
The Role of Inspection in
Software Quality Assurance

David L. Parnas, Senior Member, IEEE, and Mark Lawford, Member, IEEE

æ

1 INTRODUCTION

DESPITE more than 30 years of effort to improve its
quality, software is still released with many errors.

Many major products are known to have thousands of bugs.
It is not for lack of trying; all major software developers
have a software quality assurance effort and attempt to
remove bugs before release. The problem is the complexity
of the code. It is very easy to review code but fail to notice
significant errors.

Researchers have responded to these problems by
studying methods of formal correctness verification for
programs. In theory, we now know how to prove programs
correct with the same degree of rigor that we apply to
mathematical theorems. In fact, this is rarely practical and
even more rarely done. Most research papers on verification
make simplifying assumptions (e.g., a 1:1 correspondence
between variables and variable names) that are not valid for
real programs. Proofs of realistic programs involve long
complex expressions and require patience, time, and
diligence that developers do not think that they have.
(Interestingly enough, they never have time to verify the
program before release, but they must take time to respond
to complaints after release.) Inspection methods can be
more effective than informal reviews and require less effort
than formal proof, but success depends on having a sound
and systematic procedure for conducting the inspection.
Tools that support this procedure are also important.

The Workshop on Inspection in Software Engineering
(WISE),1 a satellite event of the 2001 Computer Aided
Verification (CAV ’01) Conference, brought together re-
searchers, practitioners, and regulators in the hope of
finding new, more effective approaches to software inspec-
tion. The workshop included invited lectures and paper
presentations in the form of panel discussions on all aspects
of software inspection. Submissions explained how practi-
tioners and researchers were performing inspections,
discussed the relevance of inspections, provided evidence
of how inspections could be improved though refinement of
the inspection process and computer aided tool support and

explained how careful design of software could make
inspections easier or more effective.

The best ideas from the workshop have been distilled
into pairs of papers appearing in linked special issues of
IEEE Software Magazine (Software) and IEEE Transactions on
Software Engineering (TSE).

2 WHY TWO LINKED SPECIAL ISSUES?

As guest editors, we had a very specific goal when we
proposed the joint special issues to the publications’
editorial boards. We had observed that the practitioners,
who read Software, tend to neglect the kind of research
found in TSE on the (sometimes correct) assumption that it
is irrelevant to them. On the other hand, researchers tend to
write for each other and to lose contact with the realities
that practitioners have to face. The linked issues try to
narrow this gap. Some of the contributors to WISE were
practitioners whose contribution was to explain what they
are doing and what problems they encounter. Others were
researchers who were trying to discover and verify (either
mathematically or experimentally) some fundamental facts.
We thought that the researcher authors should write papers
that explained to practitioners why the problems that they
were studying were relevant to practice. We also thought
that the practitioners could communicate to researchers
what it is like to try to inspect a program in practice.

To summarize:

1. The purpose of the papers in Software is to make
practitioners aware of research ideas that they might
be able to apply. They do not have to communicate
the research results as completely as a normal
research paper would.

2. The TSE papers do communicate the research
results. We considered a paper to make a valid
contribution if it shows how known results can be
applied to the problem of inspecting software for
suitability (fitness for use); the papers are intended
to be read by people who are willing to read detailed
and careful research papers.

The papers of immediate interest to practitioners (e.g.,
experience reports) are being published in Software, but TSE
will inform researchers about interesting research problems
that are raised by that paper. Similarly, research papers are
being published in TSE, but practitioners can learn what is
relevant to them about the research by reading the Software
article. The Software articles stress what can be done now
and the TSE articles stress longer term issues. It is intended
that there be very little overlap between the two articles.

674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003

. D.L. Parnas is with the Software Quality Research Laboratory at the
University of Limerick, Limerick, Republic of Ireland.
E-mail: david.parnas@ul.ie.

. M. Lawford is with the Software Quality Research Laboratory, Department
of Computing and Software, McMaster University, 1280 Main Street
West, Hamilton, Ontario, Canada L8S 4K1.
E-mail: lawford@mcmaster.ca.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 118657.

1. Not to be confused with the series of Workshops on Intelligent
Software Engineering.

0098-5589/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: McMaster University. Downloaded on June 2, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

One reports results and one explains how to use those
results or what research is still needed.

We hope that the linked special issues approach can be
emulated and improved upon in the future by other guest
editors with other topics of importance to both practitioners
and researchers. After all, connecting theory with practice is
the essence of any type of engineering.

3 WHAT WE MEAN BY INSPECTION

By “inspection” we mean a systematic approach to
examining a program in detail. The goal of such an
examination is to assess the quality of of the software
product in question, not the quality of the process used to
develop the product.

In general, “inspection” refers to examining a product by
following a prescribed, systematic process that is intended
to determine whether or not the product is fit for its
intended use. For example, many jurisdictions require a
safety inspection for vehicles.2 They legislate a list of parts
that must be examined, measurements that must be made,
etc., and criteria for passing the inspection. The word
“inspection” usually implies that the process is described in
documents, (e.g., checklists, printed forms) that describe
exactly what the inspectors have to do during the
inspection. The goal of these documents is to make sure
that each inspection is so careful and so complete that the
failure of an inspection to reveal any defects justifies having
great confidence that the product will perform as required.

An inspection process, while systematic and tightly
prescribed, is not mechanical; the process description
guides the inspectors but is not so prescriptive that the
inspections could be done by a machine without human
involvement. Success depends on the inspectors under-
standing the product and the underlying technologies,
knowing how to use the appropriate tools, and having
considerable experience doing related work.

Because the inspectors, like all of us, have limits on their
ability to handle details, the key to inspection of any
complex product is a policy of divide and conquer, i.e., having
the inspector examine small parts of the product in
isolation, while making sure that 1) nothing is overlooked
and 2) that the correctness of all inspected components
implies the correctness of the whole product. The decom-
position of the inspection into discrete steps must assure
that each step is simple enough that it can be carried out
reliably and that one inspection step can be carried out
without detailed knowledge of the others.

Inspection can be a very time consuming process.
Moreover, no inspection process is perfect. Inspectors may
take short-cuts, may not have an adequate understanding of
what they are doing, and may identify a product as
acceptable when it is not. Nonetheless, a well-designed
inspection process can find errors that would be missed by
other methods and can engender great trust.

4 THE BENEFITS OF INSPECTION

Testing is widely employed by industry and formal
verification widely advocated by the research community

as methods of improving software quality. Inspection falls
somewhere in between testing and formal verification.
Formal verification has yet to catch on with software
practitioners while inspection in one form or another has
been widely adopted by industry and advocated by leading
software practitioners. The main reasons for this difference
in acceptance are that inspection can be used directly on the
code itself, not abstract models of it, and because it does not
require as substantial an investment in training as verifica-
tion would require. It also does not require the time and
formula manipulation ability that verification of typical
programs would require.

Inspection seeks to compliment testing. Testing and
formal verification help to detect errors and determine
mathematical correctness, respectively, but it is possible to
have error free (mathematically correct) code that is hard to
understand and difficult to maintain. In addition to finding
errors in code and related software documents, inspection
can also help to determine if coding style guidelines are
followed, comments in the code are relevant and of
appropriate length, naming conventions are clear and
consistent, the code can be easily maintained, etc. When it
comes to the cost of building and maintaining large
software products, these issues are crucial. To the theorem
provers, model-checkers, and automated testing tools, these
issues are irrelevant.

There is no need to wait for the code to be complete to
reap the benefits of inspection. Early inspection of a
document that states system requirements, can help insure
that the correct system is built. In our experience, even
when mathematical requirements are being used in the
formal verification of a product, they may not accurately
capture the designer’s or customer’s intent. Inspection of a
requirements document helps to assure that the require-
ments are capturing the right thing.

5 THE FUTURE OF INSPECTION

While many companies are now doing inspection, the
effectiveness of inspections can be improved. The Software
articles provide insights into how software practitioners
can improve the effectiveness and applicability of their
inspections today. The research articles in the TSE provide
the theoretical underpinnings of these suggested improve-
ments and offer insights into how inspections might be
further improved in the future. The TSE articles are
evidence that inspection continues to be an active area of
academic research.

5.1 Refining the Software Inspection Process

One way that researchers and practitioners are working to
address the limitations of current inspection techniques is
by refining inspection methods to make them more
appropriate for a particular setting and helping inspectors
to stay focused on finding the most import problems in the
sea of details.

Dunsmore et al.’s “The Development and Evaluation of
Three Diverse Techniques for Object-Oriented Code Inspec-
tion” proposes three new techniques for the inspection of
OO systems and provides some preliminary data on their
relative effectiveness.

PARNAS AND LAWFORD: THE ROLE OF INSPECTION IN SOFTWARE QUALITY ASSURANCE 675

2. Some advocates of specific approaches to software inspection assume
that their method defines “inspection.” In fact, the word was well-defined
much earlier.

Authorized licensed use limited to: McMaster University. Downloaded on June 2, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

Reading can be a rudimentary form of inspection.
Thelin et al.’s “An Experimental Comparison of Usage-
Based and Checklist-Based Reading” describes two differ-
ent reading techniques and provides a detailed study on
their effectiveness.

Both papers illustrate how customizing the inspection
process to the task at hand can provide benefits.

5.2 Systems with Real-Time Requirements and
Concurrent Activities

Software systems that must deal with a variety of ongoing
activities (e.g., device management, user interactions,
external event monitoring) have been observed to be less
trustworthy than purely sequential programs. Concur-
rency introduces a form of nondeterminism3 into the
system—external events, which happen at unpredictable
times, determine the order of internal events. When
nondeterminism is present, an assessor’s inability to
remain aware of all possible sequences makes inspection
more difficult. The nondeterminism makes testing more
difficult because a test sequence may cause an error in one
case and not in another.

One approach to software quality assessment of systems
with real-time requirements in the presence of concurrency
that seems worth exploring is restricting the design to place
it in a class that is easier to analyze. In what is likely to be
the most controversial article in the special issues, Xu’s “On
Inspection and Verification with Timing Requirements”
advocates handling concurrent real-time systems through a
preruntime scheduling approach. Xu is asking the designers
to accept strong restrictions on their work to make the
inspector’s job easier.

5.3 Tool Supported Software Inspection

Part of the motivation for organizing the Workshop on
Inspection in Software Engineering as a satellite event of
CAV ’01 stems from the guest editors’ belief that computer
aided inspection and formal verification techniques repre-
sents the area of greatest potential for the future of
inspection. From tools to support the work-flow and book
keeping of the inspection process through to integrated
computer aided verification techniques to allow inspectors
to ask the important questions and delegate some of the
mechanical details to model-checkers, theorem provers, and
other tools, there are many ways opportunities for tools to
improve the efficiency and accuracy of inspections. In
“Design and Implementation of a Fine-Grained Software
Inspection Tool,” Anderson et al. describe the theoretical
and practical issues underlying a tool that tool can be used
to make the inspection of complex software systems more
manageable.

6 CONCLUSION

In May of this year, a Soyuz TMA-1 spaceship carrying a
Russian Cosmonaut and two American Astronauts landed
nearly 500km off course after the craft unexpectedly
switched to a ballistic re-entry trajectory. Preliminary
indications are that the problem was caused by software

in the guidance computer in the new, modified version of
the spaceship. In the same week, Microsoft’s Passport
online information repository system was found to have a
major security flaw that enabled an attacker to gain access
to a user’s personal information simply by knowing their e-
mail address and constructing an appropriate URL.

These are just the latest examples of lapses in software
quality that are shaking the public’s confidence that
software can be used to build safe, secure systems. In
response, both software practitioners and software re-
searchers need to improve the reputation of software and
the only way to do that is to improve the quality of
software. Inspection is one way to improve software
quality. Still, further research is needed to find more
practical, effective ways of doing inspections and to
measure the effectiveness of those approaches. We hope
that these special issues of Software and TSE on Software
Inspection motivate others to take up the increasingly
important challenge of improving the effectiveness and
practicality of software inspections.

ACKNOWLEDGMENTS

The authors would like to thank all of the 2001 WISE
participants and, in particular, those that submitted articles
for consideration in the special issues. The special issues
would not have been possible without the understanding of
the reviewers and their invaluable feedback to the editors
and authors. Finally, we would like to thank John Knight,
Steve McConnell, and Warren Harrison for their encour-
agement of the linked special issues idea, and the editorial
staff of both Software and TSE for their support.

David L. Parnas received the PhD degree in
electrical engineering from Carnegie Mellon
University and honorary doctorates from the
ETH in Zurich, Switzerland, and the Catholic
University of Louvain, Belgium. Dr. Parnas is the
director of the Software Quality Research La-
boratory, an SFI fellow, and a professor of
software engineering at the University of Limer-
ick, Limerick, Republic of Ireland. He is currently
on leave from McMaster University. The author of

more than 230 papers and reports, he is interested in most aspects of
computer system design and has won an ACM Best Paper Award in 1979
and two Most Influential Paper awards from the International Conference
on Software Engineering. He is the 1998 winner of ACM SIGSOFT’s
Outstanding Research award. He is licensed as a professional engineer
in the province of Ontario, Canada. Dr. Parnas is a fellow of the Royal
Society of Canada, a fellow of the ACM, a senior member of the IEEE,
and a member of the IEEE Computer Society.

Mark Lawford received the BSc degree in
engineering mathematics from Queen’s Univer-
sity, Kingston, Ontario, Canada, in 1989, receiv-
ing the University Medal in Engineering
Mathematics. His MASc and PhD degrees were
obtained from the Systems Control Group,
Department of Electrical and Computer Engi-
neering at the University of Toronto, Ontario,
Canada, in 1992 and 1997, respectively. Upon
completing his studies, he worked at Ontario

Hydro as a real-time software verification consultant on the Darlington
Nuclear Generating Station Shutdown Systems Redesign project. Since
August 1998, he has been an assistant professor in the Department of
Computing and Software at McMaster University where he is helping to
develop and teach the software engineering programs. His research
interests include discrete event systems and application of formal
methods to real-time systems. He is a member of both the IEEE Control
Systems Society and the IEEE Computer Society.

676 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 8, AUGUST 2003

3. We will consider a system to be nondeterministic whenever the
information available to the observer/assessor is not sufficient to determine
the system behavior. In such cases, a system should be designed to handle
all possible behaviors.

Authorized licensed use limited to: McMaster University. Downloaded on June 2, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

