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Abstract—This paper considers supervisory control of probabilistic dis-
crete event systems (PDESs). PDESs are modeled as generators of proba-
bilistic languages. The supervisory control problem considered is to find, if
possible, a supervisor under whose control the behavior of a plant is iden-
tical to a given probabilistic specification. The probabilistic supervisors we
employ are a generalization of the deterministic ones previously employed
in the literature. At any state, the supervisor enables/disables events with
certain probabilities. Necessary and sufficient conditions for the existence
of such a supervisor, and an algorithm for its computation are presented.

Index Terms—Probabilistic discrete event systems, random disablement,
supervisory control.

I. INTRODUCTION

The supervisory control theory of discrete event systems (DESs) was
developed in the seminal work of Ramadge and Wonham [1]. A super-
visor (controller) controls a plant by enabling/disabling controllable
events based on observation of the previous behavior of the plant. The
supervisory control problem considered is to supervise the plant so that
it generates a given specification language. In order to model stochastic
behavior of the plant, many models of stochastic behavior of discrete
event systems have been proposed (e.g., Markov chains [2], Rabin’s
probabilistic automata [3], stochastic Petri nets [4]). We follow the
theory of stochastic discrete event systems that was developed in [5],
[6] using an algebraic approach. A stochastic discrete event system is
represented as an automaton with transitions labeled with probabilities.
The probabilities of all the events in a certain state add up to at most
one. This differs from Rabin’s probabilistic automata [3], where the
sum of the probabilities of all instances of an event at a state is one.
Also, unlike the Markov chains [2], the emphasis of the approach of
[5], [6] is on event traces rather than state traces.

The control of different models of stochastic discrete event systems
has been investigated in [7], [8], etc. Rabin’s probabilistic automata are
used in [7] as the underlying model, while [8] uses Markov chains. In
[9], the model of [5], [6] is adopted and deterministic supervisors for
DESs are generalized to probabilistic supervisors. The control method
of random disablement is used: after observing a string �, the proba-
bilistic supervisor enables an event � with a certain probability. When
controllable events are disabled, the probabilities of their execution be-
come zero, and the probabilities of occurrence of other events propor-
tionally increase. Necessary and sufficient conditions for the existence
of a supervisor for a probabilistic discrete event system (PDES) to meet
a specification are given. These conditions reduce to checking whether
certain linear equalities and inequalities hold.

The work of [10] builds upon [9] by giving a formal proof of the ne-
cessity and sufficiency of the conditions presented in [9]. It also gives
an algorithm for the calculation of the supervisor, if it exists. A super-
visory control framework for stochastic discrete event systems that was
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developed in [11] represents a special case of the control introduced in
[9]. The control is deterministic. The control objective considered in
[11] is to construct a supervisor such that the controlled plant does not
execute specified illegal traces, and the probabilities of occurrences of
the events in the system are greater than or equal to specified values.
The paper gives necessary and sufficient condition for the existence of
a supervisor. Further, in [12], a technique to compute a maximally per-
missive supervisor on-line is given. In [13], [14], the same model of
[5], [6] is used. The requirements specification is given by weights as-
signed to the states of a plant and the control goal is, roughly speaking,
to reach the states with more weight (more desired states) more often.
A deterministic control is synthesized for a given requirements speci-
fication so that a measure based on the specification and probabilities
of the plant is optimized.

Controller synthesis for probabilistic systems has also attracted
attention in the formal methods community. E.g., [15], [16] consider
different control policies: deterministic or randomized (probabilistic)
on one hand; memoryless (Markovian) or history-independent on the
other. The systems considered are finite Markov decision processes,
where the state space is divided into two disjoint sets: controllable
states and uncontrollable states. In [15], the controller synthesis
problem for a requirements specification given as a probabilistic
computation tree logic (PCTL) formula is shown to be NP-hard, and a
synthesis algorithm for automata specification is presented. Controller
synthesis was considered in [16] for requirements specification given
as a formula of PCTL extended with long-run average propositions.
It is shown that the existence of such a controller is decidable, and an
algorithm for the synthesis of a controller, when it exists, is presented.
Further, controller robustness with respect to slight changes in the
probabilities of the plant is discussed. The paper shows that the
existence of robust controllers is decidable and the controller, if it
exists, is effectively computable.

Deterministic control is easier to deal with than probabilistic con-
trol, both from the viewpoint of analysis, and practice. However,
probabilistic control is much more powerful. It has been shown in
[9] that probabilistic supervisory control can generate a much larger
class of probabilistic languages than deterministic control. In the
sense of the supervisory control problem discussed in this paper, the
use of deterministic control might be too restrictive for a designer.
Hence, [9] and [10] investigate probabilistic supervisory control: con-
ditions under which a probabilistic control can generate a prespecified
probabilistic language, and, if the supervisor exists, an algorithm for
its synthesis.

This paper merges the works of [9] and [10]. The notation used in
[10] differs from the classical notation introduced in the seminal work
of [1] and used in [9]. We will use this classical notation. Further, a
more detailed literature review is presented. Some of the proofs from
[10] have been reworked, and a new, more general example for the
computation of a supervisor is used. We modify the main results of [9]
and [10] to include a special case when only controllable events can
occur in a plant. This case has not been solved in any of the previous
work. We also offer time complexity analysis of both the controller
synthesis problem and the proposed synthesis algorithm.

Section II introduces PDESs modeled as generators of probabilistic
languages. The technique of random disablement is presented in
Section III. The probabilistic supervisory control problem is stated in
Section IV. This section also introduces the main results of [9] and
[10]. Section V gives the formal proof of the main result. The com-
plexity analysis of the synthesis problem and algorithm is presented
in Section VI. Finally, Section VII concludes with avenues for future
work.

0018-9286/$26.00 © 2009 IEEE
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II. PRELIMINARIES

A probabilistic DES (PDES) is modeled as a probabilistic generator
� � ����� �� ��� ��� ��, where� is a nonempty set of states (at most
countable), � is a finite alphabet whose elements we will refer to as
event labels, � � ���� � is a (partial) transition function, �� � � is
the initial state, �� � � is the set of marking states, which represent
the completed tasks, and � � � � � � ��� �	 is the statewise event
probability distribution [9]. The state transition function is traditionally
extended by induction on the length of strings to � � �� �� � � in
a natural way. In this paper, we consider only finite state PDESs (� is
a nonempty finite set).

The probability that the event � � � is going to occur at the
state � � � is ���� ��. For the generator � to be well-defined, (i)
���� �� � � should hold if and only if ���� �� is undefined, and (ii)
��

���
���� �� � �. The probabilistic generator � is nonter-

minating if, for every reachable state � � �,
���

���� �� � �.
The probabilistic generator � is terminating if there is at least one
reachable state � � � such that

���
���� �� � �. Upon entering

state �, the probability that the system terminates at that state is
��

���
���� ��. Throughout the sequel, unless stated otherwise, we

will be considering nonterminating generators. Terminating generators
can be transformed into nonterminating ones in a straightforward
manner as presented in [9], [17].

The language 	��� generated by a PDES � � ����� �� ��� ��� ��
is given by 	��� � �
 � �� 	 ����� 
�

. The marked language of
� is given by 	���� � �
 � �� 	 ����� 
� � ��
, whereas the
probabilistic language generated by � is defined as

	������� � �

	�����
�� �
	�����
� � ������� 
�� ��� if ����� 
�

�� otherwise.

Informally, 	�����
� is the probability that the string 
 is executed in
�. Also, 	�����
� � � iff 
 � 	���.

III. CONTROL OF PDES

As in classical supervisory theory, the set � is partitioned into ��
and��, the sets of controllable and uncontrollable events, respectively.
Given probabilistic generator �� of a probabilistic specification lan-
guage  (i.e., 	����� � ) and probabilistic generator � of proba-
bilistic language 	���� representing a plant, the goal is to find a su-
pervisor � such that the language generated by the plant under super-
vision, 	������, is equal to . A classical, deterministic supervisor
can only disable controllable events � � ��. It can be defined using a
function � � 	��� � ��� �
�:

��
 � 	������� � ��� �
�����
�� if ���� or 
��
�� otherwise.

We now explore the limited effect a classical supervisor can have
on a PDES. Fig. 1 shows two PDESs: the first one, �, represents a
plant, and the second one, ��, is a requirements specification. Con-
trollable events are marked with a bar on their edges. A number next
to an event represents the probability distribution of that event. � has
alphabet � � ��� �� �
 and is nonterminating. The event � is uncon-
trollable, and, therefore, always enabled. We also make an important
assumption about the behavior of a supervisor: After an event is dis-
abled, the probabilities of the remaining enabled events proportionally
increase. The question we want to answer is: Does there exist a deter-
ministic supervisor � such that 	������ � 	�����?

We first consider the case when the PDES � is in the state �� and
the PDES �� is in the state ���. The required probabilities of all the
events in the state ��� are nonzero. Therefore, the deterministic super-
visor � should enable all (controllable) events (state �� � of DES � in

Fig. 1. Plant � and requirements specification � .

Fig. 2. Deterministic supervisor � and controlled plant ���.

Fig. 2). Hence, the probabilities of events in the controlled plant remain
unchanged (see state �� of the controlled plant ��� in Fig. 2).

Next, after an odd number of � or � events (PDES � is in state ��
and PDES �� is in state ���), the supervisor should disable �. When
� disables only �, the plant can choose between � and �. The prob-
abilities of these events occuring in the resulting system are increased
proportional to their original probabilities. Therefore, the probability
of � occuring in state �� of the controlled plant is equal to:

� ��	� � ��� �
� �
����� ��

����� �� � ����� ��
�

���

��� � ��
� �����

Similarly, the probability of � ocurring is 0.25.
Therefore, although the requirement was met nonprobabilistically

(meaning 	����� � 	����), it is obvious that there is no determin-
istic control such that 	������ � 	�����. This example illustrates
that application of deterministic supervisors to PDES results in a rather
limited class of probabilistic languages. Hence, applying a determin-
istic supervisor to a PDES might be unacceptable for a designer.

We now generalize deterministic supervisors for DES to prob-
abilistic supervisors. The control technique used is called random
disablement. Instead of deterministically enabling or disabling con-
trollable events, probabilistic supervisors enable events with certain
probabilities. This means that, upon reaching a certain state �, the
control pattern (a set of events to be enabled) is chosen according to
supervisor’s probability distributions of controllable events. Conse-
quently, the controller does not always enable the same events when
in the state �.

For a PDES � � ����� �� ��� ��� ��, a probabilistic supervisor is
a function �� � 	���� ��� �	� such that for 
 � 	���� � � �:

���
�����
�� if � � ��
��
����� otherwise, where ��
���� � ��� �	�

Therefore, after observing a string 
, the supervisor enables the event
� with probability ���
����. After a set of controllable events to be
enabled, �, has been decided upon (uncontrollable events are always
enabled), the system acts as if supervised by a deterministic supervisor.
An example of a probabilistic supervisor is given in Fig. 3. Note that
the probabilities of all the events that can execute in a state of this
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Fig. 3. Probabilistic supervisor � .

generator do not, in general, add up to 1. This is because those are not
the probabilities of events occurring, but rather being enabled.

What is the probability that an event � will occur in a plant � under
the control of probabilistic supervisor �� when the string � � ����
has been observed? First, the control pattern is chosen according to
controllable event probabilities of the supervisor, and then, under that
pattern, the plant makes a choice according to its events probabilities.
Let � � � be the state of the plant after �. We define the set of possible
events at � to be �	���� �� �
 � ������ 
�  ��. Given sets ���,
the power set of � will be denoted by ����, and the set difference of
� and � by ���.

The probability that the event � � � will occur after string � has
been observed is equal to

� �� �� ������� �

������������ �

� ����� 	�
��	� 
��	� �� � � ��� 	�
��	����

(1)

where

� ����� 	�
��	 � 
��	� ��

�

���� ��

�����

���� 
�
� if � � � ���

�� otherwise
� ��� 	�
��	 ����

�
���

������
� �
����������� ���

��	 ������
���

It is now easy to show that the plant in Fig. 1 under the control of
the probabilistic supervisor depicted in Fig. 3 succeeds in generating
the probabilistic language ������, whereas a deterministic controller
failed (see [9] and [17]). However, in the general case, for a given plant,
there might not exist a probabilistic supervisor for a given probabilistic
specification language. In the next section, we will explore the condi-
tions under which a probabilistic supervisor exists.

IV. PROBABILISTIC SUPERVISORY CONTROL PROBLEM

A. Problem Statement

Our goal is to match the behavior of the controlled plant with a given
probabilistic specification language. We call this problem the Proba-
bilistic Supervisory Control Problem (PSCP). More formally:

Given a plant PDES �� and a specification PDES ��, find, if pos-
sible, a probabilistic supervisor �� such that ��������� � ������.

B. Main Result

We now present slightly modified main results of [9] and [10]. The
results are modified to account for the special case when �	���� 

�� � � discussed in detail in Section V-B.

First, we develop necessary and sufficient conditions for the exis-
tence of a solution to the PSCP problem for nonterminating PDESs.

Theorem 1: Let �� � ����� ��� ��� ��� ��� and �� �
����� ��� ��� ��� ��� be two nonterminating PDESs with disjoint
state sets � and �. There exists a probabilistic supervisor �� such
that ��������� � ������ iff for all � � ����� there exists � � �
such that ������ �� � � and, letting � � ������ ��, the following two
conditions hold:

(i) �	���� 
�� � �	����
 ��, and for all 
 � �	����
 ��,

����� 
�

	��

����� ��
�

����� 
�

	��

����� ��

(ii) �	���� 
 �
 � �	���� 
 �
, and, if �	���� 
 �� � �, then
for all 
 � �	���� 
 �


����� 
�

����� 
�
	��

����� �� �
	���������

����� �� � ��

The first parts of conditions (i) and (ii) of Theorem 1 correspond
to controllability as used in classical supervisory theory (namely, the
condition �	���� 
 �� � �	���� 
 �� of (i), and �	���� 
 �
 �
�	���� 
 �
 of (ii)). The remaining equations and inequalities corre-
spond to the conditions for probability matching. For each uncontrol-
lable event possible from a state in a plant, the equation to be checked
reflects the fact that the ratio of probabilities of uncontrollable events
remains the same under supervision. This comes from the fact that after
a control pattern has been chosen, the probabilities of disabled events
in the plant are redistributed over enabled events in proportion to their
probabilities. All possible uncontrollable events are always enabled,
hence the ratios of their probabilities remain unchanged. An inequality
for each possible controllable event 
 is derived from the upper bound
on the probability of the occurrence of 
 in the supervised plant, that is
reached when the controllable event is always enabled (for details, see
[9], [17]).

When the conditions are satisfied, a solution to PSCP exists. After
a string has been observed, the control input is given as a solution to
the system of nonlinear equations given by (1). This solution is com-
puted by the fixpoint iteration algorithm as presented in the following
theorem.

Theorem 2: Assume that conditions (i) and (ii) of Theorem 1 are
satisfied. Let

���� �
�	����
�
� if �	����
�� � �

��	����
�
������ otherwise

where � � �	���� is chosen such that for every 
 � �	����,
����� �������� �� � ����� 
�������
� is satisfied. Let ����� �
��� ������ and ���� � ���� � ����. For ����� � �, the sequence

��	���� � ������������ � � �� �� � � � � ��	�	

��������
� �
����� 
�

����� 
���������
�
� 
 � ����� � � ���� 
��

��������
� �
�������������

�

�	
	��

����� ��

�
	��

��	 ��������
	�����������

������� (2)

converges to the control input ����� (i.e., ����� � �����).
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V. FORMAL PROOF

If there exists a probabilistic supervisor �� such that ��������� �
������, then ����� � �����. Therefore, let � � ����� and assume
there exists � � � such that � � �����	 ��, and 
 � ���
�	 ��. For
notational convenience, whenever obvious from the context, we will
omit the symbols for strings and states so that, e.g., instead of ����	 ��,
we shall write ���� , and instead of ���
	 ��, we shall write ���� . We
will use small Greek letters to denote events and capital Greek letters
for sets of events. To denote sets whose elements are not necessarily
events, capital Roman letters will be used, and small Roman letters
will denote functions. Also, we assume the set difference operation to
be left-associative.

Further, without loss of generality, we assume that in state �, not all
the possible events are controllable, that is

��� ����  �, or, equiv-
alently, ������ � �� �� �. This assumption is safe since if ���� � �
for all � � ��, then the PSCP reduces to the PSCP with only control-
lable events which can be transformed into a problem with exactly one
uncontrollable event (we will discuss this further in Section V-B). Note
that in the case of at least one possible uncontrollable event, we have
���� � ������ � ��. We will write � instead of ����.

After a string � � ����� has been observed, the supervisory
problem is effectively the problem of finding the control input vector
���� � ��	 �	� such that � �� 
� ������� � ���� for all � � �,
where � �� 
� ������� is given by (1).

Proof

The detailed proofs are omitted due to space restrictions, and can be
found in [17]. For the purposes of the proof, we will write � instead of
����, �� instead of �������, ����� instead of ����������, ����� in-
stead of ����������, for � � �. Also, we will denote� �� 
� �������
by �����.

Lemma 1: Let � � � and � � �. Then:

��� ���

��
�����

��� ��� � ��

Lemma 2: Let � � and � � ����	 be positive and monotone.
The function �� � � 	 given by

����� �
���	�


����
���

��� ���
�����

��

is positive and antitone on ��	 �	�.
Lemma 3: Let � � ��	 �	�. Then, ����� � ����������� for every

� � �, where �� � � 	 is given by

����� �
���	�����


�

��
���

����
���

��� ���
���������

��� (3)

Next, we introduce a partial order on �. For �	 � � �, � 
 �
iff �� � � �� 
 �� . Let � � ��	
� 	 ��	
� be a mapping
between posets. This mapping is monotone if whenever � 
 �, then
���� 
 ����; it is antitone if whenever � 
 �, then ���� � ����.
Also, for � � , let �� denote � � � such that �� � � for all � � �.

Lemma 4: The functions �����, � � �, as defined in Lemma 3 are
positive antitone, and such that ������� 
 ����� on ��	 �	� for all
� � ��	 � � ��.

Let ��� be a sequence of real numbers, and � � . We will write
�� � � iff �� 
 ���� for all � � , and �� 	 � as � 	 �.
The following lemma gives sufficient conditions for the existence of a
fixpoint of the function � .

Lemma 5: Let � � � 	 � be a monotone function on � � �,
��	 �� � , such that �� 
 ��, ���	 ��	� � � and ��� 
 ������.

Assume that for every � � ���	 ��	
� such that � 
 ����, we have

���� 
 ���. Then, the sequence ��� given by

�� � ���	 ���� � �����	 � � �	 �	 � � �

exists and is such that �� � �� for some �� � ���	 ��	
�. If, furthermore,

� is lower continuous ( �
�
	 �	

����� � ����), then �� � �����.

The following theorem presents necessary and sufficient conditions
for controllable events’ probabilities to be assignable to given proba-
bilities. If the conditions hold, the fixpoint algorithm to calculate the
control input is given.

Theorem 3: Assume that ����
�� �� � �, and, for every � � �:

����
����

���

���� �
���

���� 
 �� (4)

Then, the sequence ���, � � �	 �	 � � �, given by

�� � �	 ���� � �����	 ����� ����� �
����

���������
	 � � �

exists and is such that �� � �� for some �� � ��	 �	�. Furthermore,
����

�� � ���� for all � � ��. Conversely, for any � � ��	 �	�, if
���� � ����� for all � � ��, then ����
�� �� � � and (4) holds.

So far we have considered the conditions under which the probabil-
ities of controllable events can be assigned to specified probabilities.
Next, we consider uncontrollable events as well.

Lemma 6: There exists � � ��	 �	� such that ����� � ���� for
every � � � iff ����
���� � �, ��������� � ����
����, (4)
holds for every � � �, and for every � � ������ � ��

����

���

����
�

����

���

����
� (5)

A. Special Case: ������ � �� � �

We now address the issue previously mentioned: in a certain state,
only controllable events can happen in the plant. Then, a probabilistic
supervisor can disable them all which would cause termination. How-
ever, as we consider nonterminating generators, this is not allowed.
An elegant solution is to always enable one event: this event effec-
tively becomes uncontrollable and the problem reduces to the one al-
ready proved. We now show that, if an event � with the maximal ratio
��������� is chosen, then the condition (4) is satisfied.

Formally, let ������ � �� � �. Then, only for this local problem,
we declare event � � ��������� to be uncontrollable. Then, ���� �
������� � ������, denoted � for simplicity. The left hand side of
the condition in (4), for � � �, becomes

����
����

���� �
���

���� �
����
����

���� � ���� �
���

���� � ����

�
����
����

���� � ���� �
��
��	
	�

����

�
����
����

���� � ���� � ��

Then, the condition (4) becomes

����
����

���� � ���� 
 �

which, since ���� � �, is equivalent to

����
����

�
����
����


 ��
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Fig. 4. Fixpoint iteration.

If the event � is one with the maximal ratio ��������� (meaning, for
every � � ������, ���	
 �������
 �� � ���	
 �������
��), it is ob-
vious that the condition is satisfied for any � � �. Now, it is easy to
show that this case and Lemma 6 result in Theorem 1. Further, if the
conditions of Theorem 1 are satisfied, the algorithm for computation of
control input from Theorem 3 can be applied to this special case, with
� considered an uncontrollable event.

B. Example

We now present the calculation of a probabilistic supervisor for the
example from Fig. 1, where �� � ��
 ��, and �� � ���. The case
when the string � � ���� has been observed such that � is at the
state ��, and �� is at ��� will be presented in detail. Again, for nota-
tional convenience, we shall write ���� instead of �����
 ��, and ����
instead of ������
 ��, where � � �. Let �� � �����
 ���� 
 �����,
�� � �����
 ����
 �����, and ���� � ��������
 ��������. From Fig. 1,
it follows �� � ����
 ���
 ����
 �� � ���	
 ��

 ����. First, we check
the conditions of Theorem 1. The equality of Theorem 1 is trivially
satisfied. We then check if the inequalities of Theorem 1 are satisfied:
	�� � ���� � ����� ���� � ��� � 	, ����� � ����� ���� � ��� � 	.
Then, the control input ����� can be calculated by the fixpoint iteration
where ����� � ��
 ��, ����� � �������������, and, for � � �����

���������� �
����

���� ���� � �
��	

�	� �����

���������� �
����

���� ���� � �
��	

�	� �����
�

After just a few iterations, the sequence ������� converges to ����� �
���	��
������ (see Fig. 4).

The calculation of the supervisor after the string � � ���� has
been observed such that �� is in the state ��� gives the result ����� �
����
��. The supervisor is shown in Fig. 3.

VI. COMPLEXITY ANALYSIS OF THE SYNTHESIS

PROBLEM AND ALGORITHM

For the purposes of complexity analysis, let us restate the syn-
thesis problem and the algorithm. Let ��

� and ��
� be the non-

probabilistic automata underlying generators �� and ��, i.e.,
��
� � ��
�
 ��
 ��
 �
� and ��

� � ��
�
 ��
 	�
 �
�. Also, let the
nonprobabilistic automaton �� � ���
�
 ��
 ���
 �
�� be the syn-
chronous product of ��

� and ��
�. The construction of �� and the check

of conditions of Theorem 1 can be performed in time ����� � ��� � ����.
Assume that the conditions of Theorem 1 are satisfied. Then, for each
state ��
 	� � �� of the automaton �� (there are at most ��� � ���
states), control input ���� � ��
 	�����, where � � ���� such that

� � �����
 ��, and 	 � ���	�
 ��, is the solution of the system of
nonlinear polynomial equations

� � ������� (6)

on the interval ��
 	�����, where ���� is defined as in (2). This control
input can be calculated using the algorithm from Theorem 2.

We assume that the probabilities of both the plant and specification
are rational. Even in this case, control inputs are, in general, irrational.
E.g., let us consider the plant and specification in Fig. 1, after string �
has been observed such that PDES � is in state �� and PDES �� is in
state ���. Then, solving for � � �������, the system of (6) reduces
to the equation 
��� � ��� � 	� � �, whose roots are irrational
numbers, and, therefore, cannot be computed exactly. Hence, the best
we could do is approximate the supervisor’s probabilities to a certain
accuracy. The theoretical complexity of this problem is equal to the
theoretical complexity of approximating the solution of the system of
nonlinear polynomial (6). It is known that even for systems of quadratic
equations, the problem is at least exponentially hard [18].

For deriving the upper bounds on complexity of the problem, we
use reasoning similar to the one presented in [19]. We resort to the
the results on complexity of the decision procedures of the Existential
Theory of Reals, ����� �. Results of [20], [21] give the upper time
complexity bounds for deciding sentences in ����� �. A sentence in
����� � is of the form:� 	 
��
 � � � 
 �� ���
 � � � 
 ��, where � is
a quantifier free boolean formula with “atomic predicates” of the form
�����
 � � � 
 ����, where �� is a (multivariate) polynomial with ra-
tional coefficients, and� � ��
�
�
 ��
�
 ��. Let � be the number
of atomic predicates ��, and � the maximal degree of polynomials ��.
Then, there is an algorithm that decides if the sentence � is true over
real numbers, that runs in PSPACE, and in time ����������. This
complexity result contains an implicit assumption that the validity of
� can be decided in constant time (given the truth values of its atomic
predicates); this assumption serves to simplify the result and does not
have a significant impact on the following complexity results.

It is easy to construct a sentence in ����� � that compares �������
(� � ����) to a rational number. The sentence

������� 	 
���� ���� � ����������
������

� � ������� � 	  ������� � �

checks if there exists a solution ���� � ��
 	����� of (6) such that
������� is less than a rational number �. Since each ������� (� �
����) is in the interval ��
 	�, we can use binary search and queries
similar to ������� to close in on the value of a control input up to an
accuracy 	���,  � . In order to reach this accuracy, we need to use
�� �������� queries. Therefore, there is an algorithm that approximates
the solution of (6) up to prespecified accuracy 	���, and it runs in time
�� � ����������������.

On the other hand, a straightforward analysis of (6) suggests that
the worst-case running time of one iteration of the fixpoint algorithm
that approximates the solution of (6) is ��������� � ��������. Since the
number ������ is typically small in practical applications, this com-
plexity does not represent a practical limitation of the algorithm. The
exact rate of convergence is not yet known. However, experimental re-
sults indicate that for ����	���� � �, the convergence is superlinear,
whereas for ����	� � �� �� �, the convergence is linear, with the
convergence factor of at most !�	� �

���������� ���	
 �� � 	.
Practically, this means that when the value !�	� � ���, the algorithm

Authorized licensed use limited to: McMaster University. Downloaded on August 26, 2009 at 13:12 from IEEE Xplore.  Restrictions apply. 



2018 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 8, AUGUST 2009

converges fast (gaining one decimal of precision in at most five itera-
tions). When ��� � ���� � ���, it takes not more than 25 iterations
per decimal of precision. For ���� very close to 1, the number of it-
erations per decimal of precision (�� ��	��������) can become quite
large.

VII. CONCLUSION

In this paper, we presented the solution of the probabilistic supervi-
sory control problem as introduced in [9] and [10]. The control tech-
nique used is called random disablement: events are enabled with cer-
tain probabilities. Necessary and sufficient conditions for the existence
of the solution are introduced and a fixpoint algorithm for the compu-
tation of supervisor is given. Detailed formal proofs are presented in
[17].

We are currently working on the problem of finding a supervisor
that provides the closest approximation to a probabilistic specification
language when there does not exist an exact solution to the probabilistic
supervisory control problem (the conditions of Theorem 1 fail) [22].
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Session-Level Load Balancing for
High-Dimensional Systems

Dennis Roubos and Sandjai Bhulai

Abstract—Load balancing is critical for the performance of big server
clusters. Although many load balancers are available for improving per-
formance in parallel applications, the load-balancing problem is not fully
solved yet. Recent advances in security and architecture design advocate
load balancing on a session level. However, due to the high dimensionality
of session-level load balancing, little attention has been paid to this new
problem. In this paper, we formulate the session-level load-balancing
problem as a Markov decision problem. Then, we use approximate dy-
namic programming to obtain approximate load-balancing policies that
are scalable with the problem instance. Extensive numerical experiments
show that the policies have nearly optimal performance.

Index Terms—Approximate dynamic programming, Markov decision
processes, session-level load balancing.

I. INTRODUCTION

Many content-intensive applications have scaled beyond the point
where a single server can provide adequate processing power. This
raises the need for flexibility to deploy additional servers quickly and
transparently to end-users. The technique that addresses this need is
load balancing, i.e., the process of transparently distributing service re-
quests across a group of servers. It also addresses several requirements
that are becoming increasingly important in computer networks, such
as increased scalability, high performance, and high availability and
disaster recovery.

While many effective load-balancing strategies have been developed
that perform load balancing on the level of service requests, new ap-
plications, and architectures require load balancing on the level of user
sessions. In these cases, the load-balancing algorithm is carried out only
when a user requests a new session. This load-balancing problem on a
session level is not yet solved completely and has received little atten-
tion due to its complexity.
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