
654 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

Hierarchical Interface-Based Supervisory Control
of a Flexible Manufacturing System

Ryan J. Leduc, Member, IEEE, Mark Lawford, Member, IEEE, and Pengcheng Dai

Abstract—Flexible manufacturing systems have long been
touted as an application area for supervisory control theory.
Unfortunately, due to the typical exponential growth of state space
with the number of interacting subsystems, concurrent systems
such as manufacturing applications have, for the most part,
remained beyond the reach of existing supervisory control theory
tools. This paper demonstrates how, by imposing a hierarchical,
modular, interface-based architecture on the system, significant
gains can be made in the size of applications that can be handled
by supervisory control theory. We first review hierarchical inter-
face-based supervisory control, providing the theory necessary to
motivate the creation of well-defined automata-based interfaces
between components. This architecture permits the verification
of global safety (controllability) and nonblocking properties to be
decomposed into a set of local checks, each of which only involves
an individual component subsystem and its interface automata.
The paper then provides a detailed description of how the theory
can be applied to the design and verification of a flexible manu-
facturing system work cell. The work cell model is based on the
Atelier Interétablissement de Productique flexible manufacturing
workcell, a system that has been previously studied in the litera-
ture with limited success.

Index Terms—Automata, discrete event systems (DES), formal
methods, hierarchical systems, interfaces.

I. INTRODUCTION

I N SUPERVISORY control of discrete-event systems (DES),
two common tasks are to verify that a composite system,

based on a Cartesian product of subsystems, is: 1) nonblocking
(a form of liveness) and 2) controllable (a form of safety). The
main obstacle to performing these tasks is the combinatorial
explosion of the product state space. Although many methods
have been developed to deal with this problem (modular con-
trol [1]–[5], decentralized control [6]–[10] vector DES (VDES)
[5], [11], [12] and petri nets (PN) [13], [14], model aggregation
methods—e.g., [15]–[20], and multilevel hierarchy [21]–[25]),
large-scale systems are still problematic, particularly for verifi-
cation of nonblocking.

In contrast to the majority of approaches which apply math-
ematical techniques to produce aggregate models of an existing
system, our method of restricting component interaction to well-

Manuscript received January 28, 2004; revised November 30, 2005. Manu-
script received in final form March 7, 2006. Recommended by Associate Editor
S. Kowalewski.

The authors are with the Department of Computing and Software, McMaster
University, Hamilton, ON L8S 4K1, Canada (e-mail: leduc@mcmaster.ca; law-
ford@mcmaster.ca; daip@mcmaster.ca).

Digital Object Identifier 10.1109/TCST.2006.876635

defined interfaces, provides a design heuristic to guarantee scal-
ability by construction. As we will demonstrate with an ex-
ample, when the design heuristic is followed in the construction
of a large-scale system, our theoretical results can be applied
to verify the nonblocking and controllability of the complete
system by checking local conditions. In order to achieve our ulti-
mate goal of scalability, we restrict the permissible system archi-
tectures and sacrifice global maximal permissiveness to obtain
a (generally) suboptimal solution, but one that is more tractable.

In [26]–[28], we developed hierarchical interface-based su-
pervisory control (HISC), a method that decomposes a system
into a high-level subsystem which communicates with
parallel low-level subsystems through separate interfaces that
restrict the interaction of the subsystems. Each subsystem is
modeled as a deterministic finite state automaton that is capable
of generating different sequences of events. The interfaces are
also modeled as automata, with the results that the past history
of communication between components influences the current
and future possible communications. Each interface between a
pair of components effectively establishes a protocol for inter-
action of the connected subsystems. As a result of this struc-
tured interaction, it is possible to derive a set of local consistency
properties that can be used to verify if a discrete-event system
is globally nonblocking and controllable. Each of these consis-
tency properties can be verified using a single subsystem and its
interface(s); thus, the complete system model never needs to be
stored in memory or traversed, offering potentially significant
savings in computational resources.

In this paper, we show how HISC can be applied to the veri-
fication of a controller for a model of a relatively complex flex-
ible manufacturing system. The model is based on the Atelier
Inter-établissement de Productique (AIP), an automated manu-
facturing system consisting of a central loop and four external
loops, three assembly stations, an input/output (I/O) station, and
four inter-loop transfer units. The estimated worst case state
space size of the plant model is . As a result, controller
synthesis techniques that required the construction of the entire
plant, such as most of those referenced above, could not be uti-
lized to design a verifiably correct controller. Therefore, after
modeling the open loop system, local controllers were designed
based on heuristics and experience and then verified to result in
globally nonblocking, controllable closed loop behavior using
the HISC method.

Despite the limitations of existing controller synthesis tech-
niques, when the architecture required by HISC is imposed upon
the system, supervisory control theory still provides a useful
framework for the design and verification of a complex system.
In this paper, our goals are to provide a detailed example that

1063-6536/$20.00 © 2006 IEEE

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL OF A FLEXIBLE MANUFACTURING SYSTEM 655

serves effectively as a tutorial on how HISC might be applied
to similar systems and to motivate further research on interface
based supervisor synthesis methods.

Section II provides an overview of the HISC results of
[26]–[28]. It defines interfaces, describes how they are used to
restrict the information flow of the system, and then provides a
set of local consistency properties that can be used to verify if
the system is globally nonblocking and controllable. Section III
provides an overview of the AIP system and describes the
desired closed loop behavior of the system under a particular
set of assumptions. We describe the modular decomposition
(in the sense of [29]) of the system and provide the details of
the component interfaces and supervisor design in Section IV.
We close with Section V discussing the results of applying
the method to the AIP system and Section VI drawing general
conclusions and motivating future work while discussing the
method’s limitations.

We note here that the interface conditions that we present
in this work are a modified version of the conditions used in
[26]–[28]. The new set of conditions are more concise and clear,
particularly with respect to what checks need to be performed
on a given component. We first introduced the new conditions
in [30], where we showed that our definitions are equivalent to
the ones given in [26]–[28].

II. OVERVIEW OF HISC

We begin with a brief review of supervisory control theory
and then provide the HISC theory needed for the AIP example.

A. Discrete-Event Systems Preliminaries

Supervisory control theory [5], [31], [32] provides a frame-
work for the control of discrete-event systems (DES), systems
that are discrete in space and time. For a detailed exposition of
DES, see [5]. Below, we present a summary of the terminology
that we use in this paper.

Let be a finite set of distinct symbols (events), and be
the set of all finite sequences of events, including , the empty
string. Let be a language over . A string
is a prefix of (written), if , for some

. The prefix closure of language (denoted) is defined
as for some . Let denote the
power set of . For language , the eligibility operator

is given by for
.

A DES automaton is represented as a 5-tuple
, where is the state set, is the event set, the

partial function is the transition function, is
the initial state, and is the set of marker states. The function
is extended to in the natural way. The notation

means that is defined for at state . For DES
, the language generated is denoted by and is defined

to be . The marked behavior of
is defined as .

The reachable state subset of DES , denoted , is
. A DES is

reachable if . We will always assume is reachable.

Let , , and . For , 2,
, and , we define the natural projection

according to

if
if

The synchronous product of languages and , denoted
, is defined to be

where is the inverse image func-
tion of (see, e.g., [5]).

The synchronous product of DES
and ,

denoted , is defined to be a reachable DES with the
properties1

and event set .
For DES, the two main properties we want to check are non-

blocking and controllability. A DES is said to be nonblocking
if , i.e., any string can always be continued to
a string resulting in a marked state.

To control the plant, we define a supervisor. A supervisor is
represented as an automaton .

The synchronous product operator is used to specify the
closed loop behavior of the system. The behavior of a plant
under the control of a supervisor is, thus, .

We will denote the disjoint union of sets by and adopt the
standard partition , splitting our alphabet into un-
controllable and controllable events. The formal definition for
controllability follows.

Definition 1: Let ,
and . Define
and . A supervisor is controllable
for a plant , if or, equivalently,

. Thus, a
supervisor is controllable for a plant if no uncontrollable plant
actions can take the plant outside of the supervisor’s specified
behavior.

B. Hierarchical Interface Based Supervisory Control

In HISC there is a master–slave relationship. A high-level
subsystem sends a command to a particular low-level sub-
system, which then performs the indicated task and returns an
answer. Fig. 1 shows conceptually the structure and informa-
tion flow of the system in the special case when there is only
a single low-level subsystem. Communication between the
high-level subsystem and the low-level subsystem occurs in a
serial fashion. A request from the high-level is followed by an
answer from the low-level before the next request is issued to

1We are overloading the k operator here by using it for both languages and
DES, but this should not cause confusion as the choice of arguments will make
the meaning clear.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

656 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

Fig. 1. Interface block diagram.

Fig. 2. Two-tiered structure of the system.

the low-level subsystem. This style of interaction is enforced
by an interface that mediates communication between the two
subsystems. All system components, including the interface,
are modeled as automata as shown in Fig. 2 where our flat
system would be . By flat system, we mean
the equivalent DES if we ignored the interface structure.

In order to restrict information flow and decouple the subsys-
tems, the event set is split into four disjoint alphabets: ,

, , and . The events in are high-level events and
the events in low-level events as these events appear only in
the high-level and low-level models, and , respectively.
We then have defined over and defined
over .

As the interface automaton is only concerned with com-
munication between the two subsystems, it is defined over the
events that are common to both levels of the hierarchy ,
which are collectively known as the set of interface events, de-
noted . The events in , called request events, represent
commands sent from the high-level subsystem to the low-level
subsystem. The events in are answer events and represent
the low-level subsystem’s responses to the request events. In
order to enforce the serialization of requests and answers, we
restrict the interface to the subclass of command-pair interfaces
defined below.

Fig. 3. Example interface.

Fig. 4. Parallel interface block diagram.

Definition 2: A DES is a
command-pair interface if:

1) , and
2) .

Condition 1 says that request events and answer events must
alternate (i.e., serialization of requests) while condition 2 states
that every answered request results in a marked state. As we
require to be expressible as a tuple, it must have an initial
state. It follows that by condition 2. An example
command pair interface with and

is shown in Fig. 3.
We now generalize the above “serial case,” where there is a

single low-level subsystem to the parallel case, where there are
low-level subsystems. In this case we say that the system is an
th degree parallel system. Fig. 4 shows conceptually the struc-

ture and flow of information. The single high-level subsystem
interacts with independent low-level subsystems, com-
municating with each low-level subsystem in parallel through a
separate interface.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL OF A FLEXIBLE MANUFACTURING SYSTEM 657

Fig. 5. Two-tiered structure of the system.

As in the serial case, to restrict the flow of information at the
interface, we partition the system alphabet into pairwise disjoint
alphabets

(1)

The high-level subsystem is modeled by DES (de-
fined over event set). For

, the th low-level subsystem is modeled by
DES (defined over event set), and the th
interface by DES (defined over event set). The
overall system has the structure shown in Fig. 5. Thus, our flat
system is .

To simplify notation in our exposition, we bring in the fol-
lowing event sets, natural projections, and languages. For the
remainder of this section, the index has range

We now present the properties that the system must satisfy to
ensure that it interacts with the interfaces correctly.

Definition 3: The th degree parallel interface
system composed of DES , is
interface consistent with respect to the alphabet partition given
by (1), if for all , the following conditions are
satisfied.

Multilevel Properties:

1) The event set of is , and the event set of is
.

2) is a command-pair interface.
High-Level Property:

3)

Low-Level Properties:

4)
5)

where

6)

The first two properties assert that the system has the required
basic architecture, with the high-level and low-level subsystems
only sharing request and answer events and the interaction be-
tween the levels mediated by interfaces. This provides a form of
information hiding as it restricts the high-level subsystem from
knowing (and directly affecting) internal details of the low-level
subsystems and vice versa.

The high-level property (3) asserts that when is synchro-
nized with all of the other subsystem interfaces , , it
must always accept an answer event if the event is eligible in the
interface . In other words, the high-level subsystem is for-
bidden to assume more about when an answer event can occur
than what is provided by the interface. Similarly, low-level prop-
erty (4) asserts that the low-level subsystem must always
accept a request event if the event is eligible in its interface .
We note that both (3) and (4) can be computed using the stan-
dard algorithms for controllability.

Condition (5) states that immediately after a request event
(some) has occurred, and before it is followed by
any low-level events in , there exists one or more paths via
strings in to each answer event that says can follow the
request event. Finally, (6) asserts that every string marked by the
interface and accepted by the low-level subsystem, can be
extended by a low-level string to a string marked by .

C. Local Conditions for Global Nonblocking of the System

We now provide the conditions that the subsystems and their
interface(s) must satisfy in addition to the interface consistency
properties, if the system is to be nonblocking.

Definition 4: The th degree parallel interface
system composed of DES , is
said to be level-wise nonblocking if the following conditions
are satisfied.

1) Nonblocking at the high-level:

2) Nonblocking at the low-level: for all

The above definition can be paraphrased as saying that for each
component subsystem synchronized with its interface(s), every
reachable state must have a path to a state that is marked by both
the subsystem and its interface(s). We are now ready to present
our nonblocking theorem for parallel interface systems.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

658 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

Theorem 1: If the th degree parallel interface
system composed of DES , is
level-wise nonblocking and interface consistent with respect to
the alphabet partition given by (1), then , where

.
Proof: See proof in [30].

D. Local Conditions for Global Controllability of the System

The representation of the system given in Fig. 5 simplifies
notation when verifying nonblocking by ignoring the distinc-
tion between plants and supervisors. For controllability, we need
to split the subsystems into their plants and supervisor com-
ponents. To do this, we define the high-level plant to be ,
and the high-level supervisor to be (both defined over event
set). Similarly, the th low-level plant and supervisor are

and (defined over). The high-level subsystem
and the th low-level subsystem are then and

, respectively.
We can now define our flat supervisor and plant, as well as

some useful languages as follows:

For the controllability requirements at each level, we adopt
the standard partition , splitting our alphabet into
uncontrollable and controllable events. Note that this partition
may, in general, be independent of the partition (1).

Definition 5: The th degree parallel in-
terface system composed of DES ,

, , is level-wise control-
lable with respect to the alphabet partition given by (1), if for
all the following conditions hold.

1) The alphabet of and is , the alphabet of
and is , and the alphabet of is .

2)

3)

where .
The above definition states that the system is level-wise control-
lable if, for the given distributed supervisor, the high-level su-
pervisor is controllable for the high-level plant combined with
all of the interfaces (by 3) and that each low-level supervisor
synchronized with the subsystem’s interface is controllable for
the subsystem’s low-level plant (by 2). Point 1 is an information
hiding statement. By restricting the supervisors to the indicated
event sets, we allow them to only view and disable events for
their specific component.

In the above definition, we treated interfaces as supervisors
in point 2, and plants in point 3. This discrepancy is a result of
our hierarchy. As the high-level is concerned with global be-
havior (behavior that affects more than one low-level), it sees

request and answer events as abstract actions performed by the
low-level, but is not concerned with the details of how these
events are implemented. As a low-level’s job is to implement the
commands (request events) given it by the high-level, it thus, has
sufficient details to verify that its interface, working in conjunc-
tion with the low-level supervisor, is indeed controllable. As we
have verified that the interfaces are controllable in point 2, we
do not need to verify them again in point 3. By treating the in-
terfaces as plants at the high-level, we can allow the high-level
supervisor to be less restrictive, as the high-level plant alone
does not typically have enough information about when inter-
face events are eligible to occur as the interfaces themselves. Re-
moving the interfaces from point 3 would also be too restrictive
as this could not only make the high-level supervisor uncontrol-
lable for the high-level plant, but the the supremal controllable
sublanguage (for the high-level) would likely be the empty set!

We now present a sufficient condition for controllability of
parallel interface systems. At first glance, the controllability def-
inition used below might seem slightly different than the one
given in Section I, but this can be easily reconciled by noting
that for Theorem 2, .

Theorem 2: If the th degree parallel interface
system composed of plant components , su-
pervisors , and interfaces , is
level-wise controllable with respect to the alphabet partition
given by (1), then

Proof: See proof in [30].

E. Verifying Properties

To aid in investigating HISC, we have developed software
routines to verify that a system satisfies the level-wise non-
blocking, interface consistent, and level-wise controllable con-
ditions. These routines were developed by Leduc during his col-
laboration with Siemens Corporate Research and are a part of
an experimental software tool. Currently, an open source imple-
mentation of these routines is being developed, but has not yet
been released.

Examining the conditions to be verified, one observes that
most of them are either very straightforward (i.e., verifying two
sets are disjoint) or can be verified using existing supervisory
control algorithms after suitable definitions have been made.
Points 3 and 4 of the interface consistency definition can be
verified using standard controllability algorithms such as TCTs
condat function [5]. For example, in the case of Point 4, we
simply define , ,

, and).
The exceptions are Points 5 and 6 of the interface consis-

tency definition. They both require new algorithms, which we
presented in [27]. Further details of the algorithms, including
discussion of counter example generation when the conditions
fail, can be found in [27].

An important topic of current research is how to synthesize
local controls that cause an interface inconsistent system to be-
come consistent or produce a controllable nonblocking sublan-
guage of a specification when these conditions fail. This is cur-
rently the topic of the M.A.Sc. thesis [33].

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL OF A FLEXIBLE MANUFACTURING SYSTEM 659

Fig. 6. AIP.

III. OVERVIEW OF THE AIP

To demonstrate the utility of our method, we apply it to a large
manufacturing system, the AIP as described in [34] and [35].
The AIP, shown in Fig. 6, is an automated manufacturing system
consisting of a central loop (CL) and four external loops (EL),
three assembly stations (AS), an I/O station, and four inter-loop
transfer units (TU). The I/O station is where the pallets enter
and leave the system. Pallets entering the system can be of type
1 or of type 2, chosen at random.

A. Assembly Stations

The assembly stations are shown in Fig. 7. Each consists of
a robot to perform assembly tasks, an extractor to transfer the
pallet from the conveyor loop to the robot, sensors to determine
the location of the extractor, and a raising platform to present the
pallet to the robot. The station also contains a pallet sensor to de-
tect a pallet at the pallet gate, the pallet stop, and a sensor to de-
tect when a pallet has left the station. Finally, the assembly sta-
tion contains a read/write (R/W) device to read and write to the
pallet’s electronic label. The pallet label contains information
about the pallet type, error status, and assembly status (which
tasks have been performed).

Whereas the assembly stations contain the same basic com-
ponents, they differ with respect to functionality. Station 1 is
capable of performing two separate tasks denoted task1A and
task1B, while station 2 can perform tasks task2A and task2B.
Station 3 can perform all four of these tasks as well as func-
tioning as a repair station allowing an operator to repair a dam-
aged pallet. The assembly stations also differ with respect to re-
liability. Stations 1 and 2 can break down and must be repaired,
while station 3 is of higher quality and is assumed never to break
down. Station 3 is used as a substitute for the other stations when
they are down.

Fig. 7. Assembly station of external loop X = 1, 2, 3.

Fig. 8. Transport unit for external loop X = 1, 2, 3, 4.

B. Transport Units

The structure of the four identical transport units is shown in
Fig. 8. The transport units are used to transfer pallets between
the central loop and the external loops. Each one consists of a
transport drawer which physically conveys the pallet between
the two loops, plus sensors to determine the drawer’s location.
At each loop, the unit contains a pallet gate and a pallet stop,
to control access to the unit from the given loop. The unit also
contains multiple pallet sensors to detect when a pallet is at a
gate, drawer, or has left the unit. Also, each unit contains a R/W
device located before the central loop gate.

C. Control Specifications

For this example, we adopt the control specifications and as-
sumptions used in [34] and [35] and restated as points (1)–(6)
below. To this we add Specification 7 to make the assembly sta-
tions more interesting and complicated.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

660 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

Fig. 9. Structure of parallel system.

Assumptions: We assume that: 1) the system is initially
empty; 2) two types of pallets are introduced to the system,
subjected to assembly operations, and then leave; and 3) pallets
enter the system following the order: type 1, type 2, type 1, .

Specifications:

1) Routing: Pallets follow a certain route based on their type.
A type 1 pallet must go first to AS1, then AS2 before
leaving the system. Type 2 pallets go first to AS2, then
AS1 before leaving the system. A pallet is not allowed to
leave the system until all four assembly tasks have been
successfully performed on it.

2) Maximum capacity of external loops 1 and 2: The max-
imum allowed number of pallets in each loop at a given
time is one.

3) Ordering of pallet exit from system: The pallets must
exit the system in the following order: type 1, type 2, type
1,

4) Assembly errors: When a robot makes an assembly error,
the pallet is marked damaged and routed to AS3 for main-
tenance. After maintenance, the pallet is returned to the
original assembly station to undergo the assembly opera-
tion again.

5) Assembly station breakdown: The robots of external
loops 1 and 2 are susceptible to breakdowns. When a
station is down, pallets are routed to assembly station 3
which is capable of performing all tasks of the other two
stations. When the failed station is repaired, all pallets
not already in external loop 3 are rerouted to the original
station.

6) Maximum capacity of assembly stations: To avoid col-
lisions, only one pallet is allowed in a given station at a
time.

7) Assembly task ordering: Assembly tasks are performed
in a different order for pallets of different types. For pallets
of type 1, task1A is performed before task1B, and task2A
is performed before task2B. For pallets of type 2, task1B
is performed before task1A, and task2B is performed be-
fore task2A.

IV. SYSTEM STRUCTURE

To cast the AIP into a parallel interface system, we break
the system down into a high-level (models how the low levels
interact with each other), and seven low levels corresponding to
the three assembly stations and four transport units, as shown
in Fig. 9. We describe each of the subsystems (components) in

Fig. 10. AIP high-level.

the following sections. As this example contains more than 174
DES, we are not able to describe the design in complete detail,
but refer the reader to [28] for a complete description.

The models and supervisors developed for this example are
based on the automata presented in [34] and [35]. We have al-
tered them to fit our setting, and extended them to fill in the
missing details of several events that were defined, in order to
simplify the model and reduce complexity, as “macro events.”
By adding in these missing details, we substantially increased
the complexity of the example, which is immediately apparent,
by noting that the estimated worst case state space size of the
original plant in [34] is , while our estimated worst case
state space size is (see Section V for details).

In this paper, all supervisors were designed for their level as
modular supervisors. The supervisors were designed by hand
to meet the given specifications and then verified that they sat-
isfy their share of the interface, controllability, and nonblocking
properties. If a component fails to satisfy its share of these prop-
erties, it is modified until it does satisfy them.

In the following diagrams, uncontrollable events are shown
in italics; all other events are controllable. Initial states can be
recognized by a thick outline and marker states are filled.

A. High-Level Subsystem

The high-level subsystem keeps track of the breakdown status
of assembly stations 1 and 2 and enforces the maximum ca-
pacity of external loops 1 and 2. This component controls the
external operation of all transport units and assembly stations,
while tracking the pallet’s progress around the manufacturing
system. The plant components of the high-level, primarily pro-
vide a mechanism to determine information about the system,
such as if a given assembly station is down. The majority of
the high-level’s behavior is encapsulated in its supervisors. The
high-level consists of the synchronous product of the 15

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL OF A FLEXIBLE MANUFACTURING SYSTEM 661

Fig. 11. Supervisor ManageTU1.

DES listed in Fig. 10. It is further subdivided into a plant com-
ponent , and a supervisor component as indicated in the
diagram.

As an example of the high-level subsystem’s behavior, we
discuss supervisor ManageTU1, shown in Fig. 11. This super-
visor controls the transfer of pallets between the central loop
and external loop 1. It permits pallets on the central loop to pass
through transport unit 1 (to be liberated) without being trans-
ferred to the external loop. Pallets are liberated if EL1 is at max-
imum capacity, AS1 is down, or TU1 determines that the pallet
is not to be transferred.

B. Low-Level Subsystems AS1 and AS2

We now describe the low-level subsystems that represent as-
sembly stations 1 and 2. As they are identical, we will describe
them collectively as component , where , AS2. Com-
ponent provides the functionality specified in its interface,
shown in Fig. 12. The assembly station accepts the pallet at its
gate, and presents it to the robot for assembly. It then releases
the pallet and reports on the success of the assembly operation.
If the robot breaks down, this is reported through the interface
and the pallet is released. Component then waits for a repair
command to return the robot to operation. Fig. 12 shows how
the breakdown status of component is reflected in its interface,
and how only the appropriate request event is possible at a given
marked state. Component (low-level , 2) contains the 17
DES listed in Fig. 13. The diagram gives the definition of com-
ponent ’s subsystem , plant component , and super-
visor component . Again, they are the synchronous product
of the indicated automata.

Supervisor HndlPallet.AS1, shown in Fig. 16, provides an ex-
ample of low-level subsystem AS1’s behavior. HndlPallet.AS1
handles the task of processing a pallet once it reaches the ex-
tractor. It reads the pallet’s label, presents the pallet to the robot,
and has the robot perform the appropriate tasks on the pallet.

Fig. 12. Interface to low-level k = AS1, AS2.

Fig. 13. AIP low-level k = AS1, AS2.

The supervisor then allows the pallet to leave the assembly sta-
tion and reports on the success of the processing operation by
updating the pallet’s label and notifies the high-level subsystem
through the interface.

C. Low-Level Subsystem AS3

Component AS3 provides the functionality specified in its in-
terface, shown in Fig. 14. This subsystem describes the behavior
of assembly station 3, which is very similar to stations 1 and 2.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

662 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

Fig. 14. Interface to low-level AS3.

Fig. 15. AIP low-level AS3.

The main differences are that station 3 can repair damaged pal-
lets, is assumed not to break down, and can substitute for either
AS1 or AS2 when they are down. Component AS3 (low-level
3) contains the 27 DES listed in Fig. 15. The diagram gives the
definition of Component AS3’s subsystem , plant compo-
nent , and supervisor component .

One of the difficulties in designing an HISC system is to en-
sure a clear line of dependency (when required) between events
in the high-level, interfaces, and low levels. AS3 provides an ex-
cellent example. Taking in Fig. 7, we see that a pallet
must reach pallet sensor PS 3.4 before it can leave pallet gate
3.2. In the modeling used in [34] and [35], this was captured
in a single DES. However, the “pallet has arrived at the gate”
information is needed at the high-level to determine when to
activate the assembly station, while the “pallet leaving the gate”
information is needed internally to express the relationship that
a pallet cannot arrive at pallet stop SP 3.2 (located at the ex-
tractor) until it has left the gate. The latter relationship is cap-
tured by subplant DepGateNExtraSen.AS3, shown in Fig. 17

. The dependency between these two actions can
be established by making request event Proc.Pallet.AS3 depen-
dent on the pallet arriving at the gate (subplant PalletArvGate-
SenEL_2.AS3 in Fig. 18) and the pallet leaving the gate depen-
dent on event Proc.Pallet.AS3 (subplant CapGateEL_2.AS3 in
Fig. 19). This preserves the dependency between the pallet ar-
riving at the gate and the pallet leaving the gate, while at the
same time ensuring that the internal events of AS3 do not have
direct dependencies on external events.

D. Low-Level Subsystems TU1 and TU2

We now describe the low-level subsystems that represent
transport units 1 and 2. As they are identical, we will describe
them collectively as component , where , TU2. We
also define the companion index , 2, which takes its
values relative to (e.g., when). For diagrams
in this section, we set index . Component (low-level

, 5) contains the 25 DES listed in Fig. 20. The diagram
gives the definition of component ’s subsystem , plant
component , and supervisor component .

Component provides the functionality specified in its inter-
face, shown in Fig. 21. The transport units are used to transfer
pallets between the central loop, and the external loops (i.e.,
TU1 transfers pallets between CL and EL1). Component has
two entry points for pallets: the central loop gate and the external
loop gate. If a pallet is at the EL gate, subsystem transfers the
pallet to the central loop. If a pallet is at the CL gate, compo-
nent can be requested to liberate the pallet (allow it to pass
through and continue on the CL), or to transfer the pallet to the
EL. When requested to transfer a pallet to the EL, component
will only transfer the pallet if the pallet is undamaged and if the
next assembly task required by the pallet is performed by the
external loop’s assembly station.

E. Low-Level Subsystem TU3

Low-level TU3 provides the functionality specified in its in-
terface, shown in Fig. 22. This component describes the be-
havior of transport unit 3, which is very similar to TU1 and
TU2. TU3 differs in how it decides if a pallet should be trans-
ferred from the central loop to external loop 3. First, all damaged
pallets are to be transferred to EL3 for maintenance. Second, if
an assembly station is down and it performs the next pending
task for the pallet, then the pallet is to be transferred. As TU3
must know the breakdown status of assembly stations 1 and 2,
this information is passed in explicitly as differently labeled re-
quest events. Component TU3 (low-level 6) contains the 29 DES
listed in Fig. 24. The diagram gives the definition of Component
TU3’s subsystem , plant component , and supervisor
component .

TU3 differs from TU1 and TU2 primarily in its logic to
transfer pallets from the central loop to its external loop. This is
handled by supervisor HndlTrnsfToEL.TU3, shown in Fig. 23.
HndlTrnsfToEL.TU3 will only transfer pallets to EL3 if they
are damaged, or if the next assembly operation required by the
pallet is performed by an assembly station that is down.

To determine if a substitute assembly operation is re-
quired, HndlTrnsfToEL.TU3 makes use of supervisor
HndlSelCheck.TU3, shown in Fig. 26. HndlSelCheck.TU3
maps the request events TrnsfToEL3_Up, TrnsfToEL3_1D,
TrnsfToEL3_2D, and TrnsfToEL3_BD, to the appropriate local
command to check to see if substitution is required. These
request events were encoded by the high-level with the break-
down status of assembly stations 1 and 2, by only allowing the
event with the correct meaning to occur. This is analogous to
passing a parameter to a function in a software program.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL OF A FLEXIBLE MANUFACTURING SYSTEM 663

Fig. 16. Supervisor HndlPallet.AS1.

Fig. 17. DepGateNExtrSen.j.

Fig. 18. PalletArvGateSenEL_2.AS3.

Fig. 19. CapGateEL_2.AS3.

Fig. 20. AIP low-level r = TU1, TU2.

F. Low-Level Subsystem TU4

Low-level TU4 provides the functionality specified in its in-
terface, shown in Fig. 21, and contains the 19 DES listed in
Fig. 25. The diagram gives the definition of component TU4’s
subsystem , plant component , and supervisor compo-
nent .

Component TU4 (low-level 7) describes the behavior of
transport unit 4, which is very similar to TU1 and TU2. TU4

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

664 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

TABLE I
SIZE OF AIP SUBSYSTEM AUTOMATA MODELS

Fig. 21. Interface to low-level q = TU1, TU2, TU4.

Fig. 22. Interface to low-level TU3.

differs in how it decides if a pallet should be transferred from
the central loop to its external loop (EL4), which contains the
I/O station. As pallets are required to leave the system in a
particular order (i.e., type 1, type 2, type 1,), TU4 keeps
track of the type of the last pallet to be transferred to EL4 and
will only transfer the current pallet if it is of the type required
by the sequence, and if all required assembly tasks have been
successfully performed on the pallet.

V. DISCUSSION OF RESULTS

Applying our research tool to the system, we find that it is
level-wise nonblocking, level-wise controllable, and interface
consistent. By Theorems 1 and 2, we can conclude that the flat
system is nonblocking and the flat system’s supervisor is con-
trollable for the flat plant.

This example contains more than 174 DES in total, with an
estimated closed-loop state space of . This estimate

was calculated by determining the closed-loop state space of
the high-level, and each low-level and then multiplying these
together to create a worst case state estimate. Similarly, we es-
timated the state space size of the open loop plant model to be

. For both estimates, it is quite likely that the actual
system will be considerably smaller. The computation ran for
25 min, using 760 MB of memory. The machine used was a
750-MHz Athlon system, with 512 MB of RAM, 2 GB of swap,
running Redhat Linux 6.2. A standard nonblocking verification
was also attempted on the monolithic (flat) system, but it quickly
failed due to lack of memory.

Table I shows the sizes of the various subsystem au-
tomata used in the AIP calculations. First, the size of the
state space of each component without being synchronized
with their respective interfaces (Standalone) is given and
then, state space size when synchronized with their inter-
face DES (is synchronized with all seven interfaces).
The last two columns give the size of the interfaces for the
high-level and each low-level. Letting denote the size of
the state space of , while and are upper bounds
for the state space size of and ,
respectively, we find that the limiting factor for a monolithic
algorithm2 would be and similarly for the
HISC method [27]. If we substitute actual data from Table I,
we get
and . This is a potential savings
of 11 orders of magnitude! In fact, instead of multiplying

by a factor of 8192, adding the interfaces only
doubles the state space of the high-level. For low-level AS1,
synchronizing with its interface actually causes the state space
to decrease from 1795 to 120 states, an order of magnitude
reduction.

We note that the prototype tool used for these calculations
did not make use of IDD/BDD [36] and symbolic techniques
such as those used in [37] and [38]. We conjecture that using
HISC methods with tools utilizing symbolic techniques should
allow the method to scale up to considerably larger systems as
has been the case with the application of symbolic techniques
to monolithic supervisory control calculations.

A. Localization of Changes

When modeling and designing supervisors for large systems
like the AIP, one will be working with a large number of au-
tomata. As a result, an important concern is the effort involved

2A monolithic algorithm is performed on the composite system, which is
based on the cartesian product of subsystems.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL OF A FLEXIBLE MANUFACTURING SYSTEM 665

Fig. 23. Supervisor HndlTrnsfToEL.TU3.

Fig. 24. AIP low-level TU3.

Fig. 25. AIP low-level TU4.

in making changes to your existing design. If the plant is mod-
ified or the control specifications are changed, it is desirable to
restrict the effect of these changes to as few DES as possible.

In a flat system where supervisors can see and disable any
event, a small change to one part of the system could require
changes to a large number of DES throughout the system. There

Fig. 26. HndlSelCheck.TU3.

is nothing to guarantee localization of the changes. We would
also have to reverify the entire system after the changes.

For HISC, the information hiding approach creates a com-
partmentalization effect. As long as the interface for a low-level
is unchanged, modifications to that low-level will only affect
the plant and supervisor DES of that low-level. All other low
levels will be unchanged and we will only have to reverify the
HISC conditions for the modified low-level. If the interface for
a low-level is changed as well, this will at most cause changes
to the high-level. All other low levels will be unaffected. Fi-
nally, if the high-level is modified, no interfaces or low levels

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

666 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

would need to be changed; we would only need to reverify the
high-level’s HISC conditions.

The HISC conditions and structure can also be used to create
reusable libraries. Once an interface is defined, the low-level can
be modeled, supervisors designed, and HISC conditions verified
completely separately from the rest of the system. This low-
level can then be used in any system without having to recheck
the low-level’s HISC conditions. This would allow a company
that sells a manufacturing machine, for instance, to specify an
interface, and then model, design, and verify the low-level for
the given machine. The company can then provide the interface
and low-level as a preverified package, allowing a customer to
add the machine to their system, and then just design a high-
level to operate the machine’s interface. This could represent a
considerable saving of effort for a customer.

B. Related Work

The most significant feature which distinguishes this paper
from some current work along similar lines (e.g., [22]) is the
results on nonblocking, although Endsley et al. later extended
their work to include a form of deadlock detection in [39]. Also,
the focus of this paper is on how the HISC theory can be applied
to provide safe, nonblocking supervision of a nontrivial indus-
trial system.

One way to improve the scalability of modular and decentral-
ized schemes is to exploit the existing architecture of the system.
In [40], the concept of a specification that is separable over the
component subsystems is introduced and shown to be necessary
and sufficient for a decentralized control scheme to exist that op-
timally meets the specification. The work does not consider non-
blocking supervision. These results are extended to a more gen-
eral architecture in [41] that deals with nonblocking by detecting
potential blocking states locally and then backtracking globally
to determine their reachability. The structure associated with the
event sets of subsystems is exploited in [3] to obtain a reduction
in complexity for the nonconflicting check of modular control.
Similarly the standard controllability definition has been refined
and localized in [42] to check on a per subplant basis only those
uncontrollable events that can occur locally.

The scale of the AIP system is much larger than that of the
illustrative example system given in [43]. There, the open loop
system could be represented by a 14 place petri net with no more
than one token per place in any state. Thus, the open-loop state
space size has upper bound of . The controller has
three places which have the restriction that the sum of tokens
for the three places is always 1 (i.e., there are three states for the
controller) giving an upper bound on the closed loop state space
size of . The most generous estimate of the state
space size is for arbitrary control policies on the
three control places. Application of the methods of [43] to an ex-
ample of the scale of the AIP system would permit a more direct
comparison of the scalability of the method. We note that while
[43] also relied upon identification of specific structural proper-
ties of the system, “the class of flexible manufacturing systems
called MRF1 (multiple reentrant flow lines with no self-loops,
with jobs that require only one resource, with no two conse-
quent jobs using the same resource, with no choice jobs and no
assembly jobs and [sic] with shared resources),” they consider

is not comparable to the class of systems to which HISC can be
applied. For instance, the AIP example used to illustrate HISC
violates the “no machine failures,” and “no self-loops” condi-
tions, while the MRF1 class of system does not impose that same
architectural restriction upon the plant subsystems.

In [38], Ma et al. extended an earlier version (from [28]) of
our AIP example by changing Specification 2 of Section III-C
to allow up to ten pallets in each of the two external loops.
Admittedly, their version is larger but it is important to note
that they are using binary decision diagrams, which represent
the system as compact predicates. It has been shown that sym-
bolic techniques alone ([37], [44]) can allow significant gains
in the size of systems that can be handled, irrespective of hi-
erarchical methods, provided an appropriate variable ordering
can be found to exploit the structure of the system. In our HISC
method, we were able to handle the AIP example using only au-
tomata based algorithms, that extensionally represent the states
and transitions of the DES. Use of symbolic techniques should
allow the method to scale up to considerably larger systems.

VI. CONCLUSION

Hierarchical interface-based supervisory control offers an ef-
fective means to model systems with a natural master–slave
structure. Using multiple low-level subsystems allows
the subsystems to be independently modeled and verified, while
still allowing a high degree of concurrent operation. Because
each of the interface conditions can be verified using a single
subsystem and its interface(s), the complete system model never
needs to be stored in memory or traversed, offering potentially
significant savings in computational resources. This allowed us
to be able to quickly verify a large system that was previously far
beyond our means. An added benefit is that the independent sub-
systems can be more easily understood with a higher degree of
reusability. Any individual subsystem can be replaced without
requiring the other subsystems to be altered or reverified.

These benefits were illustrated by a large example (more than
174 DES with a plant model that has an estimated worst case
open loop state space size of) based on the automated
manufacturing system of the AIP. The example demonstrates
how the HISC method can be applied to interesting systems of
realistic complexity, even though symbolic techniques have not
yet been incorporated into the approach.

A. Limitations and Future Research

In the HISC approach, the limiting factor is the state space
size of the synchronous product of the high-level subsystem and
the interfaces to all of the low-level subsystems. When the in-
terfaces can be designed to have smaller state spaces than the
low-level subsystems (true for the AIP example), the state space
of the high-level synchronized with the interfaces will be con-
siderably smaller than the state space of the flat system model.
However, in the worst case the high-level’s state space can still
grow exponentially in the number of components. To address
this problem, future research will focus on extending the method
to a multilevel hierarchy.

Currently, we only provide a method to verify if a system is
globally nonblocking and controllable but we do not provide

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

LEDUC et al.: HIERARCHICAL INTERFACE-BASED SUPERVISORY CONTROL OF A FLEXIBLE MANUFACTURING SYSTEM 667

a means to synthesize a maximally permissive supervisor. We
intend to address this problem by developing a synthesis method
that will respect the interface conditions and, thus, be able to
take advantage of the benefits of our HISC method. The result
should be maximally permissive for the system as constrained
by the interfaces, but in general, will be more restrictive than the
maximally permissive behavior without interface constraints.

REFERENCES

[1] N. Alsop, “Formal techniques for the procedural control of industrial
processes,” Ph.D. dissertation, Dept. Chemical Eng. Chemical Technol.,
Imperial College Sci., Technol., Med., London, U. K., 1996.

[2] R. Leduc, “PLC implementation of a DES supervisor for a
manufacturing testbed: An implementation perspective,” M.A.Sc.
thesis, Dept. Elect. Comput. Eng., Univ. Toronto, Toronto, ON,
Canada, 1996.

[3] M. Queiroz and J. Cury, “Modular supervisory control of large
scale discrete event systems,” in Proc. WODES, 2000, pp. 103–110.

[4] G. Stremersch and R. Boel, “Decomposition of the supervisory
control problem for petri nets under preservation of maximal
permissiveness,” IEEE Trans. Autom. Control, vol. 46, no. 9,
pp. 1490–1496, Sep. 2001.

[5] W. M. Wonham, “Supervisory control of discrete-event systems,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Univ. Toronto, Toronto, ON,
Canada, 2004.

[6] G. Barrett and S. Lafortune, “Decentralized supervisory control with
communicating controllers,” IEEE Trans. Autom. Control, vol. 45, no.
9, pp. 1620–1638, Sep. 2000.

[7] F. Lin and W. M. Wonham, “Decentralized control and coordination of
discrete-event systems with partial observations,” in Proc. 27th IEEE
Conf. Dec. Contr., 1988, pp. 1125–1130.

[8] K. Rudie and J. C. Willems, “The computational complexity of decen-
tralized discrete-event control problems,” IEEE Trans. Autom. Control,
vol. 440, no. 7, pp. 1313–1319, Jul. 1995.

[9] K. Rudie and W. M. Wonham, “Think globally, act locally: Decentral-
ized supervisory control,” IEEE Trans. Autom. Control, vol. 37, no. 11,
pp. 1692–1708, Nov. 1992.

[10] T. Yoo and S. Lafortune, “A general architecture for decentralized su-
pervisory control of discrete-event systems,” in Proc. WODES, 2000, pp.
111–118.

[11] S. Chen, “Control of discrete-event systems of vector and mixed struc-
tural type,” Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 1996.

[12] Y. Li and W. Wonham, “Control of vector discrete-event systems:
I—The base model,” IEEE Trans. Autom. Control, vol. 38, no. 8, pp.
1214–1227, Aug. 1993.

[13] J. O. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event
Systems Using Petri Nets. Norwell, MA: Kluwer, 1998.

[14] M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event Control
of Manufacturing Systems. Norwell, MA: Kluwer, 1993.

[15] P. Caines and Y. Wei, “The hierarchical lattices of a finite machine,” Syst.
Contr. Lett., vol. 25, no. 7, pp. 257–263, Jul. 1995.

[16] H. Chen and H.-M. Hanisch, “Model aggregation for hierarchical control
synthesis of discrete event systems,” in Proc. 39th Conf. Dec. Contr.,
2000, pp. 418–423.

[17] G. Shen and P. E. Caines, “Hierarchically accelerated dynamic program-
ming for finite-state machines,” IEEE Trans. Autom. Control, vol. 47, no.
2, pp. 271–283, Feb. 2002.

[18] K. Wong, “Discrete-event control architecture: An algebraic approach,”
Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Toronto, Toronto,
ON, Canada, 1994.

[19] W. Wu, H. Su, J. Chu, and H. Zhai, “Hierarchical control of DES based
on colored petri nets,” in Proc. IEEE Syst., Man, Cybern., 2001, pp.
1571–1576.

[20] H. Zhong and W. M. Wonham, “On the consistency of hierarchical su-
pervision in discrete-event systems,” IEEE Trans. Autom. Control, vol.
35, no. 10, pp. 1125–1134, Oct. 1990.

[21] Y. Brave and M. Heymann, “Control of discrete event systems modeled
as hierarchical state machines,” IEEE Trans. Autom. Control, vol. 38, no.
12, pp. 1803–1819, Dec. 1993.

[22] E. W. Endsley, M. R. Lucas, and D. M. Tilbury. (2000, Oct.).
Modular design and verification of logic control for reconfig-
urable machining systems. [Online] Available: http://www-per-
sonal.engin.umich.edu/\verb+ +tilbury/papers.html

[23] P. Gohari-Moghadam, “A linguistic framework for controlled hierar-
chical DES,” M.A.Sc. thesis, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 1998.

[24] H. Liu, J. Park, and R. Miller, “On Hybrid synthesis for hierarchical
structured petri nets,” Dept. Comput. Sci., Univ. Maryland, College Park,
MD, Rep. CS-TR-3628, 1998.

[25] B. Wang, “Top-down design for rw supervisory control theory,” M.A.Sc.
thesis, Dept. Elect. Comput. Eng., Univ. Toronto, Toronto, ON, Canada,
1995.

[26] R. Leduc, B. Brandin, M. Lawford, and W. M. Wonham, “Hierarchical
interface-based supervisory control, Part I: Serial case,” IEEE Trans.
Autom. Control, vol. 50, no. 9, pp. 1322–1335, Sep. 2005.

[27] R. Leduc, M. Lawford, and W. M. Wonham, “Hierarchical interface-
based supervisory control, Part II: Parallel case,” IEEE Trans. Autom.
Control, vol. 50, no. 9, pp. 1336–1348, Sep. 2005.

[28] R. Leduc, “Hierarchical interface-based supervisory control,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Univ. Toronto, Toronto, ON,
Canada, 2002.

[29] D. L. Parnas, P. C. Clements, and D. M. Weiss, “The modular structure
of complex systems,” IEEE Trans. Software Eng., vol. SE-11, no. 3, pp.
259–266, Mar. 1985.

[30] R. Leduc, M. Lawford, and P. Dai, “Hierarchical interface-based super-
visory control of a flexible manufacturing system,” Software Quality
Res. Lab., Dept. Comput. Software, McMaster Univ., Hamilton, ON,
Canada, Tech. Rep. 32, 2005.

[31] P. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete-event processes,” SIAM J. Contr. Optim., vol. 25, no. 1, pp.
206–230, Jan. 1987.

[32] W. M. Wonham and P. Ramadge, “On the supremal controllable sublan-
guage of a given language,” SIAM J. Contr. Optim., vol. 25, no. 3, pp.
637–659, May 1987.

[33] P. Dai, “Synthesis method for hierarchical interface-based supervisory
control,” M.A.Sc. thesis, Dept. Comput. Software, McMaster Univ.,
Hamilton, ON, Canada.

[34] B. Brandin and F. Charbonnier, “The supervisory control of the
automated manufacturing system of the AIP,” in Proc. Rensselaer’s
Fourth Int. Conf. Comput. Integr. Manuf. Autom. Technol., 1994,
pp. 319–324.

[35] F. Charbonnier, “Commande parSupervision des Systèmes à Événements
Discrets: Application à un Site Expérimental L’Atelier Inter-Étab-
lissement de Productique,” Lab. d’Automatique Grenoble, Grenoble,
France, Tech. Rep., 1994.

[36] R. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, 1986.

[37] Z. Zhang, “Smart TCT: An efficient algorithm for supervisory control
design,” M.A.Sc. thesis, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 2001.

[38] C. Ma and W. M. Wonham, “Nonblocking Supervisory Control of
state tree structures,” in Lecture Notes in Control and Information
Sciences. Berlin, Germany: Springer-Verlag, 2005, vol. 317.

[39] E. W. Endsley and D. M. Tilbury, “Modular verification of modular finite
state machines,” in Proc. 43th Conf. Decision Contr., vol. 1, 2004, pp.
972–979.

[40] Y. Willner and M. Heymann, “Supervisory control of concurrent dis-
crete-event systems,” Int. J. Control, vol. 54, no. 5, pp. 1143–1169, Nov.
1991.

[41] S. Abdelwahed, “Interacting discrete event systems: Modeling, verifica-
tion and supervisory control,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Univ. Toronto, Toronto, ON, Canada, 2002.

[42] K. Åkesson, H. Flordal, and M. Fabian, “Exploiting modularity for
synthesis and verification of supervisors,” in Proc. IFAC World Congr.
Autom. Control, 2002, CDROM.

[43] S. Bogdan, F. L. Lewis, Z. Kovačić, A. Gürel, and M. Štajdohar, “An
implementation of the matrix-based supervisory controller of flexible
manufacturing systems,” IEEE Trans. Contr. Syst. Technol., vol. 10, no.
5, pp. 709–716, Sep. 2002.

[44] J. Burch, E. M. Clarke, and K. McMillan, “Symbolic model checking:
10 states and beyond,” Inform. Computat., vol. 98, no. 2, pp. 142–170,
Jun. 1992.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

668 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

Ryan J. Leduc (M’02) received the B.Eng. degree
in electrical engineering from the University of Vic-
toria, Victoria, BC, Canada, in 1993, and the M.A.Sc.
and Ph.D. degrees in electrical engineering from the
University of Toronto, Toronto, ON, Canada, in 1996
and 2002, respectively.

In 1997 and 1998, he was a Guest Scientist at
Siemens Corporate Technology, Munich, Germany.
In 2001, he joined McMaster University, Hamilton,
ON, Canada, where he is currently an Assistant
Professor in the Department of Computing and

Software. His research interests include supervisory control of discrete-event
systems (DES), hierarchical structure, concurrency and implementation issues,
and DES as software and hardware. He is also interested in hierarchical
approaches to formal verification of software and hardware.

Dr. Leduc is the Chair of the IEEE Control Systems Society Technical Com-
mittee on Discrete Event Systems. He is a licensed Professional Engineer in the
province of Ontario, Canada.

Mark Lawford (S’88–M’97) received the B.Sc.
degree in engineering mathematics from Queen’s
University, Kingston, ON, Canada, in 1989 where
he received the University Medal in Engineering
Mathematics, and the M.A.Sc. and Ph.D. degrees
in electrical engineering from the University of
Toronto, Toronto, ON, Canada, in 1992 and 1997,
respectively.

From 1997 to 1998, he worked at Ontario Hydro,
Toronto, ON, Canada, as a consultant on the Dar-
lington Nuclear Generating Station Shutdown Sys-

tems Redesign Project, where he was a corecipient of an Ontario Hydro New
Technology Award. Currently, he is an Associate Professor in the Department
of Computing and Software at McMaster University, Hamiltion, ON, Canada,
where he has helped to develop software engineering programs. His research
interests include discrete event systems, formal methods for real-time systems,
and computer-aided inspection of safety critical software.

Dr. Lawford is a Licensed Professional Engineer in the Province of Ontario,
Canada.

Pengcheng Dai received the B.Eng. degree in com-
puter science and engineering from Tianjin Univer-
sity, Tianjin, China, in 1998. He is currently pursuing
the M.A.Sc. degree in software engineering at Mc-
Master University, Hamilton, ON, Canada.

He worked for Motorola, Tianjin, China, as a soft-
ware developer. He is currently a software consul-
tant with Morgan Stanley, Mantra, QC, Canada. His
research interests include the discrete-event system
area, especially in supervisory control of DES, and
creating software tools for modeling DES systems.

Authorized licensed use limited to: McMaster University. Downloaded on May 27, 2009 at 16:24 from IEEE Xplore. Restrictions apply.

	toc
	Hierarchical Interface-Based Supervisory Control of a Flexible M
	Ryan J. Leduc, Member, IEEE, Mark Lawford, Member, IEEE, and Pen
	I. I NTRODUCTION
	II. O VERVIEW OF HISC
	A. Discrete-Event Systems Preliminaries
	Definition 1: Let $\Sigma:=\Sigma_{1}\cup\Sigma_{S}$, $P_{1}:\Si

	B. Hierarchical Interface Based Supervisory Control

	Fig.€1. Interface block diagram.
	Fig.€2. Two-tiered structure of the system.
	Fig.€3. Example interface.
	Fig.€4. Parallel interface block diagram.
	Definition 2: A DES ${\bf G}_{I}=(X,\Sigma_{R}\mathdot{\cup}\Sig

	Fig.€5. Two-tiered structure of the system.
	Definition 3: The n th degree $(n\geq 1)$ parallel interface s
	C. Local Conditions for Global Nonblocking of the System
	Definition 4: The n th degree $(n\geq 1)$ parallel interface s
	Theorem 1: If the n th degree $(n\geq 1)$ parallel interface s
	Proof: See proof in [30] . $\hfill\blackbox$

	D. Local Conditions for Global Controllability of the System
	Definition 5: The n th degree $(n\geq 1)$ parallel interface s
	Theorem 2: If the n th degree $(n\geq 1)$ parallel interface s
	Proof: See proof in [30] . $\hfill\blackbox$

	E. Verifying Properties

	Fig.€6. AIP.
	III. O VERVIEW OF THE AIP
	A. Assembly Stations

	Fig.€7. Assembly station of external loop $X=1$, 2, 3.
	Fig.€8. Transport unit for external loop $X=1$, 2, 3, 4.
	B. Transport Units
	C. Control Specifications

	Fig.€9. Structure of parallel system.
	Assumptions: We assume that: 1) the system is initially empty; 2
	Specifications:
	IV. S YSTEM S TRUCTURE

	Fig.€10. AIP high-level.
	A. High-Level Subsystem

	Fig.€11. Supervisor ManageTU1.
	B. Low-Level Subsystems AS1 and AS2

	Fig. 12. Interface to low-level $k={\rm AS}1$, AS2.
	Fig. 13. AIP low-level $k={\rm AS}1$, AS2.
	C. Low-Level Subsystem AS3

	Fig.€14. Interface to low-level AS3.
	Fig.€15. AIP low-level AS3.
	D. Low-Level Subsystems TU1 and TU2
	E. Low-Level Subsystem TU3

	Fig.€16. Supervisor HndlPallet.AS1.
	Fig.€17. DepGateNExtrSen.j.
	Fig.€18. PalletArvGateSenEL_2.AS3.
	Fig.€19. CapGateEL_2.AS3.
	Fig. 20. AIP low-level $r={\rm TU}1$, TU2.
	F. Low-Level Subsystem TU4

	TABLE€I S IZE OF AIP S UBSYSTEM A UTOMATA M ODELS
	Fig. 21. Interface to low-level $q={\rm TU}1$, TU2, TU4.
	Fig.€22. Interface to low-level TU3.
	V. D ISCUSSION OF R ESULTS
	A. Localization of Changes

	Fig.€23. Supervisor HndlTrnsfToEL.TU3.
	Fig.€24. AIP low-level TU3.
	Fig.€25. AIP low-level TU4.
	Fig.€26. HndlSelCheck.TU3.
	B. Related Work
	VI. C ONCLUSION
	A. Limitations and Future Research

	N. Alsop, Formal techniques for the procedural control of indust
	R. Leduc, PLC implementation of a DES supervisor for a manufactu
	M. Queiroz and J. Cury, Modular supervisory control of large sca
	G. Stremersch and R. Boel, Decomposition of the supervisory cont
	W. M. Wonham, Supervisory control of discrete-event systems, Ph.
	G. Barrett and S. Lafortune, Decentralized supervisory control w
	F. Lin and W. M. Wonham, Decentralized control and coordination
	K. Rudie and J. C. Willems, The computational complexity of dece
	K. Rudie and W. M. Wonham, Think globally, act locally: Decentra
	T. Yoo and S. Lafortune, A general architecture for decentralize
	S. Chen, Control of discrete-event systems of vector and mixed s
	Y. Li and W. Wonham, Control of vector discrete-event systems: I
	J. O. Moody and P. J. Antsaklis, Supervisory Control of Discrete
	M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event
	P. Caines and Y. Wei, The hierarchical lattices of a finite mach
	H. Chen and H.-M. Hanisch, Model aggregation for hierarchical co
	G. Shen and P. E. Caines, Hierarchically accelerated dynamic pro
	K. Wong, Discrete-event control architecture: An algebraic appro
	W. Wu, H. Su, J. Chu, and H. Zhai, Hierarchical control of DES b
	H. Zhong and W. M. Wonham, On the consistency of hierarchical su
	Y. Brave and M. Heymann, Control of discrete event systems model
	E. W. Endsley, M. R. Lucas, and D. M. Tilbury . (2000, Oct.) . M
	P. Gohari-Moghadam, A linguistic framework for controlled hierar
	H. Liu, J. Park, and R. Miller, On Hybrid synthesis for hierarch
	B. Wang, Top-down design for rw supervisory control theory, M.A.
	R. Leduc, B. Brandin, M. Lawford, and W. M. Wonham, Hierarchical
	R. Leduc, M. Lawford, and W. M. Wonham, Hierarchical interface-b
	R. Leduc, Hierarchical interface-based supervisory control, Ph.D
	D. L. Parnas, P. C. Clements, and D. M. Weiss, The modular struc
	R. Leduc, M. Lawford, and P. Dai, Hierarchical interface-based s
	P. Ramadge and W. M. Wonham, Supervisory control of a class of d
	W. M. Wonham and P. Ramadge, On the supremal controllable sublan
	P. Dai, Synthesis method for hierarchical interface-based superv
	B. Brandin and F. Charbonnier, The supervisory control of the au
	F. Charbonnier, Commande par Supervision des Systèmes à Événemen
	R. Bryant, Graph-based algorithms for Boolean function manipulat
	Z. Zhang, Smart TCT: An efficient algorithm for supervisory cont
	C. Ma and W. M. Wonham, Nonblocking Supervisory Control of state
	E. W. Endsley and D. M. Tilbury, Modular verification of modular
	Y. Willner and M. Heymann, Supervisory control of concurrent dis
	S. Abdelwahed, Interacting discrete event systems: Modeling, ver
	K. Åkesson, H. Flordal, and M. Fabian, Exploiting modularity for
	S. Bogdan, F. L. Lewis, Z. Kova i, A. Gürel, and M. tajdohar, An
	J. Burch, E. M. Clarke, and K. McMillan, Symbolic model checking

