2000 Conference on Information Sciences and Systems, Princeton University, March 15-17, 2000

Verification of Real-Time Control Software Using PVS

Mark Lawford' and Hongyu Wu
Dept. of Computing and Software
Faculty of Engineering
McMaster University
Hamilton, Ontario Canada L8S 4L7
e-mail: lawford@mcmaster.ca

Abstract — This paper provides preliminary results
from an investigation of the use of PVS for the spec-
ification and verification of the real-time behavior of
control systems software. Preliminary definitions are
developed for specifying real-time software require-
ments. The definitions are used to specify a subsys-
tem of an industrial real-time control system and then
PVS is used to detect several errors in a proposed im-
plementation and the original specification. Finally
we prove that a corrected version of the implemen-
tation satisfies the updated version of the specifica-
tion.

I. INTRODUCTION

The paper considers a discrete time setting where a super-
visory controller periodically samples its inputs and updates
its outputs. We provide basic mathematical definitions to pre-
cisely specify some common real-time properties of controllers
in this setting. The definitions are implemented as a reusable
theory for SRI’s automated proof assistant PVS[2]. We then
use PVS to formally specify and verify the real-time behav-
ior of an industrial control subsystem by extending the PVS
“Clocks” theory originally developed by Dutertre and Stavri-
dou for the analysis of [3]. These definitions, when combined
with PVS’s support for the tabular methods [4] of Parnas et
al. [5, 6] provide a useful environment for the specification
and verification of basic real-time control properties.

To illustrate the utility of the theory, we specify and ver-
ify a simple real-time subsystem of an industrial control sys-
tem. As we will see, the process of formally modeling the sub-
system’s real-time requirements and verifying the proposed
implementation against these requirements helps to uncover
errors or unexpected behavior in both the specification and
the implementation. As a result, both the requirements and
implementation are modified and then proven to be correct.
The resulting system is safer and we have a higher degree of
confidence in its correctness.

Although the method has several limitations, noted below,
that will hopefully be addressed by future refinements of the
technique, as it now stands the method has proven useful in
identifying errors in verification software involving hard real
time constraints.

The PVS verification methodology outlined in [1] allows
one to perform “block comparisons” verifying the functional-
ity of the input/output logic that often composes the majority
of a system requirements. In [1], the authors noted that the
method is not readily applicable to the verification of subsys-
tems with hard real-time requirements (i.e., “timing blocks”).

1This work was partially supported by an NSERC.

Timing blocks are distinguished by the fact that in addition to
requiring that the proper output is produced for a given input
(or sequence of inputs), these blocks also require the output
to be produced at the correct time. Thus, instead of relating
a point in the domain (input) to a corresponding point in the
range (output), timing blocks typically involve specifications
relating timed sequences of inputs to timed sequences of out-
puts and hence tend to be more difficult to design and verify.
A formal (mathematically sound) method for the verification
of timing blocks would therefore significantly aid the design
and verification process.

Using theorem proving techniques to verify real-time con-
trol software can be viewed as a complementary technique to
testing, as theorem proving can be used to deal with the is-
sues of domain coverage and determinism that are difficult or
impossible to demonstrate with testing alone due to the well
known state explosion problem.

The main advantages of the proposed method are:

o It is straightforward extension of the existing successful
(untimed) methods of [1].

e Guaranteed Domain Coverage - PVS forces the verifier
to demonstrate that the specification and implementa-
tion agree on all possible input sequences.

e Model can closely resembles original requirements spec-
ification and design descriptions due to the flexibility of
PVS’ type system.

e Counter examples - As described in [1], unprovable cases
in PVS can help to provide counter examples that aid
in the analysis of the implementation.

e Refutation - If the verifier believes that the implemen-
tation is not meeting the requirements for a particular
input combination, PVS can be used to perform “refu-
tation” by trying to prove a theorem stating that the
specification and implementation are not equal for the
specific input.

The main limitations of the method in its current form are
its inability to address the issues of inter-sample behavior and
different sampling rates, tolerances on timing values and the
excessive amount of user intervention required to verify timing
properties involving “large” time delays.

II. PRELIMINARIES

This section provides an overview of the (functional) Sys-
tematic Design Verification (SDV) procedure used in [1] that is
the basis of the real-time software verification problem posed
in Section IV. The method makes use of a form of Parnas’ tab-
ular representations of mathematical functions [5, 6] to specify



the software’s behavior. Tables provide a mathematically pre-
cise notation (see [7] for the formal semantics) in a visual for-
mat that is easily understood by domain experts, developers,
testers, reviewers and verifiers alike [1].

We assume the underlying models of both the Software Re-
quirements Specification (SRS) and the Software Design De-
scription (SDD) are based upon Finite State Machines (FSM).
The SDD adds to the SRS functionality the scheduling, main-
tainability, resource allocation, error handling, and implemen-
tation dependencies. Thus the SRS provides a high level de-
scription of the required system behavior while the SDD pro-
vides the implementation details to implement the required
behavior.

Software engineering standards for safety critical software,
such as [8], require that the design be formally verified against
the SRS and then the code be formally verified against the
SDD to ensure that the implementation meets the require-
ments. These formal verifications are governed by the SDV
Procedure and Systematic Code Verification (SCV) Proce-
dure. For the purposes of this paper we will concentrate on
the SDV process.

The objective of the SDV process is to verify, using math-
ematical techniques or rigorous arguments, that the behavior
of every output defined in the SDD, is in compliance with the
requirements for the behavior of that output as specified in the
SRS. The process employed in [1] is based upon a variation of
the four variable model of [9] that verifies the functional equiv-
alence of the SRS and SDD by comparing their respective one
step transition functions. The resulting proof obligation in
this special case:

REQ =0UT o SOF o IN (1)

is illustrated in the commutative diagram of Figure 1. Here

RE
M @ C
IN ouT
SOF
I O

Fig. 1: Commutative diagram for 4 variable model

REQ represents the SRS state transition function mapping
the monitored variables M (including the previous pass val-
ues of state variables) to the controlled variables and updated
state represented by C. The function SOF represents the
SDD state transition function mapping the behavior of the
implementation input variables represented by statespace I to
the behavior of the software output variables represented by
the statespace O. The mapping I N relates the specification’s
monitored variables to the implementation’s input variables
while the mapping OUT relates the implementation’s output
variables to the specification’s controlled variables.

In the 4-variable model of [9], each of the 4 “variable” state
spaces M, I, O, and C is a set functions of a single real valued
argument that return a vector of values - one value for each of
the quantities or “variables” associated with a particular di-
mension of the statespace. For instance, assuming that there

are nys monitored quantities, which we represent by the vari-
ables mi, ma,... ,mn,,, then, the timed behavior of the vari-
able m; can be represented as a function m! : R — Type(m;),
where m}(z) is the value of the quantity m; at time z. We
can then take M to be the set of all functions of the form
mt(z) = (mi(z), mb(z),... ,mk,, (z)). Thus the relations
corresponding to the arrows of the commutative diagram then
relate vectors of functions of a single real valued argument.

In order to simplify the 4-variable model and have it more
closely model the dynamics of a digital control system that
samples its inputs and updates its outputs at regular intervals,
we restrict ourselves to the case where each of the 4 “variables”
M, I, O, and C is a set of “time series vectors”. For example,
M actually refers to all possible sets of observations ordered
(and equally spaced) in time, each observation being a vector
of nar values. We will use the term monitored variable to
refer to quantity m; which is the ¢th element in the vector
(i € {1,...,nm}). Let m € M be a time series vector of
observations of the monitored variables. With a slight abuse
of notation, we will use m;(z) to denote the zth observation of
the ith element (z € {0,1,2,...}) of the monitored variables
for the time series vector m. Similarly m(z) represents the zth
observation of the nas values in the monitored variable vector
for time series m.

For this model, the time increment between each of the
observations is defined to be K € R*, where R denotes the
positive reals. Thus observation z corresponds to time (z*K).
The value of m; at any point between two observations (i.e.,
in the range of time [z* K, (2+ 1) * K) ) is defined to be equal
to m;(z).

The verification of real-time properties requires us to con-
sider REQ and SOF' as mapping from sequences of inputs to
sequences of outputs since there is typically no longer a direct
relationship between the one step transition functions of the
SRS and SDD.

III. SPECIFICATION OF REAL-TIME REQUIREMENTS

The model of time employed by the proposed method builds
upon a discrete time “Clocks” theory originally defined in [3].
While the model of time put forward in [3] allows for multiple
clocks of different frequency and continuous time functions, we
restrict ourselves to discrete time functions of a single clock
frequency. The rest of this section describes the underlying
real-time setting used to model systems. The section is con-
cluded by a simple example that demonstrates the use of the
HELD_FOR operator.

We will consider time to be the set of non-negative real
numbers. Then for a positive real number K, we define a
clock of period K, denoted clockk, to be a set of “sample
instances”

clockx := {to,t1,t2,... ,tn,...} ={0,K,2K,... ,nK,...}

For a period K = 5, the clock of period 5 is simply
clocks := {0,5,10,15,...}
Note that clocks, like all clocks as defined above, “starts” at
time o = 0.
To identify the initial clock value and thereby specify initial

system states, we define the init predicate which is TRUE only
at to:

TRUE,
FALSE,

n=20
otherwise

init(ty) = {



Identifying the initial clock value allows one to define recur-
sive functions that use to as the base case and then define the
system state at any clock value in terms of the system state
at the previous clock value. To formalize the notion of “pre-
vious clock value” and aid in proving termination properties
of recursive functions defined over clockk, we define the rank
of t, to be n. Formally: rankx : clock — N where t, — n.

When defining recursive functions that have a clock of pe-
riod K, for a particular instance of time (clock value) it is
often convenient to be able to refer to the next sample time or
previous sample time. To this end we can define nextx and
prek operators on the elements of clockk as follows:

n>1

prex (tn) otherwise

tn— 1,
undefined,

nextx (tn) = tn41

When the value of K is unambiguous from the current context,
we will omit the operator subscripts and simply write rank(),
next() and pre().

Note that pre(t0) is undefined. PVS requires that all func-
tions are total (i.e. defined at every value in their domain).
In the case of the pre() operator, this is easily accomplished
through the use of the subtype:

noninit_elemr = {t, € clockx|—init(t,)}

as the pre() operator’s domain. PVS allows the application
of a function to any element belonging to a supertype of the
function’s domain and then generates a proof obligation or
Type Correctness Condition (TCC). The TCC requires the
user to prove the element the function is applied to is of the
same type as the function’s domain. For example, any time
the pre() operator is applied to an arbitrary clock value t,, a
TCC is generated requiring the user to prove that ¢, is never
equal to 0, and hence has a previous value.

We now state a preliminary definition that will aid us in
defining the timing operators in the remain subsections. For
the clockx, the set of clock predicates, denoted pred(clockx),
is the set of all boolean functions of clockk:

pred(clockk) := {f|f : clockk - {TRUE,FALSE}

Figure 2 contains a simplified version of Dutertre and
Stavridou’s [3] PVS specification file that implements the
parametrized theory Clocks defining the type clock that cor-
responds to clockk above.

The clock-induction proposition is a simple statement of
proof by induction over clock values. It says that for a clock
predicate P, if (i) P(to) is TRUE, and (ii) for any n > 0,
P(tn—1) is TRUE implies that P(tn) is TRUE, then P(t,) is
TRUE for all t,, in clockx . We will use this proposition to
prove that an SRS function and SDD function are equivalent
at all sample instance (clock values).

We can now define the PVS implementation of the
HELD_FOR operator that we will use in the example of
section IV. Let duration denote a non-negative real num-
ber, and P represent a clock predicate (i.e. P : clockx —
{TRUE,FALSE}). HELD_FOR is an infix operator that
takes a clock predicate as its first argument, a non-negative
real number as its second argument and returns a clock pred-
icate:

HELD_FOR : pred(clockx) x RT — pred(clockx)

Clocks[ K: posreal ]: THEORY
BEGIN

non_neg: TYPE = { x: real | x>=0 }
time: TYPE = non_neg

t: VAR time

clock: TYPE = { t: time|EXISTS(n:nat): t=n*K }
x: VAR clock

init(x): bool = (x=0)
noninit_elem: TYPE ={ x | not init(x) }
y: VAR noninit_elem

pre(y): clock = y - K
next(x): noninit_elem = x + K
rank(x): nat = x/K

clock_induction: PROPOSITION
FORALL (P: pred[clock]):
(FORALL (x: clock): init(x)
IMPLIES P(x)) AND
(FORALL (y: noninit_elem): P(pre(y))
IMPLIES P(y))
IMPLIES (FORALL (x: clock): P(x))

END Clocks

Fig. 2: PVS for Clocks Theory

such that (P)HELD_FOR(duration)(t,) = TRUE iff (3t; €
clockk) such that

(tn —t; > duration) A (Vt; € clockk)(t; < t; < tn = P(t;))

Example 1: Let K = 150, duration = 295, and Sensor(t)
be a clock predicate as shown in Figure 3: Note that we are

S T
ensor
F A A A time
n 0 1 2
tn 0 150 300 450
f F F F T

Fig. 3: f = (Sensor)HELD_FOR(295) example

ignoring intersample behavior of Sensor. The truth value of
HELD _FOR is only dependent upon the value of Sensor at
the sampling instances corresponding to the clock values.

The PVS theory defining the Held For operator is shown
in figure 4: The PVS function implementing the HELD_FOR,
operator is Held For, defined at the bottom of the theory. It
implements the HELD_FOR operator by evaluating the recur-
sive function heldfor, which, as long as P(t) is TRUE, back
tracks to the previous value of t until t now - t is greater than
or equal to duration. If at any point before the recursion ter-
minates P(t) is FALSFEor the initial state is reached, heldfor
returns FALSE.



Held_For : THEORY
BEGIN

IMPORTING Clocks[K]

[K:posreal]

t, t_now: VAR clock
duration:VAR time
P: VAR pred[clock]

heldfor(P, t, t_now, duration):
RECURSIVE bool =

IF P(t) THEN
IF (t_now - t >= duration) THEN TRUE
ELSIF init(t) THEN FALSE
ELSE heldfor(P,pre(t),t_now,duration)
ENDIF

ELSE FALSE

ENDIF

MEASURE rank(t)

Held_For (P, duration): pred[clock] =
(LAMBDA (t:clock): heldfor(P,t,t,duration))

END Held_For

Fig. 4: PVS file implementing HELD_FOR operator

The theory simple in Figure 5 illustrates the use of the
PVS Held For theory.

The theorem good is easily proved by the (GRIND) com-
mand. This is expected since the first clock value greater than
1000+duration is 1300 and in this case 1300-1000;295 while
Sensor is true at 1000, 1300 and all clock values in between.

Attempting to prove bad results in the unprovable sequent:

[-1] n!'l >= 0
[-2] 50 * n!'1 >= 0
[-3] t!'1 = 50 * n!1
[-4] (50 * n!1 >= 1245)
| _______
{1} Sensor(50 * n'!1 - 300)

This unprovable sequent corresponds to the equation:
(Vt,, € clockso)t, > 1245 = Sensor(t, — 300)

The number 1245 = 1000 + 295 - 50 = 1000 + duration - K.
The first clock value greater than or equal to this number is
1250, but when t!1=1250 all formulas are true except 1 since
Sensor(950)=FALSE resulting in an unprovable sequent.

In addition to the HELD _FOR operator, we have defined
PVS version of DELAYED BY and PERIODIC operators
that allow one to formally specify the timing of an output
event relative to an input event and periodic behavior respec-
tively.

IV. VERIFICATION OF REAL-TIME REQUIREMENTS

In this section we describe how PVS has been used to verify
as simple real-time controller with inputs and output as shown
in Figure 6. The Sensor Lock real-time controller takes two
boolean valued inputs, Sensor and Reset, and produces a sin-
gle boolean valued output SenLock every K = 100ms. When

simple : THEORY

BEGIN

K: posreal = 50
IMPORTING Held_For[K]

t: VAR clock

Sensor(t) :bool = IF (t<1000) THEN FALSE
ELSE TRUE ENDIF
duration:time = 295

good: THEQOREM (t>=1000+duration) IMPLIES
Held_For(Sensor,duration) (t)

bad: THEOREM (t>=1000+duration-K)
IMPLIES Held_For(Sensor,duration) (t)

END simple

Fig. 5: PVS file utilizing Held_For

Sensor Lock
RT controller

Sensor—]

Reset —

— SenLock

Fig. 6: Block diagram for real-time Sensor lock controller

the value of Sensor is continuously T RUE for ldelay = 150ms
or longer, then the sensor is “locked” and SenLock is set to
TRUE. Once the sensor is “locked”, it stays locked until the
system is manually reset indicated by making Reset = TRUE.
This behaviour is summarized by the following table:

Result

Condition SenLock

(Sensor) Held for (ldelay) TRUE

NOT [(Sensor) Held | Reset FALSE
for (1delay)] —Reset | No Change

When the conjunction of atomic proposition in a given row
of the Condition columns is TRUE, then SenLock is set to
the Result value for that row. E.g., when

NOT|[(Sensor)Held_For(ldelay)] A Reset

then SenLock = False.
The SDD or “implementation” of this specification is given
by the following table:

Results

Condition Elock LTime
Elock Reset Good 0
NOT | =Lock | —Reset Lock 0
Sensor Elock#Lock Good 0
LTime=0 Bad Lock

Sensor | 0 <LTime<ldelay | NC | next(LTime)
LTime>ldelay Lock 0




Here FElock is a three valued function corresponding to
SenLock and LTime is a timer used to implement the
Held For. The designer used a three valued function for
Elock so that this output could also provide some informa-
tion about Sensor to the rest of the system. The idea is that
Elock = Lock when the sensor is “locked”, it is Bad when the
sensor is unlocked and Sensor = TRUE and it is Good when
the sensor is unlocked Sensor = FALSE. The value NC in
the Elock column is short for “No Change”.

Due to time and space constraints we do not include the
PVS verification file here. It is available from the first authour
upon request. To apply PVS to this Verification Problem we
use the strategy (INDUCT "t" 1 "clock_induction"). This
breaks proof into two parts: (i) Base Case when t=0, and (ii)
inductive case. In the course of proving these cases, we find
the following errors:

1. Wrong initial condition for Elock.
2. Elock becomes unlocked without a manual reset.

3. Cases exist where manual reset unlocks the SenLock but
not Elock.

The complete specification and design require fail-safe opera-
tion so the value of SenLock was initially set to TRUE. In
the original design Elock was initialized to Bad.

The SDD becomes unlocked because the LTime counter is
reset to 0 when Elock is set to Lock. As a result the system
loses the “history” of Sensor. Although Elock does not cor-
rectly implement this requirement as specified by SenLock, it
also illustrates how SenLock could be made “safer”. When
Sensor = TRUE, Elock will not allow a manual reset, while
SenLock will permit such a reset if Sensor was FALSE in
the recent past.

Taking these issues into consideration, we provide “fixed”
versions of the specification and implementation below:

Result
Condition SenLock
(Sensor) Held for (ldelay) True
NOT [(Sensor) Held | Reset | —Sensor False
for (1delay)] Sensor | No Change
—Reset No Change
Results
Condition Elock LTime
Elock Reset Good 0
NOT =Lock —Reset Lock 0
Sensor Elock#Lock Good 0
LTime< | Elock#Lock | Bad | next(LTime)
Sensor | ldelay | Elock=Lock | Lock | next(LTime)
LTime> ldelay Lock NC

It is possible to use PVS to prove that the new version of
the SDD implements the SRS.

V. CONCLUSION

PVS has been used to verify simple timing properties. The
main benefit of the PVS Real-Time method is that it delivers
a guarantee of domain coverage. When properly applied this
method for the verification of timing blocks provides an in-
creased level of confidence in the verification process and aids
in detecting subtle timing errors.

The main advantages of the proposed method is that it is a
relatively straight-forward extension of an existing methods,

it checks all possible input sequences, and in the case when
the SRS and SDD are not equivalent it provides some insight
into the reasons for any discrepancies. Moreover, when a ver-
ifier suspects discrepancy, he can refutation theorem proving
to confirm that the implementation does not satisfy the spec-
ification. The work currently has several limitations. Most
significantly, the implementation ignores intersample behav-
ior and timing tolerances. Also, more effective proof tech-
niques are required for real-time properties spanning “large”
durations.
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