
Contents

Chapter 1 � New Standards for Trustworthy Cyber-Physical
Systems 1
Alan Wassyng, Paul Joannou, Mark Lawford, Tom Maibaum , and
Neeraj Kumar Singh

1.1 STANDARDS-BASED DEVELOPMENT 3
1.1.1 The Role of Standards 4

1.1.2 Challenges with Standards 5

1.2 ASSURANCE CASES 6
1.2.1 The Role of an Assurance Case 7

1.2.2 State of the Practice 7

1.2.3 Improving the State of the Practice 9

1.2.4 Aiming for State of the Art 11

1.2.4.1 Argumentation 12

1.2.4.2 Confidence 12

1.3 ASSURANCE CASE TEMPLATES 13
1.3.1 What is an Assurance Case Template? 14

1.3.2 Characteristics of an Assurance Case Template 17

1.3.2.1 Characteristics of state of the art assur-
ance cases 17

1.3.2.2 Characteristics Essential for an Assur-
ance Case Template 19

1.3.3 Acceptance Criteria and Confidence 21

1.3.4 Dealing with Evidence 21

1.3.5 Product-Domain Specific 22

1.3.6 Different Development Processes 22

1.3.7 Suggested Structure 22

1.3.8 Example: Infusion Pumps 25

1.4 ASSURANCE CASE TEMPLATES AS STANDARDS 26
1.4.1 Using an Assurance Case Template as a Standard 26

1

2 � Contents

1.4.2 Problems in Constructing Assurance Case Tem-
plates 27

1.4.3 Benefits of Using an Assurance Case Template
as a Standard 28

1.5 CONCLUSION 30

C H A P T E R 1

New Standards for
Trustworthy
Cyber-Physical Systems
Alan Wassyng

McMaster Centre for Software Certification, McMaster University, Canada

Paul Joannou

McMaster Centre for Software Certification, McMaster University, Canada

Mark Lawford

McMaster Centre for Software Certification, McMaster University, Canada

Tom Maibaum

McMaster Centre for Software Certification, McMaster University, Canada

Neeraj Kumar Singh

INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France

CONTENTS

1.1 Standards-Based Development . 3
1.1.1 The Role of Standards . 4
1.1.2 Challenges with Standards . 5

1.2 Assurance Cases . 6
1.2.1 The Role of an Assurance Case . 7
1.2.2 State of the Practice . 7
1.2.3 Improving the State of the Practice 9
1.2.4 Aiming for State of the Art . 11

1.2.4.1 Argumentation . 12
1.2.4.2 Confidence . 12

1.3 Assurance Case Templates . 13
1.3.1 What is an Assurance Case Template? 14

1

2 � NII Shonan Book Template

1.3.2 Characteristics of an Assurance Case Template . . . 17
1.3.2.1 Characteristics of state of the art

assurance cases . 17
1.3.2.2 Characteristics Essential for an

Assurance Case Template 19
1.3.3 Acceptance Criteria and Confidence 21
1.3.4 Dealing with Evidence . 21
1.3.5 Product-Domain Specific . 22
1.3.6 Different Development Processes 22
1.3.7 Suggested Structure . 22
1.3.8 Example: Infusion Pumps . 25

1.4 Assurance Case Templates as Standards 26
1.4.1 Using an Assurance Case Template as a Standard 26
1.4.2 Problems in Constructing Assurance Case

Templates . 27
1.4.3 Benefits of Using an Assurance Case Template as

a Standard . 28
1.5 Conclusion . 30

C
yber-Physical Systems (CPS) are extremely complex systems that
combine components with both physical and cyber interfaces and po-

tentially complex interactions between these parts. They are also often both
security and safety-critical if the physical system being controlled can harm
people. It is imperative that these systems be developed and certified to be
safe, secure and reliable – hence the focus on Trustworthy Cyber-Physical
Systems. Current safety-critical or high-integrity standards primarily set out
objectives on the process, as is typical in much of software engineering. Thus,
the acceptance criteria in these standards apply to the development process
much more than to the product being manufactured. Having manufacturers
use these “good” processes is, indeed, advantageous. However, their use does
not guarantee a “good” product, except in a statistical sense. We need to
evaluate the quality of the product, not only the process by which it was
built [28].

Regulators, for instance the U.S. Food and Drug Administration (FDA),
have been dissatisfied with the frequency of the recalls of many of the products
evaluated in such a process based regime. Of course, we can, and should, make
our standards specify the product-focused evidence that is required, as well
as acceptance criteria for this evidence. However, software engineering does
not have a good track record in this regard. One approach we can take is to
identify critical properties of a system that are necessary in order to achieve
tolerable risk regarding the safety, security and reliability of that system.
Assurance Cases have been gaining traction as a way of documenting such

New Standards for Trustworthy Cyber-Physical Systems � 3

claims about these critical properties of a system, together with evidence and
associated reasoning as to why the claims are valid. Not surprisingly, the
FDA have turned to assurance cases to help improve the quality of products
submitted for approval [37]. Assurance cases provide one way of documenting
a convincing argument regarding the trustworthiness of the resulting system
– built on the identification of specific items of evidence, and the satisfaction
of explicit acceptance criteria involving both product and process.

We have been exploring the use of Assurance Case Templates that can
be used to drive development of a software-intensive critical system. Such a
template will also provide explicit guidance on an effective assurance case for
a specific product within the template’s identified product scope. We believe
that a product-domain specific template can serve as a standard for develop-
ment and certification of a CPS in that specific product-domain.

We have two distinct user groups in mind in this endeavour:

• The developers and certifiers of safety-critical CPS

• Standards developers in this community.

We further believe that assurance case templates can be much more effective
than the standards we have now, for both groups. It is probably quite easy
for readers to realize why this should be true for the first group – developers
and certifiers. However, it may not be so readily obvious for the second group
– standards developers. If we are correct, and it is possible to build product-
domain specific assurance case templates suitable for use as standards, then
the structure of the assurance case template will help standards developers in
a number of crucial ways, described more completely later in this chapter. A
distinct benefit to standards developers is that the assurance case structure
actually guides development of the standard such that we (can) have a better
understanding as to why compliance with the standard will result in a high
integrity system. This is the way in which we envisage standards developers
using such templates. There is another way. Perhaps it would be politically
more palatable, but technically not as satisfying. This would be to use an
assurance case template as a guide in creating a more traditionally organized
standard.

This chapter presents the motivation for the use of assurance case tem-
plates as standards by first describing the role of standards (Section 1.1.1),
and the shortcomings of current standards (Section 1.1.2). It also includes
a discussion of the basic concepts involved in assurance cases (Section 1.2),
what an assurance case template is (Section 1.3.1), essential components and
concepts of such a template (Section 1.3.2), and the problems Section 1.4.2)
and advantages of an assurance case template based standard (Section 1.4.3).

1.1 STANDARDS-BASED DEVELOPMENT

4 � NII Shonan Book Template

1.1.1 The Role of Standards
The construction of a standard is a community effort that uses state-of-the
practice knowledge to describe requirements on the development process and
(hopefully) the product that will be developed through application of the pro-
cess. In any industrial domain, we can typically find a number of international
standards that fulfill this role. In addition, if the domain is regulated, such as
the nuclear and medical device domains, a government appointed regulator
will likely issue regulatory requirements that may reference international stan-
dards. In many regulatory jurisdictions, compliance with relevant standards
and regulatory guidelines is a necessary prerequisite to obtaining approval to
market that device.

A useful definition of a standard is given by the ISO:
Standards are documented agreements containing technical specifications or

other precise criteria to be used consistently as rules, guidelines or definitions
of characteristics, to ensure that materials, products, processes and services
are fit for their purpose.

There are at least two important points to note about this definition. The
first is that it is an “agreement”, and the parties to the agreement are mem-
bers of the community involved in manufacturing, developing and certifying
the products, processes, services or notations governed by the standard. The
second point is that the goal of the standard is to ensure that the entities
governed by the standard are “fit for purpose”. This is especially pertinent to
our discussion when “fit for purpose” includes safety and security attributes.

There are many different kinds of standards, and for the remainder of this
chapter we are going to constrain our discussion to standards that govern the
development of safety-critical CPS/products. We have seen that standards
have the potential to help developers/manufacturers by documenting best
practice as determined through community consensus. Of course, the assump-
tion here is that the standard is “good”, truly reflects best practice, and is
written so that it is reasonably easy to understand and follow. Additionally,
standards promote common understanding amongst the various stakehold-
ers – manufacturers, suppliers and consultants, and certifiers/regulators. It is
true that many excellent products are built through compliance with current
standards.

However, to be truly useful, a standard should include acceptance criteria
on the process and/or product that will help to reduce variance in conformance
to critical properties of the product, such as safety, security and reliability.
Our observation is that this is woefully lacking in most current standards. In
general, there are additional problems and limitations with current standards
that affect how useful they are in governing the development and certification
of CPS, and other safety-critical software intensive systems. In the following
section we discuss potential weaknesses in current standards as motivation for
doing something different.

New Standards for Trustworthy Cyber-Physical Systems � 5

1.1.2 Challenges with Standards
Reference [38] described eight potential problems with current standards.
These were:

• Most software related standards are primarily process based;

• Outdated standards [3];

• Complex and ambiguous standards;

• Checklist based completeness;

• Lack of design and technical detail [21];

• Excessive documentation; and

• Not adopted by small companies [1].

A similar list was compiled by Rinehart et al [31]:

• Unknown assurance performance (same as “primarily process based”);

• Lack of flexibility;

• Development cost; and

• Maintenance cost.

All of these potential deficiencies impact our ability to consistently develop,
manufacture and certify CPS that are safe, secure and reliable. However, in
our opinion, by far the most important of these is “Most software related
standards are primarily process based”, and it is on this point we now
focus our attention.

There have been a number of papers written on product versus process
based certification [16, 28], and the role each plays in the confidence we have
in the quality of the resulting system. The process requirements embedded
in standards are not a guarantee that the resulting product will exhibit the
desired level of reliability, safety and security. The reasons for choosing those
requirements are statistical, in that we have historical evidence (mostly anec-
dotal) to show that a certain percentage of products developed using those
process requirements were successful. We think of these requirements as be-
ing derived from principles, such as stepwise refinement, but such principles
are still only supported by a statistical argument as to their effectiveness for
any one specific system. At best therefore, we can hope that there is a rea-
sonable/good chance that the product will be satisfactory. Of course, there
are required processes that should result in safe and secure products – take
hazard analysis for example. The fact that our process based standards are
also not very prescriptive usually diminishes the reliance we can place on such
expectations.

If we want to use process as a basis for our standards, there are a couple
of approaches we can take in order to make the outcomes more predictable.

6 � NII Shonan Book Template

• We can specify more acceptance criteria on aspects of the process, and
more precise acceptance criteria on the product.

• We can specify more detailed process steps. Vague or overview process
requirements will never be enough to affect the outcome of the process
to the degree we need.

Without requirements on the product as well as the process, we are really
not able to claim with any certainty that our developed systems are reliable,
safe and secure. In practice, therefore, successful companies sometimes impose
their own outcome based requirements on specific processes in the develop-
ment life-cycle. An obvious example of one area in which we have done a little
better is testing. Some standards at least have requirements not only on the
process, but also on the outcome of the process. The civil aviation standard
DO-178B (and now DO-178C) is a good example in this regard, with its man-
dating the use of Modified Condition/Decision Coverage [32, 33]. This may
not have been by intent, but it turns out that this test coverage criterion itself
also imposes requirements on the outcome of the process.

Other benefits of specifying requirements on the outcome of a process are
that:

• It informs developers how the acceptability of their products will be
judged; and

• It results in consistency of assessment when different assessors evaluate
the outcomes, so the acceptability is less prone to be a result of the
views of an individual assessor.

In the end, we need to identify what it is specifically about process based
standards that is hampering us in achieving more consistent and higher quality
outcomes. We believe that there are two essential elements that are missing
in most current standards:

1. Identification of evidence that must be produced (the evidence has to
relate to product as well as process entities); and

2. Acceptance criteria for the evidence produced to be regarded as valid,
enabling us to use the evidence to argue that the CPS has the desired
properties.

1.2 ASSURANCE CASES
Assurance Cases are based on Safety Cases [2], and safety cases have been in
use for over 50 years in the United Kingdom. An assurance case presents a
structured argument in which the developer of a product makes a claim re-
garding critical properties of the product (e.g., safety, security, reliability), and
then systematically decomposes the claim into sub-claims so that, eventually,

New Standards for Trustworthy Cyber-Physical Systems � 7

the lowest level sub-claims are supported by evidence. There are a number
of notations and tools for assurance cases, the most popular notation being
Goal Structuring Notation (GSN), developed by Tim Kelly [25]. Figure 1.1
shows what an assurance case may look like, represented in GSN. The major
components in a GSN diagram [15] are:

• Assumptions – identified by ‘A’ followed by a number;

• Contexts – identified by ‘C’ followed by a number;

• Goals – represent claims and are identified by ‘G’ followed by a number;

• Justifications – explain why a strategy was chosen and is appropriate,
and are identified by ‘J’ followed by a number;

• Solutions – represent evidence, identified by ‘Sn’ followed by a number;

• Strategies – explain why and how a claim was decomposed into specific
sub-claims, and are identified by ‘S’ followed by a number.

A recent Technical Report by Rushby [35] is an excellent description of
the history of assurance cases, current assurance case practice, and also delves
deeply into the essential characteristics of assurance cases.

1.2.1 The Role of an Assurance Case
The traditional assurance case was designed to document a structured argu-
ment that some critical properties of a system, product or process are satisfied
to a tolerable level, for the purpose for which they were constructed. Its pri-
mary role was thus seen to be as providing a believable demonstration of
compliance. An assurance case that assures safety for a product, for example,
must demonstrate that the product, when used as intended, in its intended
environment, will function with tolerable risk of harm to anyone, over its life-
time. That role is likely to remain a crucial role for assurance cases for many
years to come. In the past few years, an additional role has slowly been emerg-
ing – that of driving development of the product, for example, in such a way
that the resulting product will satisfy, to a required level, the critical prop-
erties of interest, and this assurance is documented by way of the assurance
case [11].

1.2.2 State of the Practice
One of the problems researchers have in the field of assurance cases, is that
many of the real, industrial assurance cases are proprietary. This makes it
difficult to ascertain exactly what the state of the practice is. It also makes
it difficult to back up any claims we make regarding the state of the practice.
We have seen real, industrial assurance cases and formed an opinion about
the state of the practice. We have also taken note of what our colleagues have

8 � NII Shonan Book Template

G1
Top Claim

J1
Justification for

strategy

A1
Assumption

C2
More context

C1
Context

G3
Sub-claim of

G1

G2
Sub-claim of

G1

G4
Sub-claim of

G1

G5
Sub-claim of

G1

S1
Strategy:

why
G2-G5

A2
Assumptions
in strategy

G6
Sub-claim of

G2

G7
Sub-claim of

G2

S2
Strategy:

why
G6-G7

Sn1
Evidence

for G3

G8
Sub-claim of

G4

G9
Sub-claim of

G4

S3
Strategy:

why
G8-G9

Sn2
Evidence

for G5

Sn6
Evidence

for G9

Sn5
Evidence

for G8

Sn4
Evidence

for G7

Sn3
Evidence

for G6

FIGURE 1.1 Assurance Case Structure in Goal Structuring Notation

said about the cases they have been able to examine and evaluate. However,
we still cannot cite specifics and cannot show extracts from these proprietary
assurance cases.

We take “State of the Practice” to mean what most practitioners do, day-in
and day-out. It is likely not to be “best practice”, especially in a relatively new
field, since there will be relatively large variations in practioners’ knowledge
and skills. An excellent description of current practice for assurance cases in
aviation is given in [31].

Our impression of industrial level assurance cases is that:

• Improved over the past 5 years: The concepts and basic idea behind an
assurance case seem to be better understood and more widely spread
now. In earlier years we even saw one submitted assurance case that
had a top-level claim equivalent to “we followed an accepted process”.

New Standards for Trustworthy Cyber-Physical Systems � 9

• Developed for certification: In spite of the fact that some companies
and many researchers recognize the need to develop the assurance case
in tandem with system development [11], the cases we have seen were
clearly constructed late(r) in the development cycle. In discussion with
manufacturers, the development of the assurance case is seen as a neces-
sary evil, that consumes time and effort, and its purpose is to convince
a certifier that the system is of sufficient quality – and safe.

• Structured to mimic hazard analysis results: Most assurance cases, since
they all had safety concerns, have a top-level structure based on hazard
mitigation. We do not believe that this is the best way to structure
assurance cases. Some of our reasons are presented in Section 1.3.7.

• It is not clear whether the precise nature of the evidence is pre-
determined: In most assurance cases the evidence that supports a ter-
minal claim is simply presented, and it is not clear why that specific
evidence is used, or why it supports the claim.

• No acceptance criteria: Presumably because the cases we have seen or
heard about were created post development, we are not aware of any
attempt to define acceptance criteria for evidence. We have seen dis-
cussion, after the fact, as to why the evidence is applicable and “good
enough”. There is significant attention paid to the confidence we have in
the evidence and other aspects of the assurance case. Acceptance criteria
could have a positive effect on some aspects of this confidence.

• No explicit argument: It seems that the definition of “explicit argument”
currently accepted is:

• the tree structure of the claim, sub-claim and evidence makes the
argument structure explicit;

• the claim decomposition rationale (described in the strategy in
GSN, for example) explicitly informs us as to the nature of the
argument.

Both of these aspects are useful, maybe even essential, but the actual
“reasoning” involved in the argument is not explicit. Our experience is
that it is never provided.

1.2.3 Improving the State of the Practice
As mentioned above, there has been a rapid improvement in many aspects
of the state of the practice as regards assurance cases. However, there are
some things we can do that will improve it even more – and they can be done
reasonably easily and thus, soon.

10 � NII Shonan Book Template

• Prepare the assurance case before developing the system: Critical prop-
erties that we want in our system must be designed in – they cannot
be added successfully after development of the system [17]. There are
many reasons why the assurance case should not be created after system
development (or late during system development). Two primary reasons
are:

• Safety, security, dependability have to be built-in to the system
from the start, they cannot be bolted on after the fact.

• Companies complain about the cost and effort involved in con-
structing the assurance case. They mistakenly believe that they
construct the assurance case to get whatever certification they are
seeking. It is true that developing the assurance case after the fact
is costly and time consuming. It is also a duplication of effort. If the
company does its work well, it will have had to plan the develop-
ment of the system in a way that involves many aspects of what will
be repeated in the assurance case. Combining the planning and the
documented assurance case right from the start is much more cost-
effective. This is explicitly recognized and developed in the work on
“Assurance Based Development” [11]. As mentioned earlier, some
companies already do this, but our experience is that companies
considering assurance cases, or who have recently started using as-
surance cases, are still considering them to be certification hurdles.

• Use a robust structure that facilitates defence-in-depth: Defence-in-depth
is a long standing principle used to ensure the safety of a system. Its use
predates the use of software in critical systems. The idea is that safety
must not be dependent on any single element of design, implementation,
maintenance, or operation. The decomposition structure we use for the
assurance case impacts the ease and stability with which we can make
changes to the assurance case, and also influences how easy it will be
to plan and document a defence-in-depth strategy for the development
process in addition to the system. This is discussed in a little more detail
in Section 1.3.7, and Figure 1.5 illustrates a top-level decomposition that
we believe will lead to a much more robust structure, as compared with
basing the top-level decomposition on hazard mitigation.

• Decide and document ahead of time what evidence must be obtained:
Creating the assurance case early – preferably before system develop-
ment starts enables us to plan what items of evidence must be produced
to support pre-determined claims. This has a number of advantages,
the main one being that it provides direction to the developers. They
know ahead of time what their process should produce, whether it be
documentation or system components. This, together with acceptance
criteria as discussed below, provides direction that process alone simply
cannot achieve. It is true that we will come across situations in which

New Standards for Trustworthy Cyber-Physical Systems � 11

the “desired” evidence cannot be obtained. In these cases alternative ev-
idence has to be substituted. The substitution needs to be noted (just as
we would note a deviation from a standard). If the reasoning (argument)
is really made to be explicit (see below), then we have a tool whereby
we can evaluate whether or not the alternative evidence is sufficient to
support the specific claim.

• Determine and document the acceptance criteria for evidence: Deter-
mining what evidence to produce is one thing. We also need to specify
what must be true of that evidence for it to be sufficient in supporting
a specific claim. This is discussed more in Section 1.3.3.

• Make the reasoning explicit – not just the claim decomposition structure:
One of the original claims for assurance cases is that their argument
structure would be explicit. Technically, that is true. The tree structure
showing the claim, sub-claim, evidence is explicit, at least it is in the
graphical notations for assurance cases. However, the structure leaves
out essential aspects of the argument, and we believe that the reasoning
aspects of the argument help us evaluate the validity of the claims in
a way that the decomposition structure on its own cannot do. At the
present time there is no real agreement on how to perform and struc-
ture the reasoning, so we are concerned that in terms of a relatively
quick benefit, if we wait until there is consensus on how to perform
the argumentation, we will have squandered an opportunity to improve
assurance cases in the short term. We propose that, at a minimum,
whenever a claim is decomposed into sub-claims or is supported directly
by evidence, the assurance case must include a strategy (why and how
the claim was decomposed into specific sub-claims), a justification (why
the strategy was chosen and is appropriate), and the reasoning (that the
claim follows from its premise – the sub-claims or direct evidence). A
partial example showing strategy and reasoning is shown in Figure 1.5
in Section 1.3.7.

1.2.4 Aiming for State of the Art
We believe that the items above can be put into general practice now, with
a corresponding improvement in the state of the practice for assurance cases.
There are two additional items that we see as longer term, that will raise the
state of the practice to tomorrow’s state of the art. The first of these is to
get some consensus on how to perform argumentation in assurance cases in
such a way that we can dramatically improve the soundness of the argument,
i.e., all the claims are valid and all the premises are true. The second is the
evaluation of confidence in the assurance case.

12 � NII Shonan Book Template

1.2.4.1 Argumentation

Arguments supporting assurance should ideally be formal reasoning in some
appropriate formalism defined for the purpose. This is because it is only when
the argument is formalized in this way can we be sure that the reasoning is
sound and that we have made no mistakes or omitted necessary details. Of
course, we may not have to or even want to present the argument completely
formally, but use a style similar to that used by mathematics: a rigorous
approximation to a completely formal proof, that can, if necessary, be turned
into a formal proof.

There then arises the question of what the appropriate formalism looks like.
It is commonly accepted that some aspects of such reasoning in assurance cases
will not be expressible in conventional logics, like first order logic. The ideas
of Toulmin [36] have been used as a departure point for characterizing the
kind of reasoning that might be appropriate. Toulmin’s argument falls into
that group of reasoning known as inductive reasoning, in which we cannot
provide “proofs” in the same way that we can in deductive reasoning [35].
Toulmin proposed a scheme for what rules in an argument might look like.
That is, he proposed a template that should be general enough to represent
the form of any rule used in an argument. So, a logic appropriate for reasoning
in assurance cases would be populated with reasoning rules that may conform
to Toulmin’s scheme.

1.2.4.2 Confidence

One important aspect of Toulmin’s scheme is the uncertainty associated with
the elements of the rule scheme. In conventional logics, if one accepts the
premises of some inference/argument step and one applies a rule to produce a
conclusion, then one can have absolute confidence in that conclusion. Confi-
dence is not talked about as there is no uncertainty associated with any of the
premises, the applicability of a rule of inference or the resulting conclusion.
Toulmin argues that in certain domains, like law, science, and we would claim
in assurance cases, all of the three elements above have levels of uncertainty
associated with them, which we conventionally refer to as confidence.

Over the past few years, confidence, as it applies to assurance cases, has
become an important and much discussed topic [4, 7, 9, 10, 13, 14, 43]. What
confidence are we, as a community, attempting to define, estimate and even
quantify?

The answer is: confidence in the validity of the top-level claim. This is
clearly the primary concern of the assurance case (if it is not, we have the
wrong top-level claim), and we want to be able to evaluate, sensibly and
as objectively as possible, how certain we are that the claim is valid. Note
that confidence in the top-level claim will typically be governed within the
context of the appropriate safety integrity level, and its associated integrity
level claim [23]. To this end, we can try and evaluate our confidence in two
items as shown below.

New Standards for Trustworthy Cyber-Physical Systems � 13

• Confidence in the argument: The argument is supposed to be explicit,
but even if it is not, the claim, sub-claim decomposition and evidence
does describe an argument – it is simply that we have to discover it
rather than be told explicitly what it is in the assurance case itself.

• Confidence influenced by evidence: The purpose of an item of evidence
is to support the parent sub-claim directly connected to the evidence.
Confidence is thus related to how well the evidence supports the claim.
For example, if the terminal sub-claim is: “The system behaviour as im-
plemented is adequately1 similar to the documented required behaviour”,
what can we say about our confidence in the assurance case in the two
examples of evidence that follow? 1) System Test Reports; and 2) Math-
ematical Verification Report.2 Confidence here will be influenced by the
coverage criteria used for the tests; the specific test coverage achieved;
the number of failed tests at the time of installation; the fact that a
mathematical verification was performed; and the number of residual
discrepancies that remain at the time of installation.

However, even if we can establish our confidence in the two items above, we
have no generally accepted theory or any other means of using this confidence
to ascertain the confidence we have in the top-level claim.

1.3 ASSURANCE CASE TEMPLATES
In the discussion that follows, readers who know something about assurance
cases may conclude that we simply mean an assurance case pattern when
we talk about an assurance case template. We do not. At least, we do not
believe that we do. The real difference between a pattern and a template is
one of completeness. Our observation of assurance case patterns is that they
are assurance case design artifacts that can be instantiated for a specific sit-
uation, and that are used within an overall assurance case. The assurance
case template, is a complete assurance case, in which claims are specialized
for the specific situation, and the evidence for terminal claims is described
together with acceptance criteria for the evidence, and as development pro-
gresses the evidence is accumulated and checked against its acceptance crite-
ria. The concepts are, indeed, very similar – but these templates are not the
same as current patterns. Patterns could prove to be useful within assurance
case templates.

1We assume that “adequately” is defined for each specific use of the word, within the
assurance case.

2In general we expect the evidence to be much finer grained than presented in this
example.

14 � NII Shonan Book Template

1.3.1 What is an Assurance Case Template?
Probably the best way of defining or describing an assurance case template
is to show an overview example of the process that led us to believe that
assurance case templates could be a productive and important step in being
able to develop reliable, safe and secure CPS.

To start, let us assume we have successfully developed a product (system)
and also documented an effective assurance case for the product. This product
is creatively called “Product 1”, and the assurance case decomposition struc-
ture is shown in Figure 1.2. In the interests of clarity, assumptions, contexts,
strategies, etc., are not included in the figure, and the “1” in the top-level
claim box simply indicates that this is the top level-claim and assurance case
for Product 1.

1

Legend:
 - Claim or sub-claim
 - Evidence
 - A is claim
 B is premise
A B

FIGURE 1.2 Assurance Case Structure for Product 1

Now let us further assume that we follow up our success by developing
another product, which we call “Product 2”. Product 2 is a product different
from Product 1, but is related in that it is within the same product domain as
Product 1. For instance, perhaps Product 1 is an insulin pump, and Product
2 is an analgesic infusion pump. Or, perhaps Product 1 is a car and Product
2 is a mini-van. We again document an assurance case for Product 2, and we
are so expert at developing assurance cases that the new assurance case differs
from that for Product 1 only where absolutely necessary. The assurance case
for Product 2 is shown in Figure 1.3.

Figure 1.3 also highlights the differences between the two assurance cases

New Standards for Trustworthy Cyber-Physical Systems � 15

2

Legend:
 - Claim or sub-claim
 - Evidence
 - A is claim
 B is premise
A B

Same claim as for product 1 but
for a different product

added removed content changed

FIGURE 1.3 Assurance Case Structure for Product 2

by explicitly showing which components have been added, removed or modi-
fied in the assurance case for Product 2 as compared with the assurance case
for Product 1. Now, consider what the figure would look like if we developed
Product 2 before Product 1 and then highlighted the differences in the assur-
ance case for Product 1. It should be clear that components added in the case
for Product 2 would be shown as components removed in the case for Product
1. In other words, the difference between “added” and “removed” is one of
time – it depends on whether (the assurance case for) Product 1 is developed
before or after (the assurance case for) Product 2.

So now we get to the heart of the idea of an assurance case template.
We want to develop an assurance case for both Product 1 and Product 2
– before we actually develop the products themselves. Of course, since an
assurance case must be product/system specific, we cannot actually build a
single assurance case that precisely documents assurance for both products.
What we can do is build a template that has a structure that will cater
for both products, but in which the content of components will need to be
different for the two products. If our template has to handle only the two
products, Product 1 and Product 2, then a template that may achieve this is
shown in Figure 1.4. The idea here is that claims and sub-claims can often be
parameterized, similarly as is done in assurance case argument patterns [6, 44],
so that the claim can reflect the specific product the assurance case deals with.
The details are not visible in the figure, but we will discuss this aspect of the
template later in this chapter.

16 � NII Shonan Book Template

P

Legend:
 - Claim or sub-claim
 - Evidence
 - A is claim
 B is premise
A B

evidence required and acceptance criteria specified in the template

0-10-1

1-2
1

FIGURE 1.4 Assurance Case Template Structure

Figure 1.4 now needs some explanation. There are two specific aspects of
the template we discuss at this stage.

• Optional paths: The paths shown in grey in the figure are optional, de-
pending on the specific product for which the assurance case is being
instantiated. The numbers next to the optional paths show the multi-
plicity of the paths.

• Optional 0-1: This is a single path that may or may not be required
for a specific product.

• Exclusive-Or 1: One of the paths (there can be more than 2) must
be instantiated for a specific product.

• Non-exclusive-Or 1-n: One or more of the paths can be instanti-
ated for a specific product.

• Evidence nodes: The actual evidence for products will differ from prod-
uct to product. That is why all the evidence nodes in Figure 1.4 are
shaded. If this were not true we would not need to develop an assur-
ance case at all! Since this is a template, the content of the nodes in the
template will not be the actual evidence. What will it be? The answer
is simple, and reflects one of the benefits of building an assurance case
template. Each evidence node must contain:

New Standards for Trustworthy Cyber-Physical Systems � 17

• A description of the required evidence.

• Acceptance criteria for that item of evidence, i.e., what must be
true of that evidence to raise the level of confidence that the critical
properties that the system must have are true.

Not surprisingly, the GSN community, in their work on assurance case
patterns, has had to deal with exactly this type of optionality. GSN now
includes specific notation to deal with what they have termed “Multiplicity”
and “Optionality” [15]. A small solid ball together with a number representing
the cardinality is used for multiplicity. A small hollow ball is used for optional
(in this case 0 or 1). The notation was further extended to use a solid diamond
together with the cardinality number, as a general option symbol. What seems
to be missing from GSN is the non-exclusive-Or option. An example of an
assurance case template using this notation is provided in Figure 1.6 in a
later section of this chapter. We have used the option symbol together with
an “at least n” descriptor to describe the non-exclusive-Or.

1.3.2 Characteristics of an Assurance Case Template
The essential characteristics of an assurance case template must also include
characteristics of state of the art assurance cases. Why state of the art? Pri-
marily, to reap the benefits of a template.

1.3.2.1 Characteristics of state of the art assurance cases

We believe the following characteristics/components are essential for any state
of the art assurance case.

• Explicit assumptions: An assurance case applies to a particular system,
and we know that we cannot claim to assure any critical property in
that system without describing precisely what has to be true about the
system. Assurance cases have improved the general approach to sys-
tem assurance by highlighting the fact that assumptions are first class
components of such assurance. They are useful/essential because:

• Reviewers can determine whether or not the assumptions are prac-
tical;

• They help to constrain the system, and without constraints we
usually will not be able to achieve the required quality;

• They provide an easy opportunity to check that the system does
not violate any assumptions;

• They enable us to evaluate changes in the system in order to deter-
mine whether or not the assurance case will have to be modified to
account for the changes (even if the changes do not violate stated
assumptions, we may need to modify the argument component of
the assurance case).

18 � NII Shonan Book Template

• Explicit context: An area where current assurance cases do reasonably
well is in the documentation of context for the primary system com-
ponents. This is important since one of the typical entities described in
context is the definition of terms. This may seem trite, but becomes cru-
cial the more precise we try to be – and precision/formality is something
we strive for in the case of safety-critical systems.

• Explicit argument: One of the benefits “claimed” for safety cases and
assurance cases is that they make the assurance argument explicit. Typ-
ically this is not true in extant examples we have seen. Most assurance
cases present an explicit decomposition of the top-level claim(s) into sub-
claims, and eventually at the end of each path of sub-claims, there is an
evidence node (or nodes) that “supports‘ the sub-claim it is attached
to. The decomposition of sub-claims is not an argument – it does not
provide reasoning that uses the premise(s) to support the (sub-)claim
(see Figure 1.4 above). Actually, there is no agreement at this time as
to what an assurance case argument should be. Some researchers be-
lieve we can provide localized arguments as described above. Others
believe that there are some properties, safety is the prime example, that
are global to the system, and local arguments (the premises “imply”
the claim) ignore emergent behaviour. In this case, the argument would
have to be global to the assurance case. Over the years there have been
a number of attempts at defining how to perform argumentation (rea-
soning) in assurance cases [18, 34, 42, 41, 5]. The report by Rushby [35],
mentioned earlier, presents an excellent discourse on the different types
of arguments for assurance cases. At this time, any explicit argument,
of whatever level of formality, even if we find out in the future that it
has shortcomings, will be a huge improvement. The sad truth is that,
in practice, there is almost no attempt to provide explicit reasoning in
assurance cases. Since so many successful projects have been completed
without it, do we really need it? Our answer is “yes” – especially long
term. The size and complexity of CPS is stretching our ability to pro-
duce systems/products of sufficient quality and reliability. The complex-
ity and distributed nature of these systems makes it even more difficult
to identify emergent behaviours, and protect against hazards that arise
because of these emergent behaviours. Evaluating the safety, security
and reliability of these systems is assuming more and more importance,
whether it be for external certification (licensing and approval), or inter-
nal certification (quality control). Making the argument explicit, so we
can evaluate the soundness of the argument more easily and accurately,
will help us build systems with adequate quality.

• Explicit strategies: Although the strategy is not an argument, it is still
useful and important. The idea of the strategy is to explain how the
parent claim is decomposed into sub-claims and sub-claim paths that
explicitly characterize the safety design aspects of the artifact.

New Standards for Trustworthy Cyber-Physical Systems � 19

• Explicit justifications: Justifications are usually regarded as “nice to
have”, but they are more than that. Whereas the strategy describes
the “how” of the decomposition, the justification describes the “why”.
The structure and rationale for the decomposition is akin to the module
guide in Parnas’s Rational Design Process [30], and this is precisely what
the strategies and justifications, together, should deliver.

1.3.2.2 Characteristics Essential for an Assurance Case Template

• Adequate descriptions of evidence to be provided: An important differ-
ence between an assurance case and an assurance case template is that,
in a template, the specific evidence for a system cannot be included,
because the specific system is not known at the time the template is
constructed. However, we do (should) know what evidence will be re-
quired to support the claims we want to make – we know the claims as
well. Why should this be true? The simple fact is that any manufacturer
of safety-critical systems sets out to build a safe (reliable and secure) sys-
tem, and an incredible amount of work goes into planning how to build
the system so that it will be safe! This planning uses knowledge accumu-
lated by practitioners through the ages and documented in books and
research articles in appropriate fields, as well as in corporate memory.
It may not have been framed or even recognized as claims and evidence,
but it is – or can be viewed as such. So, what we need for an assurance
case template is the explicit documentation of the nature of the evidence
that is required for each “bottom-level” sub-claim. This description can
include alternatives, since it is sometimes possible to support a claim in
a number of ways. In fact, it may be possible to provide more than one
item of evidence for a single claim – and that certainly helps to build
confidence in the assurance case.

• Acceptance criteria for evidence: A description of the kind of evidence
required for each terminal sub-claim is necessary, but not sufficient. We
also need to describe, as precisely as possible, what must be true of the
documented evidence to be sufficient to support a specific claim. The
fact that this is not routinely required in assurance cases reflects the fact
that most assurance cases are developed after the fact (or at best, during
development) to document why a particular system satisfies specific cri-
teria. They are not developed to drive development so that those criteria
will be satisfied. There are academic papers that exhort practitioners to
build the assurance case as early as possible [24, 12]. However, those pa-
pers do not discuss acceptance criteria for evidence. Our ideas regarding
an assurance case template were prompted by the work of Knight and
colleagues. Their idea of Assurance Based Development (ABD) [12] was
intriguing, and seemed to reflect many of the principles we believed in.

20 � NII Shonan Book Template

However, this body of work also does not promote the idea of acceptance
criteria.

• Arguments that cope with optional paths: As we saw in Section 1.3.1 and
Figure 1.4, an assurance case template requires arguments that deal only
with logical conjunction. An assurance case template requires arguments
that can deal both with logical disjunction and logical conjunction. This
should not constitute a real problem, but it is worth noting that the
situation has to be dealt with.

• Why explicit arguments will be crucial: As stated earlier, we strongly
believe that explicit arguments are essential if we are to realize the true
potential of assurance cases to help improve the safety, security and re-
liability of complex CPS. Explicit arguments (reasoning) are even more
important in the construction of assurance case templates, simply be-
cause the template is predictive rather than reflective. We can consider
two different cases:

• What if we want to use evidence that is not explicitly included in
the description of evidence in the template? In this situation it may
be that the template may have erroneously omitted the evidence we
now want to include. Or, it may be that the developers of the tem-
plate did consider whether or not to include that evidence, but, for
whatever reason, decided not to. In both situations, if we have an
explicit argument in the template, we will be able to determine the
effect of our potential change in evidence will have on the validity
of our claims.

• What if we want to modify a claim or sub-claim? Since our current
knowledge does not adequately inform us as to whether or not it is
at all possible to perform incremental safety assurance, modifying
claims in a way that requires a change in the reasoning/argument
appears to be risky. Well, it may not be quite as bad as it seems.
First of all, if the original argument is “bottom-up” and global (as
opposed to a set of localized arguments, each constrained in scope
to a specific set of sub-claims that support the directly connected
parent claim), then we should be in a position to evaluate the ef-
fect of the change in terms of how it affects the “top-level” claim(s),
and what would be necessary to make the argument “sound” again.
Secondly, if the argument consists of a set of localized arguments,
then we must have decided that these localized arguments are suffi-
cient for our purpose – at least at this time and stage of knowledge
in argumentation for assurance cases. Then we should be able to
use the localized argument that encompasses the change to evalu-
ate the effect of the change in terms of how it affects the “parent”
claim, and what would be necessary to make the argument “sound”
again.

New Standards for Trustworthy Cyber-Physical Systems � 21

1.3.3 Acceptance Criteria and Confidence
The notion of confidence in assurance cases was discussed in Section 1.2.4.2.

Why is it, that with all the research on confidence in assurance cases, we
hear so little about acceptance criteria? The answer to this is quite simple, but
sometimes hotly refuted. The focus on confidence as compared with acceptance
criteria is primarily due to the perception that assurance cases are developed
after the system/product has been built – or, at best, while the system is
being built.

Why are we concerned about this? There is significant research effort on
confidence related to evidence. We believe that in dealing with this aspect
of confidence, our task would be better defined if we could assume that ac-
ceptance criteria for evidence have been defined. The more we can reduce
uncertainty in this regard, the better off we are going to be. A consensus of
expert opinion used to define acceptance criteria would be of definite benefit.

1.3.4 Dealing with Evidence
We have already stated that, in terms of evidence in assurance case templates,
the two most important attributes we have to document in the template for
each evidence node are a description of the evidence required to support the
parent claim, and the acceptance criteria for the evidence. Related to the first
of these, we need to discuss the nature of evidence in an assurance case node.
It has become prevalent to simply reference documents produced during de-
velopment as the relevant evidence. We believe that evidence in assurance
case nodes should be much more specific. If we include specific sections of a
document as part of the reference, then this can still be achieved by refer-
encing development (or other) documents. This is sometimes difficult when
done “after the fact”, since the section referenced may contain more than the
specific item we wish to refer to. In the case of a template, this should be less
of a problem since we will know ahead of time that we will want to reference
the specific item.

As far as evidence is concerned, one important thing to note is that the
evidence and the assurance case argument are strongly linked, and both are
essential to successful assurance cases. Researchers at the University of York
have a saying regarding this: ”An argument without evidence is unfounded
whereas evidence without argument is unexplained.” [8]. You cannot necessar-
ily change one without making changes in the other. This is always true in
any assurance case. For an assurance case template, this dependence is both
a potential challenge, and extremely useful. It is a challenge in that changing
the evidence will incur a re-examination of the argument, and re-examining
the argument can be costly in terms of time and effort. One mitigation in
this regard is that the evidence is at the bottom of the argument tree, and,
our intuition is that a change in evidence is more likely to have local impact

22 � NII Shonan Book Template

on the argument. The dependence can also be useful in helping developers
understand why that particular evidence is necessary.

1.3.5 Product-Domain Specific
The template we envisage will be product-domain specific. It has to be. A
major assumption in this work is that there are classes of products/systems for
which an assurance case structure (claims and arguments) exists that handles
all the products within a class without too many differences. The only possible
way that this assumption could be valid is if we restrict our assurance case
templates to product-domain specific systems. We do not have proof yet that
this is possible. We do have some preliminary results from consideration of
infusion pumps – and also preliminary ideas with respect to the automotive
domain.

1.3.6 Different Development Processes
In Section 1.3.1, and in Figures 1.2, 1.3 and 1.4, we presented motivation
for assurance case templates by describing how we could handle differences
caused by product/system differences. There is another kind of difference that
we have not yet discussed – differences in the development process. Many dif-
ferences in the development process can be handled without any change in
the structure of the assurance case. For many years, we have argued that even
when we promote “product-focused” certification, there is always an assump-
tion of an “idealized development process”, as described in [39]. Typically,
it is these elements of an idealized process that make their way into an as-
surance case. However, there is one situation that is definitely different, and
may result in requiring a slightly different assurance case structure. If one
system is developed using a traditional development life-cycle (especially as
regards the software), and another system is developed using a model-driven
engineering approach [22], then we can expect differences in the assurance
case structure. In addition, the use of two substantially different development
processes can/will occur even within a product-domain. Thus, an assurance
cases template must be able to handle these differences, and we believe that
a template with optional paths as shown in Figure 1.4 will be able to handle
them well.

1.3.7 Suggested Structure
Researchers have been trying to work out how to achieve incremental assur-
ance for complex systems, preferably using assurance cases. The difficulty here
is that some properties, like safety, are global to the system, and emergent be-
haviours have implications for the safety of the system. We do not know how to
isolate portions of the system in such a way that each portion being “proven”
to be safe would imply that the entire system is safe. We do not even know if

New Standards for Trustworthy Cyber-Physical Systems � 23

this is possible. We surmise that it may not be possible without revisiting the
argument in the assurance case. At the same time, we cannot afford for that
to be the final answer, since we will not be able to redo complete assurance
case arguments every time we make changes to a safety-critical CPS.

In some ways, software engineering research has always grappled with prob-
lems like this. Not always concerning safety, and not always with regard to
global properties. Throughout the past 50 years we have had a number of chal-
lenges in our pursuit to build more dependable software intensive systems. One
distinct challenge was how to cope with change in software intensive systems.
In the 1970s, Parnas suggested that “information hiding” [29] would help
us cope with anticipated changes, and that we could then build systems in
which dependability would not be degraded when we made these anticipated
changes. Information hiding helps us structure software designs so that they
are robust with respect to anticipated changes. It is time we put serious effort
into determining how to design assurance case structures that are robust with
respect to change. This seems particularly apropos with regard to assurance
case templates. We will use the top-level decomposition of an assurance case
for a medical device, as shown in Figure 1.5, to start this discussion.

G1
Device adequately provides the
consequences for which it was
designed, with tolerable risk of
adverse effects, in its intended
operating environment

S1
If we could build perfect systems

we could decompose G1 into:
Requirements describe system;

Implementation complies with
requirements. ...

R1
Argument to show that if G2,

G3, G4, G5 are satisfied, then
G1 is valid

G2
System requirements
are correct, include nec-
essary safety & security
constraints, as well as
operator requirements,
including safe & secure
HMI

G3
System implementation
adequately complies
with its requirements,
and has not added any
unmitigated hazards

G4
System is maintainable
over its lifetime - chang-
es will not degrade
safety, security and reli-
ability

G5
System will be operated
within the defined opera-
tional assumptions

To keep from cluttering the
diagram we have not included
other components, such
as assumptions, context,
justifications, etc

New component:
R for “reasoning” (since
A for “argument” is already
in use). The argument will
normally require significant
space and so we have
arranged that the R
component is loosely joined
to the S component and can
be hidden when not required
so as not to unnecessarily
complicate the diagram

FIGURE 1.5 Robust Top Level of the Assurance Case Template (modified

from [38])

The first thing we notice (probably) about the claims G2, G3, G4 and

24 � NII Shonan Book Template

G5 in Figure 1.5 is that they should not have to be changed no matter what
system/product the assurance case template is developed for. Not only is this
level robust with respect to change, it also reflects our experience of how
we have successfully planned safety-critical systems over more than twenty
years. One principle that has occurred to us for designing robust structures
for assurance cases, and is supported by what we see here, is to move product
specific components of a case as low down in the structure as possible. This
is an immediate difference from what we see in many current assurance cases.
In most cases we have looked at, the assurance case structure is based very
heavily on hazard mitigation, with the hazard analysis providing pertinent
evidence. This not only violates the principle we have just espoused, it seems
faulty for a number of other reasons.

• Completeness: It is impossible to “prove” that any hazard analysis is
complete with respect to the hazards in the system. There are many
aspects of assurance in which we cannot prove completeness. The way
we deal with this is usually two-fold: do as good a job as we possibly
can; and have more than one way to achieve a critical outcome. Basing
the structure of the assurance case on the structure of the hazard miti-
gation makes this more difficult. One of the touted benefits of a hazard
analysis [27] is that it avoids confirmation bias. Ironically, structuring
an assurance case primarily by documenting mitigation or elimination of
hazards, seems to inject an aspect of confirmation bias in the assurance
case.

• Iterative nature of hazard analysis: As we progress through the develop-
ment life-cycle we introduce more hazards, and the simple act of mitigat-
ing a hazard may introduce even more new hazards. Since we intend to
use the assurance case template to drive development, it is important to
be able to convey the iterative aspect of hazard analysis and mitigation.

In our suggested structure, the system hazard analysis is included in the claim-
evidence path leading off from sub-claim G2, and it is not the only means
whereby we assure safety and security. The actual wording of the sub-claim in
G3, “. . . and has not added any unmitigated hazards”, has been worded that
way explicitly to help convey the idea that any hazards introduced in the
development process must be mitigated. The way in which the usual claim
is typically phrased, “all hazards have been mitigated” does not convey the
same imperative to the developers. Finally the product specific aspects of the
hazard analysis are much lower down in the structure.

Another principle that we believe facilitates building assurance case struc-
tures that are robust with respect to change is to try and make claim-
argument-evidence paths as independent as possible. “Independence” in this
context means that, at each “level” of the structure, for each claim at that
level, there are no argument specific dependencies between the lower paths
that support that claim. This is clearly difficult to do, sometimes not possible,

New Standards for Trustworthy Cyber-Physical Systems � 25

and maybe difficult to know when you have really achieved that independence.
However, we believe it is worthwhile keeping this in mind while deciding on
the structure for the assurance case.

These are very basic and obvious ideas for improving the robustness of the
structure of an assurance case. What we are lacking right now is something
equivalent to the elegance and effectiveness of information hiding as applied
to software designs.

1.3.8 Example: Infusion Pumps
In order to illustrate the different kinds of optional paths we foresee for assur-
ance case templates, we have three brief examples drawn from our experience
with insulin pumps. The three cases we identified earlier (Section 1.3.1) were:

• Optional 0-1: Some insulin pumps include a built-in light that helps
the user read the pump’s screen in the dark. This has impact on the
assurance case in a number of ways, including access to data from the
pump, and battery usage. These paths in the assurance case would not
exist at all if the pump did not have this feature.

• Exclusive-Or 1: Some pumps use a standard Luer connector for their
infusion sets, while others do not. The pumps definitely need to use some
sort of connector for the infusion set, and there are different pros and
cons depending on what connector is used. Use of a Luer connector is not
mandatory. The assurance case has paths that depend on the connector
since it affects both the safety and effectiveness of the delivery of insulin
to the patient. However, these paths are different because of the different
pros and cons of the connectors. The template therefore will include a
number of paths, depending on the number of connectors likely to be
used in commercial pumps. Only one of those paths will apply for a
particular instantiation of the template. (In the following section we will
discuss how to deal with the situation where a new connector becomes
available that is not included in the current assurance case template.)

• Non-exclusive-Or 1-n: Some pumps allow you to input glucose readings
directly from an associated meter, or to input those readings manually.
The assurance case then has to handle the situation where both options
are present in a single pump, as well as the situations where only one
of the options is available for a specific pump. Note that this is not
a situation where redundancy is being used to increase reliability. The
pump that allows both modes of input does so for ease of use – only
one mode is used at any one time. The arguments for safe, secure and
effective are different in the two modes. An easy difference to note is
that there is (probably) less chance of a security problem arising when
the manual mode is used.

26 � NII Shonan Book Template

1.4 ASSURANCE CASE TEMPLATES AS STANDARDS
There are two major reasons we considered using assurance case templates as
development standards. The first reason was that it seemed to be an obvi-
ous extension of using an assurance case template to drive development of a
system, and then use the resulting assurance case as a basis for certification.
The second reason was the research over the past few years in which multi-
ple efforts have been made to represent existing standards by assurance cases
[20, 19].

While exploring assurance case templates and their potential to replace
standards, we learned about a talk given by Knight [26], in which he outlined
the use of an assurance case as an alternative to the avionics standard DO-
178B. This reinforced our belief that we are on the right track. Our assurance
case template is different from the fit for purpose assurance case patterns used
in ABD. It does have much in common with Knight’s ideas expressed in [26].

The assurance cases we build are targeted at assuring the safety, security
and reliability of the complete system, not only the software, for instance.
There are likely to be aspects of existing standards that do not currently fit
easily within the type of assurance case template we envisage. Since at this
stage we do not know what they are, we do not know whether or not they are
really needed. Our intent is to explore how they can be incorporated. In the
meantime, we need to realize that the assurance case template may need to be
supplemented by “extra” information currently included in various standards.

1.4.1 Using an Assurance Case Template as a Standard
If we have done our work effectively, using the assurance case template as
a standard should be reasonably straightforward – most of the time. The
template will naturally dictate certain aspects of the development process, and
system development together with the instantiation of the template proceed
in tandem. As instantiation proceeds, the resulting assurance case documents
the specific system being built. As usual, project planning determines how to
comply with relevant standards, including how to comply with the relevant
assurance case template. During this period we may find that the template
does not cover a situation that we want to include. In such a situation we can
modify the assurance case template we will use for our specific development.
It is important though, that we carefully document how we have deviated
from the community developed template, just as we would currently note any
deviations from any other standard. Figure 1.6 show how we can achieve this,
by using notation that highlights entities that have been modified, and entities
that are completely new, i.e., were not included in the template at all.

Figure 1.6 also shows how the optional paths included in Figure 1.4 are
now described using GSN, as discussed in Section 1.3.1. For example, the
two optional paths are now described by including small hollow circles in the
arrows. Also, the exclusive-Or path is shown with a solid diamond, and a “1

New Standards for Trustworthy Cyber-Physical Systems � 27

P

evidence required and acceptance criteria specified in
the template

at
least

11of 2

Legend:
 - Claim or sub-claim - new
 - Evidence
 - A is claim - modified
 B is premise
 - Optional path
 - Option with number descriptor

A B

FIGURE 1.6 Describing Variation in the Assurance Case Template

of 2” descriptor, while the non-exclusive-Or is shown with the solid diamond
and an “at least 1” descriptor (our modification of the GSN “option”).

1.4.2 Problems in Constructing Assurance Case Templates
There is work needed to really demonstrate that we can construct effective
assurance case templates for CPS.

• Avoiding a check box mentality: It is crucial that the template cannot be
treated in any way as something where we mindlessly “fill in the blanks”,
or simply note that we have provided what was specified in the template.
Claims, sub-claims, assumptions, contexts, strategies, justifications and
reasoning must be worded, as much as possible, in a way that makes
the developer seriously consider each claim and how it relates to their
specific situation. The evidence nodes in the template do not contain
evidence as such until the developers document the relevant evidence.
What is available in the node is the nature of the evidence required,
and its acceptance criteria. The format used for the acceptance criteria
should be such that it requires thoughtful interaction on the part of the
developer in ascertaining whether or not the specific evidence generated

28 � NII Shonan Book Template

meets the acceptance criteria and related argument, and the developed
should have to document why it is sufficient.

• Coping with omissions in the template: No matter how well constructed
our template is, there will be omissions and “errors”. Related to the
point above, we need to develop a mechanism for recognizing “holes” in
the argument structure for a specific situation that was not predicted.

• Essential items that do not fit within an assurance case template: There
are likely to be items that are currently included in standards that do
not have an obvious place in an assurance case. We do not know yet
what these are, we have simply speculated that they exist. We need to
find out what they are, and how we can handle them.

• Open systems: A much more serious problem to deal with is that of
constructing an assurance case template for an “open system”, i.e. a
system that is constructed by combining existing systems (perhaps with
other systems/components specially constructed for the new system.
Such Systems of Systems pose unique and extremely difficult challenges
for dependability, safety and security. The current concept of an assur-
ance case template will not cope adequately with such systems. This
does not mean that we will not be able to extend the concept in the
future. It is simply an acknowledgement that right now we do not know
how to achieve this. This is not surprising. We believe that assuring de-
pendability, safety and security of such open systems is not adequately
dealt with in general at this time.

1.4.3 Benefits of Using an Assurance Case Template as a Standard
It is one thing to say we could replace some existing standards by assurance
case templates it is another to explain why we should do so. Without signifi-
cant benefit, it would be pointless to attempt this. This section presents the
major perceived benefits.

• Explicit, consistent and understandable guidance: An assurance case
template provides guidance to both the developer and certifier in a
way that is much more structured than is a textual standard. Yes, the
template is likely to be complex, and large. However, so are modern
standards. The structure does have some inherent benefits that help us
contain and control the complexity.

• It is easier to make the standard internally consistent.

• Given both the strategies used to decompose claims, the arguments
that explain why the premises support the claims, what evidence
is required and the acceptance criteria for the evidence, users of
the template understand how items depend on each other, what

New Standards for Trustworthy Cyber-Physical Systems � 29

evidence to document, the rationale for evidence, and what should
be true of the evidence to satisfy the claims.

• There is a consistency to the way in which these items are pre-
sented to the user. This aids understandability, and it also aids
completeness since it is more difficult to ignore/forget items.

• The need to confirm and/or enter assumptions and contexts also
helps to develop a deep understanding of the system. The fact that
these are supposed to hold consistently across the product-domain
makes it easier for developers and certifiers to understand whether
anything is “out of the ordinary” for the system at hand.

• An opportunity for incremental safety: In Section 1.3.7 we discussed in-
cremental safety, and pointed out that it may not be possible – and that
we could not afford for that to be true. We may have an opportunity
with an assurance case template to make some inroads in this regard.
We have built the template so that the fact that the argument is explicit
(to reinforce the strategy), that the description of the evidence to sup-
port a claim is explicit, and that the acceptance criteria for the evidence
is explicit, makes it possible to create an assurance case that will even-
tually apply to a variety of systems. If this is achievable, then we will
have created a methodology for incremental assurance – if the modified
system still fits within the assumptions and contexts that govern the
assurance case template.

• Easier to develop expertise in evaluating safety, security and reliability:
One of the first things that occurred to us when we first started evalu-
ating assurance cases for regulated systems, was that if every assurance
case has a one-off structure, then it will be extremely difficult for reg-
ulators to develop expertise in evaluating assurance cases submitted to
them [40]. A product-domain specific assurance case template will help
to alleviate this problem.

• Valid arguments built by experts: The argument in the assurance case
template is the state-of-the-art component that will help us tame com-
plexity in our modern CPS, and thus make it possible to develop and
certify adequately safe, secure and reliable systems. For this to happen,
the argument has to be both valid and sound. Unfortunately, the ar-
gument is one of the more difficult aspects in the creation of assurance
cases, and the number of people with the expertise to do this is rather
limited. The fact that the assurance case template we envisage will be
created by a community of experts is of crucial importance. Amongst
those experts, we can make sure that some of them have the requisite
expertise in argumentation. Hopefully, gradually, the number of people
with this expertise will grow.

• Avoid confirmation bias: The very fact that the assurance case tem-
plate is developed prior to development of a system, should definitely

30 � NII Shonan Book Template

help in avoiding confirmation bias – a potential problem postulated by
Leveson [27]. In this regard, there is a tremendous difference between
developing the assurance case, including acceptance criteria on evidence,
before developing the system, and developing the assurance case after or
during development of the system – and then justifying the acceptability
of the evidence.

• Publicly available examples of good assurance cases: assurance case tem-
plates, developed by a community of experts will provide something we
do not have at all at this time – examples readily available so that more
and more practitioners can develop a thorough understanding of, and
facility with, assurance cases.

1.5 CONCLUSION
We propose that we use a product/system-domain specific assurance case tem-
plate as a standard for the development and certification of products/systems
within that product domain. Assurance cases have been growing in acceptabil-
ity as an excellent way of determining the confidence we have that a system
fulfills the need for which it was intended, and possess the critical proper-
ties it is required to posses. The assurance case template we envisage is the
structure of a complete assurance case with (optional) sub-claims and re-
quirements on generated evidence. The template is to be produced, much like
a standard, through consensus of experts in the relevant domain. Such an ap-
proach promises to deliver significant benefits, as itemized in sections above.
Although it seems that our discussion in this chapter is largely independent
of CPS, one of the guiding motivations of this work is to be able to cope with
the complex, multi-disciplinary, connected nature of today’s and tomorrow’s
CPS. Developing and certifying such systems, so that they are dependably
safe, secure and reliable, seems to call out for a significant change in the way
we guide people through the development and certification of these systems.
We believe that a concerted effort in understanding how to produce effective
assurance case templates for this purpose will be one effective step in meeting
the challenges of the (near) future. Luckily, they should be just as useful for
less complex systems as well.

Bibliography

[1] Shuib Basri and Rory V. O’Connor. Understanding the perception of very
small software companies towards the adoption of process standards. In
Andreas Riel, Rory O’Connor, Serge Tichkiewitch, and Richard Mess-
narz, editors, Systems, Software and Services Process Improvement, vol-
ume 99 of Communications in Computer and Information Science, pages
153–164. Springer Berlin Heidelberg, 2010.

[2] Peter Bishop and Robin Bloomfield. A methodology for safety case de-
velopment. In Industrial Perspectives of Safety-Critical Systems, pages
194–203. Springer, 1998.

[3] Robin Bloomfield and Peter Bishop. Safety and assurance cases: Past,
present and possible future - an Adelard perspective. In Chris Dale and
Tom Anderson, editors, Making Systems Safer, Proceedings of the Eigh-
teenth Safety-Critical Systems Symposium, Bristol, UK, London, 2010.
Springer London.

[4] Robin E Bloomfield, Bev Littlewood, and David Wright. Confidence: its
role in dependability cases for risk assessment. In Dependable Systems and
Networks, 2007. DSN’07. 37th Annual IEEE/IFIP International Confer-
ence on, pages 338–346. IEEE, 2007.

[5] V Cassano and TSE Maibaum. The definition and assessment of a safety
argument. In Software Reliability Engineering Workshops (ISSREW),
2014 IEEE International Symposium on, pages 180–185. IEEE, 2014.

[6] Ewen Denney and Ganesh Pai. A formal basis for safety case patterns. In
Computer Safety, Reliability, and Security, pages 21–32. Springer, 2013.

[7] Ewen Denney, Ganesh Pai, and Ibrahim Habli. Towards measurement
of confidence in safety cases. In Empirical Software Engineering and
Measurement (ESEM), 2011 International Symposium on, pages 380–
383. IEEE, 2011.

[8] George Despotou, Sean White, Tim Kelly, and Mark Ryan. Introducing
safety cases for health IT. In Proceedings of the 4th International Work-
shop on Software Engineering in Health Care, SEHC ’12, pages 44–50,
Piscataway, NJ, USA, 2012. IEEE Press.

31

32 � Bibliography

[9] John Goodenough, Charles B Weinstock, and Ari Z Klein. Toward a
theory of assurance case confidence. 2012.

[10] John B Goodenough, Charles B Weinstock, and Ari Z Klein. Elimina-
tive induction: a basis for arguing system confidence. In Proceedings of
the 2013 International Conference on Software Engineering, pages 1161–
1164. IEEE Press, 2013.

[11] P.J. Graydon, J.C. Knight, and E.A. Strunk. Assurance based develop-
ment of critical systems. In Dependable Systems and Networks, 2007.
DSN ’07. 37th Annual IEEE/IFIP International Conference on, pages
347–357, June 2007.

[12] P.J. Graydon, J.C. Knight, and E.A. Strunk. Assurance based develop-
ment of critical systems. In Dependable Systems and Networks, 2007.
DSN ’07. 37th Annual IEEE/IFIP International Conference on, pages
347–357, June 2007.

[13] S Grigorova and TSE Maibaum. Argument evaluation in the context of
assurance case confidence modeling. In Software Reliability Engineering
Workshops (ISSREW), 2014 IEEE International Symposium on, pages
485–490. IEEE, 2014.

[14] Silviya Grigorova and TSE Maibaum. Taking a page from the law books:
Considering evidence weight in evaluating assurance case confidence. In
Software Reliability Engineering Workshops (ISSREW), 2013 IEEE In-
ternational Symposium on, pages 387–390. IEEE, 2013.

[15] GSN Community. GSN community standard, 2011.

[16] Ibrahim Habli and Tim Kelly. Process and product certification argu-
ments: Getting the balance right. ACM SIGBED Review, 3(4):1–8, 2006.

[17] John Hatcliff, Alan Wassyng, Tim Kelly, Cyrille Comar, and Paul Jones.
Certifiably safe software-dependent systems: challenges and directions.
In Proceedings of the on Future of Software Engineering, pages 182–200.
ACM, 2014.

[18] Richard Hawkins, Tim Kelly, John Knight, and Patrick Graydon. A new
approach to creating clear safety arguments. In Advances in systems
safety, pages 3–23. Springer, 2011.

[19] Ashlie B Hocking, Joseph Knight, M Anthony Aiello, and Shinichi Shi-
raishi. Arguing software compliance with iso 26262. In Software Reliabil-
ity Engineering Workshops (ISSREW), 2014 IEEE International Sympo-
sium on, pages 226–231. IEEE, 2014.

[20] C Michael Holloway. Making the implicit explicit: Towards an assurance
case for do-178c. In Proceedings of the 31st International System Safety
Conference (ISSC), 2013.

Bibliography � 33

[21] Michaela Huhn and Axel Zechner. Arguing for software quality in an
IEC 62304 compliant development process. In Leveraging Applications of
Formal Methods, Verification, and Validation - 4th International Sympo-
sium on Leveraging Applications, ISoLA 2010, Heraklion, Crete, Greece,
October 18-21, 2010, Proceedings, Part II, pages 296–311, 2010.

[22] Eunkyoung Jee, Insup Lee, and Oleg Sokolsky. Assurance cases in model-
driven development of the pacemaker software. In Leveraging Applica-
tions of Formal Methods, Verification, and Validation, pages 343–356.
Springer, 2010.

[23] Paul Joannou and Alan Wassyng. Understanding integrity level concepts.
Computer, (11):99–101, 2014.

[24] T. P. Kelly and J. A. McDermid. A systematic approach to safety case
maintenance. Reliability Engineering & System Safety, 71(3):271–284,
March 2001.

[25] Tim Kelly. Arguing Safety – A Systematic Approach to Managing Safety
Cases. PhD thesis, University of York, September 1998.

[26] John Knight. Advances in software technology since 1992. In National
Software and Airborne Electronic Hardware Conference, FAA 2008, 2008.

[27] Nancy Leveson. The use of safety cases in certification and regulation.
Journal of System Safety, 47(6):1–5, 2011.

[28] T. Maibaum and A. Wassyng. A product-focused approach to software
certification. Computer, 41(2):91–93, Feb 2008.

[29] David Lorge Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053–1058, 1972.

[30] David Lorge Parnas and Paul C Clements. A rational design process:
How and why to fake it. Software Engineering, IEEE Transactions on,
(2):251–257, 1986.

[31] David J Rinehart, John C Knight, Jonathan Rowanhill, and Dependable
Computing. Current Practices in Constructing and Evaluating Assurance
Cases With Applications to Aviation. 2015.

[32] RTCA. Software Considerations in Airborne Systems and Equipment
Certification. RTCA Standard DO-178B, 1992.

[33] RTCA. Software Considerations in Airborne Systems and Equipment
Certification. RTCA Standard DO-178C, 2012.

[34] John Rushby. Formalism in safety cases. In Making Systems Safer, pages
3–17. Springer, 2010.

34 � Bibliography

[35] John Rushby. Understanding and evaluating assurance cases. (SRI-CSL-
15-01), 2015.

[36] Stephen E Toulmin. The uses of argument. Cambridge University Press,
2003.

[37] U.S. Food and Drug Administration. Infusion Pumps Total Product Life
Cycle: Guidance for Industry and FDA Staff, December 2014. OMB
Control Number: 0910-0766.

[38] A. Wassyng, N. Singh, M. Geven, N. Proscia, H. Wang, M. Lawford, and
T. Maibaum. Can product specific assurance case templates be used as
medical device standards? Design & Test, IEEE, 32(5):1–11, October
2015.

[39] Alan Wassyng, Tom Maibaum, and Mark Lawford. On software certifica-
tion: We need product-focused approaches. In Foundations of Computer
Software. Future Trends and Techniques for Development, pages 250–274.
Springer Berlin Heidelberg, 2010.

[40] Alan Wassyng, Tom Maibaum, Mark Lawford, and Hans Bherer. Soft-
ware certification: Is there a case against safety cases? In Radu Calinescu
and Ethan Jackson, editors, Foundations of Computer Software. Model-
ing, Development, and Verification of Adaptive Systems, volume 6662 of
Lecture Notes in Computer Science, pages 206–227. Springer Berlin Hei-
delberg, 2011.

[41] Rob Weaver, Georgios Despotou, Tim Kelly, and John McDermid. Com-
bining software evidence: arguments and assurance. In ACM SIGSOFT
Software Engineering Notes, volume 30, pages 1–7. ACM, 2005.

[42] Rob Weaver, Jane Fenn, and Tim Kelly. A pragmatic approach to rea-
soning about the assurance of safety arguments. In Proceedings of the 8th
Australian workshop on Safety critical systems and software-Volume 33,
pages 57–67. Australian Computer Society, Inc., 2003.

[43] Charles B Weinstock, John B Goodenough, and Ari Z Klein. Measur-
ing assurance case confidence using baconian probabilities. In Proceed-
ings of the 1st International Workshop on Assurance Cases for Software-
Intensive Systems, pages 7–11. IEEE Press, 2013.

[44] Seiichi Yamamoto and Yutaka Matsuno. An evaluation of argument pat-
terns to reduce pitfalls of applying assurance case. In Assurance Cases for
Software-Intensive Systems (ASSURE), 2013 1st International Workshop
on, pages 12–17. IEEE, 2013.

