding Gtrue. This is the subject of the fol-
lowing result.

Proposition 13: Suppose Ci; L(G); V , andK are as defined in the
statement of Theorem 11 and that the string s is observed in the closed-
loop system L(V=G). If s =2 L(V=Gj) for some j 2 I , thenGtrue 6=
Gj . Moreover, we have that for every t 2 ��; st 2 Lm(V=G) if and
only if st 2 Lm(V 0=G), where V 0 is the maximally permissive robust
supervisor over the set f(Gi; Ei) j i 2 I � fjgg.

Proof: First, suppose there exists t 2 �� such that st 2 Cj \
Lm(V=G) for some j 2 I . This then implies that st 2 Lm(V=Gj)
since

Cj \ Lm(V=G) = Cj \ Lm(Gj) \ Lm(V=G)

since Cj � Lm(Gj)

= Cj \ Lm(V=Gj); by Lemma 8

= Lm(V=Gj); by definition of Cj :

However, this means that s 2 L(V=Gj), which is a contradiction.
Thus, st =2 Cj for every t 2 �� which, by supremality of Cj , implies
that st =2 Lm(V=Gj). It must then be the case that st 2 Lm(V=G)
if and only if st 2 Lm(V=Gi) for some i 2 I � fjg, since st =2 Cj
implies that st =2 Lm(V=Gj). Hence,Gtrue 6= Gj .

Now, by definition of V 0, we must have that Lm(V=Gi) �
Lm(V 0=Gi) for each i 2 I � fjg. Thus, the proof is complete if
we can show that st 2 Lm(V 0=Gi) implies that st 2 Lm(V=Gi)
for each i 2 I � fjg. To this end, let V 00 2 V be a supervisor
for G such that V 00(st) = V 0(st) for every t 2 ��. It then fol-
lows that st 2 Lm(V 0=Gi) if and only if st 2 Lm(V 00=Gi).
Since the supervisor V is maximally permissive, we also have that
V 00(st) � V (st) from which we can deduce that st 2 Lm(V 00=Gi)
implies st 2 Lm(V=Gi). This completes the proof.

Remark 14: The central theme of this note is robustness of dis-
crete-event systems, although many of the results could have been mo-
tivated from an adaptive supervisory control viewpoint. This choice
stems from the fact that a supervisor obtained through Theorem 11 is
always robust (in the sense discussed earlier this section) but may not
be adaptive. This situation occurs for example when for one of the can-
didate plant models Gj , we have L(Gi) � L(Gj) and Lm(Gi) �
Lm(Gj) for every i 2 I .

IV. TIMED DISCRETE EVENT SYSTEMS

We now extend the results of the last section to deal with the timed
discrete event systems (TDES) of [2]. The main difference between
TDES and the DES we have dealt with thus far is the introduction of
the special tick event which denotes the passage of one unit of time in
the global clock. All the other events in a TDES occur relative to the
occurrence of ticks.

A control theory on TDES is established in a twofold manner. First,
the set of controllable events is defined to be those which can be in-
definitely disabled by a supervisor. The set of uncontrollable events is
given by �u := � � �c. Second, we define a set of forcible events
for TDES, �for � �, which are used to preempt the tick event. From
a control theoretic perspective, this makes TDES fundamentally dif-
ferent from DES.

In the TDES framework, a supervisor V forG is said to be admis-
sible if the following condition holds for all s 2 L(V=G):

[�L(V=G)(s) \�for = ;] ^ [tick 2 �L(G)(s)]) [tick 2 V (s)]:

Namely, the tick event can only be disabled if some forcible event
is able to preempt it. We note also that Theorem 2 holds for TDES
whenever the supervisor involved is admissible.
The robustness framework we use for TDES is similar to the one in-

troduced earlier for untimed DES. Here we must assume that all plants
agree on the forcibility of events in addition to controllability and un-
controllability. Moreover, we require that the tick transition represents
the passage of the same duration of time in each of the plant models.
The final difference is in the definition of V , the set of robust non-
blocking supervisory controls. For TDES, we say that a supervisory
control V 2 V if in addition to the conditions in (3), V is an admis-
sible supervisor for Gi for each i 2 I . Otherwise, the framework is
unchanged.
One of the difficulties with robust TDES is that an admissible

supervisor for G is not necessarily an admissible supervisor for
each Gi; i 2 I . See [15, ex. 1]. Clearly, this problem is resolved if
V is an admissible supervisor for each Gi; i 2 I . By Theorem 2
and Lemma 8, this is equivalent to having Lm(V=Gi) be control-
lable with respect to Gi for each i 2 I . Given a language E, let
L := fLm(G0); . . . ; Lm(Gn�1)g and

AL(E) := fK � EjK is controllable

with respect toGi for all i 2 Ig

Clearly, AL(E) is closed under arbitrary unions and so supAL(E)
exists and is well defined.
This suggests that we can generalize Theorem 11 for all TDES by

starting with the language E as in (7) and iteratively imposing con-
trollability with respect to G, making the result nonconflicting with
each Gi, imposing Lm(G)-closedness, and then imposing controlla-
bility with respect toGi for each i 2 I . Namely, to solve the RNSCP
for TDES in general, we need to compute supARNCG(E), where
ARNCG(E) := AL(E)\RG(E) \ NL(E) \ CG(E). From [15,
Lemma 1], it is easy to deduce thatAL(E) � CG(E), and so one step
in the above four step iteration is redundant.
We are now in a position to present our main result on robust TDES,

a generalization of Theorem 11. Note that it generalizes Takai’s results
in [15] much in the same way that Theorem 11 generalizes the results
in [14]. See [21] for the details of the proof.
Theorem 15: Given TDES fGiji 2 Ig, letG be defined via

Lm(G) =
i2I

Lm(Gi) and L(G) =
i2I

L(Gi)

and let Ci := supCG (Ei \ Lm(Gi)), for each i 2 I . Further let

E :=
i2I

(Ci [(�� � Lm(Gi)))\ Lm(G)

and letK be the largest fixed point of the operator (on sublanguages of
E)
 : P(E) ! P(E) defined by

(Z) := supARNG(Z)

Authorized licensed use limited to: McMaster University. Downloaded on May 28, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

2020 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 12, DECEMBER 2005

Fig. 2. Assembly line configurations for Example 17.

If K 6= ;, a supervisor V 2 V solves the RNSCP if and only if
Lm(V=G) = K . Moreover

supARNG(E) = supAL(supRG(supNL(E))) = lim
k!1

Ek

where

E0 := E

E3k�2 := supNL(E3k�3)

E3k�1 := supRG(E3k�2)

and E3k := supAL(E3k�1)

for every positive integer k, and there exists an integer N such that
E1 = Ek for all k � N .

V. EXAMPLE

We now present an example which helps further understand the
theory of robustness developed in the previous sections. The example
shows a manufacturing line that utilizes one of four configurations for
testing its finished product.

In the manufacturing line, the parts are sequentially processed by a
pair of machines. In order to enforce quality control, the plant employs
feedback from a test unit (TU) in order to gauge its process. Four testing
configurations are possible and on a given day, any of these configura-
tions is possible. In the first configuration (P1), there is no feedback.
Parts that pass the test are kept while parts that fail are simply dis-
carded. In configuration P2, a failed test results in a part being passed
through M2 a second time. In configuration P3, a part that fails will
pass through the entire line again. In this case, a failed part is given pri-
ority over a new part. Finally, in P4, a part that fails the test is passed
to a new machine (M4) for refining and is subsequently retested.

Automata representing each of the components in Fig. 3 are shown in
Fig. 3. The marked states in Fig. 4 are those represented by solid nodes.
In the test unit, pass denotes a passed test, whereas fail indicates that the
part has failed. In this example, each of the buffers is assumed to have
a capacity equal to the number of machines that feed into it. The set of
controllable events is fin1; in2; inr; in4; inTUg and the uncontrollable
events are fout1; out2; out4;pass; failg. The specifications are used
to prevent underflow and overflow of the and are collectively shown in
Fig. 4.

In this example, we find that the supervisor is conservative, at least
initially. For instance, machine M1 is initially prevented from pro-
ducing a second work piece until M2 begins work on a part. This is be-
cause the supervisor does not know whether there is a one-slot buffer
(B1) or a two-slot buffer (B3) following M1. More interestingly, re-
gardless of which two (or more) configurations we admit initially, the

Fig. 3. Component machines for Example 17.

Fig. 4. Specifications for Example 17.

supervisor remains conservative. For example, if we remove P3 from
the set of possible plants before computing the robust supervisor, our
controller does not become more permissive. However, if the super-
visor observes the event in4, it “knows” that configuration P4 is the
correct configuration and subsequently behaves optimally as described
in Section III.

VI. CONCLUSION

In this note, we have extended the results of [13], [14], and [15].
We introduce a framework for the modeling of robust control of DES
which is both natural and expressive. Within this framework, we solve
the robust nonblocking supervisory control problem for both timed and
untimed systems. The keys to the solution are the resolution of conflict
in the various specifications and that strings not belonging to the closed
behavior of a system require no control intervention.

REFERENCES

[1] S. Bourdon, M. Lawford, and W. Wonham, “Robust nonblocking super-
visory control of discrete-event systems,” in Proc. Amer. Control Conf.,
2002, pp. 730–735.

[2] B. Brandin and W. Wonham, “The supervisory control of timed DES,”
IEEE Trans. Autom. Control, vol. 39, no. 2, pp. 329–342, Feb. 1994.

[3] K.-H. Cho and J.-T. Lim, “Stability and robustness of discrete event dy-
namic systems,” Int. J. Syst. Sci., vol. 28, no. 7, pp. 691–703, 1997.

[4] C. Özveren and A. Willsky, “Output stabilizability of discrete-event
dynamic systems,” IEEE Trans. Autom. Control, vol. 36, no. 8, pp.
925–935, Aug. 1991.

[5] , “Stability and stabilizability of discrete event dynamic systems,”
J. Assoc. Comput. Mach., vol. 38, no. 3, pp. 730–752, 1991.

[6] M. Lawley and W. Sulistyono, “Robust supervisory control policies for
manufacturing systems with unreliable resources,” IEEE Trans. Robot.
Automat., vol. 18, no. 3, pp. 346–359, Jun. 2002.

[7] J. Cury and B. Krogh, “Design of robust supervisors for discrete event
systems with infinite behaviors,” in Proc. IEEE Conf. Decision and Con-
trol, 1996, pp. 2219–2224.

Authorized licensed use limited to: McMaster University. Downloaded on May 28, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 12, DECEMBER 2005 2021

[8] , “Robustness of supervisors for discrete-event systems,” IEEE
Trans. Autom. Control, vol. 44, no. 2, pp. 376–379, Feb. 1999.

[9] S. Takai, “Synthesis of maximally permissive and robust supervisors for
prefix-closed language specifications,” IEEE Trans. Autom. Control, vol.
47, no. 1, pp. 132–136, Jan. 2002.

[10] , “Maximizing robustness of supervisors for partially observed dis-
crete event systems,” Automatica, vol. 40, no. 3, pp. 531–535, 2004.

[11] S.-J. Park and J.-T. Lim, “Robust nonblocking supervisor for discrete
event systems with model uncertainty under partial observation,” IEEE
Trans. Autom. Control, vol. 45, no. 12, pp. 2393–2396, Dec. 2000.

[12] D. Hoffman and D. Weiss, Eds., Software Fundamentals: Collected Pa-
pers of David L. Parnas. Boston, MA: Addison-Wesley, 2001.

[13] F. Lin, “Robust and adaptive supervisory control of discrete event sys-
tems,” IEEE Trans. Autom. Control, vol. 38, no. 12, pp. 1848–1852, Dec.
1993.

[14] S. Takai, “Maximally permissive robust supervisors for a class of spec-
ification languages,” in Proc. IFAC Conf. System Structure and Control,
vol. 2, 1998, pp. 429–434.

[15] , “Robust supervisory control of a class of timed discrete event sys-
tems under partial observation,” Syst. Control Lett., vol. 39, no. 4, pp.
267–273, 2000.

[16] S.-J. Park and J.-T. Lim, “Robust and nonblocking supervisory control of
nondeterministic discrete event systems using trajectory models,” IEEE
Trans. Autom. Control, vol. 47, no. 4, pp. 655–658, Apr. 2002.

[17] , “On robust and nonblocking supervisor for nondeterministic dis-
crete event systems,” IEICE Trans. Inf. Syst., vol. E86-D, no. 2, pp.
330–333, 2003.

[18] P. Ramadge andW.Wonham, “Supervisory control of a class of discrete-
event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp. 206–230,
1987.

[19] R. Kumar and V. Garg,Modeling and Control of Logical Discrete Event
Systems. Boston, MA: Kluwer, 1995.

[20] E. Chen and S. Lafortune, “On nonconflicting languages that arise in
supervisory control of discrete event systems,” Syst. Control Lett., vol.
17, no. 2, pp. 105–113, 1991.

[21] S. Bourdon, M. Lawford, and W. Wonham, “Robust nonblocking super-
visory control of discrete-event systems,” Dept. Comput. Software, Mc-
Master Univ., Software Quality Research Lab. Tech. Rep. 9, Feb. 2003.

On the Equivalence of Three Independently Developed
Phase-Locked Loops

Alireza K. Ziarani and Masoud Karimi-Ghartemani

Abstract—Three independent research groups have proposed three ap-
parently different architectures for an improved phase-locked loop (PLL)
structure through three entirely different approaches. It is shown that all
three PLLs are structurally andmathematically the same. A linear analysis
is performed and concludes that the available theory for the design of con-
ventional PLLs can be leveraged into the design of the new class of PLLs.

Index Terms—Costas loop, frequency estimation, phase detection, phase-
locked loop (PLL), signal decomposition.

I. INTRODUCTION

The phase-locked loop (PLL) is a fundamental concept that finds ap-
plication in diverse areas such as communications, computers, instru-

Manuscript received April 9, 2004; revised November 9, 2004. Recom-
mended by Associate Editor M. Demetriou. This work was supported in part
by the National Science Foundation under Award BES-0447705.

A. K. Ziarani is with the Department of Electrical and Computer En-
gineering, Clarkson University, Potsdam, NY USA 13699-5720 (e-mail:
aziarani@clarkson.edu).

M. Karimi-Ghartemani is with the Edward S. Rogers Sr. Department of Elec-
trical andComputer Engineering, University of Toronto, Toronto, ONM5S 3G4,
Canada (e-mail: masoud@ele.utoronto.ca).

Digital Object Identifier 10.1109/TAC.2005.860239

Fig. 1. Conventional PLL structure.

mentation devices, control and power systems [1]–[7]. Its structure is
usually thought of as being comprised of three building blocks: phase
detector (PD), loop filter (LF) and voltage-controlled oscillator (VCO),
as depicted in Fig. 1. The PD is conventionally amultiplier and the LF is
a low-pass filter. The VCO generates an output signal, the phase angle
of which is in lock with that of the input signal.
Despite the long history of its usage dating back to 1930s, the PLL is

the subject of an active research aiming at improving its performance.
Among others, three research groups have developed three apparently
different PLL architectures alternative to the conventional structure.
Although emerged from entirely different areas using entirely different
approaches, the three PLL structures are equivalent, a fact which is
shown in this note.
The first of the three PLL structures studied in this note was reported

briefly in [8] with no elaboration on how it was developed. A circuit
capable of locking to more than one frequency was disclosed that is
useful in signal separators, notch filters and tracking filter circuitries.
The second PLL discussed in this note is a magnitude/phase-locked

loop presented in [9], [10] where its stability is analyzed and its func-
tionality for frequency estimation is verified. This PLL is controlled by
three parameters g! , gm andKf , and is a modified version of the one
used in [11] for the rejection of sinusoidal disturbances. This work has
somewhat heuristically emerged from the studies in the area of active
noise control [12].
The third PLL structure studied here has emerged from the works

of the authors and their colleagues in the area of adaptive filtering [13]
and was initially viewed as a signal processing technique for the ex-
traction of nonstationary sinusoids [14], [15]. Some of its applications
in the areas of biomedical [16], [17], mechanical [18], and power engi-
neering [19] were developed, and proofs of its mathematical properties
were furnished [20]. Soon, the authors realized that the proposed signal
processing algorithm can be thought of as a PLL [21], and as such pre-
sented this view in [22].
The following section revisits the three PLL systems and shows their

mathematical as well as structural equivalence. In Section III, it is
shown that the new system can be envisaged as a conventional PLL fur-
ther equipped with an amplitude estimator and external control loop.
Section III also establishes an analogy between the new PLL system
and the well-established Costas PLL. Some issues related to system sta-
bility are presented in Section IV where a linear analysis of the system
is also presented. Finally, it is shown how the available theory for the
design of conventional PLLs can be leveraged into this class of PLLs.

II. OVERVIEW OF THE THREE PLL TOPOLOGIES

This section provides an overview of the three PLL systems. In each
case, its basic block diagram is presented and governing differential
equations are derived. Equivalence of the three PLL topologies is dis-
cussed.

A. Residual Mode PLL

The residual mode phase-locked loop described in [8] is shown in
Fig. 2(a). The input signal is subtracted from an estimated signal to

0018-9286/$20.00 © 2005 IEEE

Authorized licensed use limited to: McMaster University. Downloaded on May 28, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

