
An IDE for Software Development Using Tabular Expressions ∗

Dennis K. Peters1, Mark Lawford2, Baltasar Trancón y Widemann3

1 Electrical and Computer Engineering, Memorial University, St. John’s, NL
2 Dept. of Computing and Software, McMaster University, Hamilton, ON

3 Software Quality Research Lab, University of Limerick, Limerick, Ireland

Abstract

We present preliminary work on an IDE for
formal software development using tabular ex-
pressions as the basis for precise specifications
and descriptions of software behaviour.

1 Motivation

Formal software specification and design tech-
niques, when combined with analysis and verifi-
cation tools, can significantly increase the con-
fidence that software will behave as required.
Such techniques, however, usually require doc-
uments to be produced that include fairly com-
plex mathematical expressions, which can often
be effectively presented as tabular expressions.
Traditional documentation tools have proven
to be insufficient for this purpose. We hope
to improve this situation by developing tools
that support both the production and main-
tenance of good documentation and the appli-
cation of this documentation to such tasks as
design analysis, verification and testing.

Although tabular expressions could be use-
ful in many forms of documentation, our em-
phasis will be on documents that either specify
or describe behaviour of software entities using
relations on the quantities that are input and
output from the component [10]. Rather than
define a specification language, per se, we use

∗This work was carried out while all 3 authors were
at the Software Quality Research Laboratory, Univer-
sity of Limerick.

Copyright c© 2007 Dennis Peters, Mark Lawford
and Baltasar Trancón y Widemann. Permission to copy
is hereby granted provided the original copyright notice
is reproduced in copies made.

standard mathematics together with some spe-
cial functions or notations that are particular
to the kind of document and are defined using
standard mathematics [9].

The experience of Ontario Power Genera-
tion (OPG)in developing and using their tools
serves as a motivating example. For safety-
critical projects, OPG used a software method-
ology, described in [15], which is based primar-
ily on Parnas’ “Rational Design Process” [12]
and uses tabular expressions [3]. In this pro-
cess, in addition to code, the following types of
documents are required: system or software re-
quirements [13], module interface [14], module
internal design [11], and reports.

As an example of the tool support in the
OPG process, the following diagram provides
a graphic overview of the relationship between
the documents and tools employed in the sys-
tematic design verification (SDV) process.

SRS.rtf

SDD.rtf

DVR.rtf

PVS

Tool
SDV
SESMprocessor

Word

 +
SESM
Tools

SDD.doc

DVR.doc

SRS.doc

block

proofs
comp.

Document flow
Information flow

b001.pvs
b002.pvs
b003.pvs
etc...

.

A word processor with additional tools, was
used to create and check, the software require-
ments, software design and design verification
report. The exchange medium between the
word processor and the SDV tool was Rich
Text Format (RTF), which at the time ws the
closest thing to a “standard” format available.
The shortcomings of this approach included the
need for verifiers to use PVS’s different, and
somewhat esoteric user interface; the manual
steps required to integrate the results of the

248

verification back into the verification report;
and the significant effort required to develop
the tools, in part because they had to parse
the RTF output and infer the expression se-
mantics from it. We refer the reader to [5, 15]
for a further discussion of this process.

2 Preliminaries

2.1 Tabular Expressions

Computer systems often must react to their en-
vironment and behave differently under differ-
ent circumstances. The result is that the math-
ematics describing system behaviour consists of
a large number of conditions and cases. It has
been recognized for some time that tables can
be used to effectively present such mathematics
[2].We view tabular representations of relations
and functions as an important factor in mak-
ing the documentation more readable, and so
we have specialized our tools to support them.

A full discussion of tabular expressions is
beyond the scope of this paper, so interested
readers are referred to the cited publications.
In their most basic form, tabular expressions
represent conditional expressions. For exam-
ple, the function definition (1), could be repre-
sented by the tabular expression (2).

f(x, y) df=

x + y if x > 1 ∧ y < 0
x− y if x ≤ 1 ∧ y < 0
x if x > 1 ∧ y = 0
xy if x ≤ 1 ∧ y = 0
y if x > 1 ∧ y > 0
x/y if x ≤ 1 ∧ y > 0

(1)

f(x, y) df=
x > 1 x ≤ 1

y < 0 x + y x− y
y = 0 x xy
y > 0 y x/y

(2)

Although (1) and (2) are an academic exam-
ple, they are representative of the kind of con-
ditional expression that occurs often in docu-
mentation of software. The tabular form of the
expressions is not only easier to read, but also
easier to write correctly. Tabular expressions
make it very clear what the cases are, and that
all cases are considered.

2.2 OMDoc Document Model

The mathematical content markup language
OMDoc [4] addresses the problem of commu-
nicating the semantics of expressions in docu-
mentation and serves as a basis on which to
build our tools. A review of the contents of
the above document types leads us to propose
a document model consisting of the following
elements: theories, symbols, types, definitions,
code and text. These elements of our docu-
ments fall within the OMDoc model. In OM-
Doc it is straightforward to add support for
tabular expressions, simply by defining appro-
priate (OpenMath) symbols to denote them.1

2.3 The Eclipse Framework

Eclipseis an open development platform that
supports extension through a plugin mecha-
nism. The platform provides an advanced IDE
for software development, and a wide range of
available plugins to support such tasks as test-
ing, modeling and documentation. The frame-
work includes a mechanism for plugins to de-
fine extension points which facilitate interac-
tion between plugins. Developing our tools
in this framework provides several substantial
advantages over developing a stand-alone tool
set, including its familiarity to the user com-
munity, it facilitates tight integration of doc-
uments with other software artifacts, the ex-
isting plugin base and the built in support for
typical software development tasks.

3 Tool Support

The set of tools that may be appropriate out-
comes from this project is very large and in-
cludes powerful editors, document consistency
checkers, verification systems, oracle genera-
tors, test case generators and model checkers,
to name a few. Developing all of these from
scratch would be a major undertaking. How-
ever, we are focusing our initial efforts on ways
to leverage existing systems to our advantage.
The OMDoc representation of a tabular spec-
ification with its embedded semantics is the

1An example of an OMDoc representation of a spec-
ification including tabular expressions is included with
the CD or on-line version of this paper.

249

common glue that allows us to easily bind to-
gether components as diverse as an Eclipse plu-
gin GUI, the PVS theorem prover and a proto-
type function based specification system that
also acts as a Java code generator.

3.1 Eclipse Plugin GUI

By developing a prototype plugin to support
production of software documents, we are able
to build on the strengths of Eclipse to help inte-
grate the documentation into the development
process, for example by supporting navigation
between a specification and the code that im-
plements the specification or by generating ora-
cles or test cases that integrate with automated
testing using the JUnit plugin.

The initial version of this plugin provides a
“multi-page editor” (which provides different
views of the same source file) for “.tts” files,
which are OMDoc files.2 One page of the edi-
tor is a structured view of the document, while
another shows the raw XML representation.
The support libraries in Eclipse provide tech-
niques to ensure that the views of the document
are consistent. The plugin is built using sev-
eral open source libraries including the RIACA
OpenMath Library3.

This plugin is seen as a primary means for
the human users to interact with specification
documents. Currently it supports basic verifi-
cation and validation of tabular specifications
via export to the Prototype Verification System
(PVS) [8] using XSLT to translate the OMDoc
into PVS, as described below.

3.2 Example V&V Environment

PVS is a “proof assistant” that can automati-
cally check for completeness (coverage) and de-
terminism (disjointness) of several types of ta-
bles [7], i.e. PVS checks that a table defines a
total function. This is very important in safety
critical environments since the engineers want
to avoid any unspecified behaviour. While PVS
has a steep learning curve for users with further
development effort we can design the Eclipse

2See screenshots available with the CD or on-line
version of this paper.

3http://www.mathdox.org/projects/openmath/

lib/2.0/

PwrCond(Prev:bool, Power, Kin, Kout:posreal):

bool =

Power ≤ Kout FALSE
Kout < Power < Kin Prev

Power ≥ Kin TRUE

Figure 1: Power conditioning specification

plugin to “shield” the users from PVS. Further,
new features in PVS such as the random test
and execution of a subset of the PVS specifica-
tion language via the ground evaluator can be
easily translated into new table tool features.

We illustrate these capabilities with an ex-
ample, a “Power Conditioning” subsystem of a
reactor Shutdown System (SDS) as illustrated
in Figure 1 [5]. The PVS Specification of
the PwrCond function can be generated from
the OMDoc tabular specification by applying
a modified version of omdoc2pvs.xsl that is
available from the OMDoc subversion repos-
itory.4 This PVS specification automatically
produces proof obligations for coverage and dis-
jointness. When type-checking the PwrCond ta-
ble the coverage proof obligation is automati-
cally proved by PVS but the Disjointness obli-
gation fails, indicating that the rows might
overlap. We can use random testing in PVS
to determine if there is an error. This com-
mand generates inputs and then evaluates a
“theorem” to look for counter examples. Us-
ing PVSio we evaluate a counter example on
the table header and discover that rows 1 and
3 overlap. The above steps will be automated
via the Eclipse plugin using PVS’s batch pro-
cessing mode and then overlapping rows can be
highlighted.

3.3 Code Generation

We have constructed the prototype of a tool
that provides basic support for function-based
specification. It has a front end syntax sim-
ilar to a functional programming or theorem
prover language, and a semantic intermediate
representation based on OpenMath objects for
individual types and definitions, and OMDoc
for theory-level structure. A typechecker sup-
ports the Calculus of Constructions [1], a sub-
set of the proposed higher-order type system

4Available at https://svn.omdoc.org/repos/

omdoc/branches/omdoc-1.2.

250

http://www.mathdox.org/projects/openmath/lib/2.0/
http://www.mathdox.org/projects/openmath/lib/2.0/
https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2
https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.2

for OpenMath [6]. Executable code can be gen-
erated from the typechecked intermediate rep-
resentation. The tool is implemented in Java,
and currently supports Java code generation.

Specifications represented in function-based
style and processed using this tool have two
important properties. Firstly, they are defined
in a self-contained and unambiguous way in
pure typed lambda-calculus. Together with the
OMDoc-based format, this makes a good start-
ing point for interaction with various theorem
proving tools. Secondly, all properties that do
not involve infinite quantification are directly
computable. Hence the static restriction check
for a table and the evaluation and dynamic re-
striction check for a table and a given variable
assignment can be interpreted or compiled to
executable code, whereas the dynamic restric-
tion check for all possible values still requires
the use of a theorem prover.

4 Conclusions

Early results show the promise in the chosen
techniques – the model supports the needs of
our documentation and the ability to interact
with other tools such as PVS shows the poten-
tial to achieve significant leverage from these
tools. Short term goals are to enhance the plu-
gin editor editor, extend translation to PVS
and to add oracle generation similar to [13].

References

[1] T. Coquand and G Huet. The calculus of
constructions. Inf. Comput., 76(2-3):95–
120, 1988.

[2] K.L. Heninger, D.L. Parnas, J.E. Shore,
and J. Kallander. Software requirements
for the A-7E aircraft. Tech Report MR
3876, Naval Research Laboratory, 1978.

[3] R. Janicki, D.L. Parnas, and J. Zucker.
Tabular representations in relational doc-
uments. In Relational Methods in Com-
puter Science, Ch. 12, pages 184–196.
Springer Wien New York, 1997.

[4] M. Kohlhase. OMDoc: An Open
Markup Format for Mathematical Docu-
ments (Version 1.2). LNAI 4180. Springer
Verlag, 2006.

[5] M. Lawford, P. Froebel, and G. Moum.
Application of tabular methods to the
specification and verification of a nuclear
reactor shutdown system. Accepted for
publication in in FMSD Oct 2004.5

[6] The OpenMath Society. A Type System
for OpenMath, 1.0 edition, February 1999.

[7] S. Owre, J. Rushby, and N. Shankar. Inte-
gration in PVS: Tables, types, and model
checking. In TACAS ’97, LNCS 1217,
pages 366–383, 1997. Springer-Verlag.

[8] S. Owre, J. Rushby, N. Shankar, and
F. von Henke. Formal verification for
fault-tolerant architectures: Prolegomena
to the design of PVS. IEEE Trans. on
Soft. Eng., 21(2):107–125, Feb. 1995.

[9] D.L. Parnas. A family of mathematical
methods for professional software docu-
mentation. In IFM’05, LNCS 3771, pages
1–4. Springer-Verlag, Nov. 2005.

[10] D.L. Parnas and J. Madey. Functional
documentation for computer systems. Sci-
ence of Computer Programming, 25(1):41–
61, Oct. 1995.

[11] D.L. Parnas, J. Madey, and M. Iglewski.
Precise documentation of well-structured
programs. IEEE Trans. Soft. Eng.,
20(12):948–976, Dec. 1994.

[12] D.L. Parnas and P. Clements. A ratio-
nal design process: How and why to fake
it. IEEE Trans. Soft. Eng., 12(2):251–257,
Feb. 1986.

[13] D.K. Peters and D.L. Parnas.
Requirements-based monitors for real-
time systems. IEEE Trans. Soft. Eng.,
28(2):146–158, Feb. 2002.

[14] C. Quinn, S. Vilkomir, D.L. Parnas, and
S. Kostic. Specification of software compo-
nent requirements using the trace function
method. In Int’l Conf. on Software Engi-
neering Advances, page 50, 2006.

[15] A. Wassyng and M. Lawford. Software
tools for safety-critical software develop-
ment. STTT, 8(4–5):337–354, Aug. 2006.

5http://www.cas.mcmaster.ca/~lawford/papers/

251

http://www.cas.mcmaster.ca/~lawford/papers/

	Motivation
	Preliminaries
	Tabular Expressions
	OMDoc Document Model
	The Eclipse Framework

	Tool Support
	Eclipse Plugin GUI
	Example V&V Environment
	Code Generation

	Conclusions

