
Abstract. In designing systems, engineers decompose the problem into
smaller, more manageable tasks. A classic example of this is the separa-
tion principle from control systems which allows one to decompose the
design of an optimal feedback control system into two independent tasks
by designing (a) an observer, and (b) a controller. We investigate an
analogous result for embedded system interfacing that will allow separa-
tion of the design of the input and output hardware interfaces while still
guaranteeing the ability of the software to meet the system requirements.
We define the notions of observability (controllability) of the system re-
quirements with respect to the input (output) interface. We show that
for a system that can be modeled by a functional four-variable model,
observability and controllability allow for the separation of the design
of the input and output interfaces. We also show that this separation is
not always possible for systems that need the general, relational four-
variable model. By strengthening either observability or controllability,
we restrict the choice of input or output interfaces, but ensure separa-
bility of their designs.

1 Introduction

In designing systems, engineers like to decompose system design into smaller,
more manageable tasks. A classic example of this is a conjecture by Kalman [7]
that became known as the “separation principle” or “separation theorem” for
linear control systems which states that one can decompose the physical realiza-
tion of a state feedback controller into two stages: (a) an observer that computes
a “best approximation” of the physical plant’s state based upon the observations
of the physical plant’s outputs (monitored quantities), and (b) computation of
the control signals to the plant (the control outputs) assuming access to perfect
state information from the plant. When the actual plant’s state is replaced in (b)
by the approximation computed in (a), it can be shown that an optimal control
results [5].

For reasons of flexibility and cost, the designs produced by control engineers
are usually implemented as software-controlled embedded systems. A general
view of an embedded system based upon [13] is depicted by the inner loop of
Fig. 1. Based on the measured values of plant parameters obtained from the

A Separation Principle for Embedded System
Interfacing

Lucian M. Patcas, Mark Lawford, and Tom Maibaum

Department of Computing and Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1
{patcaslm,lawford,maibaum}@mcmaster.ca

E. Albert and E. Sekerinski (Eds.): IFM 2014, LNCS 8739, pp. 373–388, 2014.
© Springer International Publishing Switzerland 2014

sensors, the software controller commands the actuators with the purpose of
maintaining certain properties in the plant. Parnas and Madey’s four-variable
model [11] (outside square of Fig. 1) helps to clarify the behaviour of, and the
boundaries between, the plant, sensors, actuators, and control software. The
model has been used successfully for the past five decades in the development
of safety-critical embedded systems in various industries [14,3,8,15]. The four-
variable model was also used extensively in the Requirements Engineering Hand-
book [9] that was put together at the request of the U.S. Federal Aviation Ad-
ministration.

M C

I O

REQ

IN

SOF

OUT

NAT

plant

sensors

controller

actuators

Monitored
Variables

Controlled
Variables

Software
Input

Software
Output

Fig. 1. The four-variable model

In the four-variable model there are four types of “variables” (hence the
name): monitored variables (physical parameters of interest in the plant such
as temperatures, voltages, aileron angle in a plane wing etc.); controlled vari-
ables (the physical parameters the system attempts to control); input variables
(the digital representations of the monitored variables available to the software);
and output variables (the variables set by the software in order to modify con-
trolled variables). The sets of the possible values of the monitored and controlled
variables are denoted by M and C, respectively; the sets of the possible values
of the input and output variables are denoted by I and O, respectively. The
system requirements REQ relate values of monitored variables to values of con-
trolled variables. The environmental constraints on the system are described by
the relation NAT (from “nature”), which restricts the possible values of the
monitored and controlled variables. An environmental constraint might be, for
instance, the maximum rate of climb of an aircraft in the case of an avionics sys-
tem. The possible system implementations (system designs) are modelled by a
sequential composition of IN, SOF, and OUT. Here, IN models the input hard-
ware interface (sensors and analog-to-digital converters) and relates values of
monitored variables to values of input variables. The output hardware interface
(digital-to-analog converters and actuators) is modelled by OUT, which relates
values of output variables to values of controlled variables. Relating values of
input variables to values of output variables is SOF, which models the control
software.

374 L.M. Patcas, M. Lawford, and T. Maibaum

To account for the inaccuracies introduced by the hardware interfaces, IN
and OUT are in general relations, not functions. For example, assume that IN
models an A/D converter that converts analog voltages in the range 0–5V with
an accuracy of ±0.5V; then, for an actual monitored voltage of 2.5V, the value of
the corresponding input variable in the software can be any of the digital repre-
sentations that correspond to 2V, 2.5V, and 3V. A typical engineering practice is
to allow tolerances on requirements (i.e., more outputs acceptable for the same
input), in which case REQ is a relation as well [8]. If we want to capture all
the possible implementations of the control software (i.e., the software require-
ments), then SOF will typically have to be a relation. An actual implementation
of SOF is a deterministic program that runs on a computer and can be modeled
by a function.

The relations NAT and REQ are described by application domain experts
and control engineers. The system designers allocate the system requirements
between hardware and software, and describe IN and OUT. The software engi-
neers must determine SOF and verify whether it is acceptable with respect to
NAT, REQ, IN, and OUT. A difficult part in designing a system is to come up
with the right triple IN, SOF, and OUT such that their integration produces an
acceptable system design. For complex projects that require numerous subcon-
tractors, communication and agreement between the various teams tend to be
challenging, especially when the teams are large and geographically dispersed.
Being able to design the input and output interfaces separately would:

– help designers manage with system design complexity;
– reduce the interaction required between the various teams;
– allow changes to the input (output) interface without requiring changes to

the output (input) interface, an idea similar to Parnas’ information hiding
principle [10] that prevents local changes from propagating throughout other
parts of the system.

At the same time, it would also be highly desirable for the pair of input/output
interfacing to not prevent acceptable software implementations from being pos-
sible. The control software must be able to observe specific changes in the mon-
itored variables via the input interface and react to these changes by modifying
the values of the controlled variables via the output interface, as specified in the
requirements. Thus in our attempt at a separation principle for embedded sys-
tems interfacing, IN plays a role similar to Kalman’s observer and OUT plays
a role similar to Kalman’s controller.

To address the deficiencies of the software acceptability notion presented in
[11], we proposed in [12] a new semantics for the four-variable model based on
the demonic calculus of relations. Using this semantics, we formalized software
acceptability and proved a necessary and sufficient condition for an acceptable
software implementation to exist. In the current paper we revisit this condition
in Section 3 and present it from a different angle by introducing the notions
of observability and controllability of requirements with respect to the input,
and, respectively, output interfaces. As it turns out, this necessary and sufficient
condition has a surprising practical implication: if functions are used, the input

 A Separation Principle for Embedded System Interfacing 375

and output interfaces can always be designed independently and an acceptable
software implementation will still be possible as long as the observability and
controllability conditions both hold; in the relational case, however, the input
and output hardware interfaces are, in general, mutually dependent. Since rela-
tional specifications are more realistic in practice because they can model the
nondeterminism induced by hardware inaccuracies and tolerances on require-
ments, in Section 4 we prove two stronger conditions that allow the input and
output interfaces to be designed independently while still guaranteeing the abil-
ity of the software to meet the system requirements. In Section 5 we discuss some
of the practical and theoretical implications of our results as well as limitations
and future research directions.

2 Mathematical Preliminaries

The mathematics presented in this section will be applied to the four-variable
model in the subsequent sections of the paper. We take a semantic view and
consider that relations are models of specifications as well as of actual imple-
mentations.

2.1 Relations and Covers

A relation R from a set A to a set B is a subset of the cartesian product A×B.
In other words, R is a subset of the set of all ordered pairs (a, b), where a ∈ A
and b ∈ B. Some operations involving a relation R ⊆ A×B are:

– domain of R: dom (R) = {a ∈ A | ∃b ∈ B. (a, b) ∈ R};
– range of R: ran (R) = {b ∈ B | ∃a ∈ A. (a, b) ∈ R};
– converse of R: R� = {(b, a) ∈ B ×A | (a, b) ∈ R};
– image set of a ∈ A under R: R(a) = {b ∈ B | (a, b) ∈ R}.

The image set of an element in the domain of a relation denotes the inaccuracy
or tolerance acceptable for that input.

A relation R ⊆ A×B is univalent if it maps every element in its domain to ex-
actly one element in its range. Univalent relations also go by the name functional
relations or partial functions. Relation R is total if and only if dom (R) = A. The
relations that are both univalent and total are called mappings or total functions.

A cover of a set A is a family C = {Cα ⊆ A | α ∈ I} where α is an index in
some index set I, A =

⋃
α∈I Cα, and the subsets Cα of A, called the cells of C,

are not necessarily pairwise disjoint. A particular case of a cover is the Wonham
cover induced by a relation on its domain [16]. The Wonham cover induced by
R ⊆ A×B on dom (R) is:

cov (R) =
{
A′ ⊆ A

∣∣ ∃b ∈ ran (R). A′ = R
�
(b)

}
. (1)

The cells of cov (R), indexed by ran (R), are the image sets of the elements in
the range of R under the converse of R. In the sequel, when we use the word
cover we will mean a Wonham cover.

376 L.M. Patcas, M. Lawford, and T. Maibaum

2.2 Demonic Factorization of Relations

For the goals set in Section 1, we are interested in existence conditions for the
dotted arrows in the commutative diagram depicted in Fig. 2. This diagram is
isomorphic to the four-variable model diagram.

A D

B C

R

P

Z�P�R�Q

Q

Y �R�Q

X�P�R

Fig. 2. Demonic factorization

The composition of two relations P ⊆ A×B and Q ⊆ B × C is the relation

P .,Q = {(a, c) ∈ A× C | ∃b ∈ B. (a, b) ∈ P ∧ (b, c) ∈ Q} . (2)

The problem with this notion of composition is that specifications P and Q are
allowed where some points in the range of P are not in the domain of Q. In prac-
tice, this means that an implementation of P .,Q will not always produce a result
when expected to. Consider, for instance, the relations P = {(a1, b1), (a1, b2)}
and Q = {(b1, c1)}, depicted in Fig. 3. In this example, P ., Q allows the dead
end (a1, b2) because a1 can still reach c1 via b1. Semantics that allow such be-
haviours are called angelic. In angelic semantics, specifications that allow “bad”
behaviours for some inputs are permitted as long as they also allow “good”
behaviours for those inputs. In contrast, a demonic semantics rejects any speci-
fication that allows “bad” behaviours. Considering that many embedded systems
are used in safety-critical applications, it is always wise to plan for the worst,
hence we find a demonic semantics more adequate.

a1 c1

b1

b2

P .,Q

P
Q

(a) Angelic composition

a1 c1

b1

b2

P �Q = ∅

P
Q

(b) Demonic composition

Fig. 3. Composition of relations

The demonic composition of P with Q is the relation

P �Q = {(a, c) ∈ A× C | (a, c) ∈ P .,Q ∧ P (a) ⊆ dom (Q)} . (3)

As can be seen in Fig. 3, P �Q is empty for those inputs for which there is
a chance of not producing expected results, thus it is our choice of sequential

 A Separation Principle for Embedded System Interfacing 377

composition in the four-variable model. Demonic and angelic compositions are
the same when P is univalent or Q is total.

The following subrelation of a relation P ⊆ A×B is obtained by restricting
the domain of P to the domain of another relation R ⊆ A× C:

P
∣∣
dom(R)

= {(a, b) ∈ P | a ∈ dom (R)} . (4)

This construction is helpful when working with partial relations. The rationale
for allowing partial relations is that, in practice, in the early stages of system
development it is more likely that incomplete specifications are produced rather
than total specifications. More detail is added as the system becomes better
understood and, eventually, the specifications will cover all the possible cases
that can arise. Before getting to that point, however, many useful analyses can
be performed, such as the implementability checks described in Sections 3 and 4.

A relation P ⊆ A × B is a demonic refinement of a relation R ⊆ A × B,
written P � R, if and only if dom (R) ⊆ dom (P) and P

∣∣
dom(R)

⊆ R. Demonic

refinement is also known as total correctness in [2,6]. The intuition for demonic
refinement is as follows:

– for every input in the domain of R, P must produce only outputs allowed by
R (i.e., an implementation is at least as deterministic as its specification);

– for the inputs outside the domain of R, P is allowed to produce any output
or no output at all.

Demonic refinement is a partial order on relations. As an example, consider the
relations in Fig. 4: R = {(a1, b1), (a1, b2), (a2, b2)}, P = {(a1, b1), (a2, b2),
(a3, b2), (a3, b3)}, and Q = {(a1, b1), (a2, b1), (a3, b2), (a3, b3)}. Here, P refines R,
but Q does not refine R because (a2, b1) /∈ R.

a1

a2

a3

b1

b2

b3

P refines R

R

P

Q

a1

a2

a3

b1

b2

b3

Q does not refine R

Fig. 4. Examples of demonic refinement

Demonic composition and demonic refinement induce two residuation oper-
ations, the demonic left and right residuals. If composition is seen as a multi-
plicative operation, then the residuation operations play the role of division and
their results are quotients. The demonic left and right residuals are useful when
a relation is refined by a demonic composition of two relations and one of these
relations is not known, as in triangles �A,B,D and �A,C,D in Fig. 2. The
demonic left residual of R by Q, denoted R�Q, is defined as the largest solution,
with respect to �, of the inequation Y �Q � R, where Y is the unknown:

Y �Q � R ⇔ Y � R �Q . (5)

378 L.M. Patcas, M. Lawford, and T. Maibaum

A solution Y, called a demonic left factor of R through Q, does not always
exist. In [12], we proved the following necessary and sufficient condition for the
existence of a demonic left factor:

(∃Y. Y �Q � R) ⇔ ∀a ∈ dom (R). ∃c ∈ dom (Q). Q(c) ⊆ R(a) . (6)

According to (5), the demonic left residual R�Q is defined only when a demonic
left factor exists. If R �Q is defined, then its value is:

R �Q � {(a, c) ∈ A× C | c ∈ dom (Q) ∧Q(c) ⊆ R(a)} . (7)

The symbol �, called “venturi tube” [6], has the following meaning: for any two
expressions φ and ψ, if φ � ψ, then ψ is defined and equal to φ if and only if φ
is defined.

Similarly to the demonic left residual, the demonic right residual of R by
P, denoted P � R, is defined as the largest solution, with respect to �, of the
inequation P �X � R, where X is the unknown:

P �X � R ⇔ X � P �R . (8)

A solution X, called a demonic right factor of R through P, does not always
exist. Therefore, by (8), the demonic right residual P �R is not always defined.
We proved in [12] that the following condition is necessary and sufficient for the
existence of a demonic right factor and for the definedness of the demonic right
residual:

(∃X. P �X � R) ⇔
dom (R) ⊆ dom (P) ∧ ∀b ∈ ran

(
P
∣∣
dom(R)

)
. ∃d ∈ D.

(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(d) .

(9)

If P �R is defined, then its value is:

P �R �

{
(b, d) ∈ B ×D

∣∣∣∣ b ∈ ran
(
P
∣∣
dom(R)

)
∧
(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(d)

}
.

(10)
The demonic left and right residuals are also useful when we wish to decom-

pose a relation into a demonic composition of three relations and the relation
in the middle is not known. This situation is depicted in Fig. 2, where we are
interested in solving the inequality P �Z�Q � R for Z. A solution Z, which we
call a demonic mid factor of R through P and Q, does not always exist. In [12]
we showed that:

(∃Z. P �Z�Q � R) ⇔
dom (R) ⊆ dom (P) ∧ ∀b ∈ ran

(
P
∣∣
dom(R)

)
. ∃c ∈ dom (Q).

Q(c) ⊆
{
d ∈ D

∣∣∣∣
(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(d)

}
. (11)

 A Separation Principle for Embedded System Interfacing 379

We also proved that any demonic mid factor is a demonic refinement of the
residual P � R � Q, which we call the demonic mid residual of R by P and Q.
In other words, this residual is the largest solution, with respect to �, of the
inequality P �Z�Q � R:

P �Z�Q � R ⇔ Z � P �R �Q . (12)

If a demonic mid factor exists, then the value of P � R � Q is well defined and
is given by:

P �R �Q �

{
(b, c) ∈ B × C

∣∣∣∣ b ∈ ran
(
P
∣∣
dom(R)

)
∧ c ∈ dom (Q)∧

Q(c) ⊆
{
d ∈ D

∣∣∣∣
(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(d)

}}
. (13)

More details on the demonic calculus of relations can be found in [4,1,2,6,12].

3 Implementability

In this section we ask the question of implementability of system requirements:
is an acceptable implementation of the system requirements possible given a
particular choice of hardware interfacing between the system and the physical
environment? We present necessary and sufficient implementability conditions
in both the functional and relational cases of the four-variable model. For the
reasons mentioned in the introduction, we would like to be able to design the
input and output interfaces independently of each other, while ensuring that an
acceptable implementation is still possible. As it turns out, this separation is
always possible in the functional setting, but not always when relational speci-
fications are used.

To not overcomplicate the presentation, in this paper we do not use the
relation NAT explicitly; instead, we assume that the system requirements specify
only physically meaningful outputs for the inputs that are possible from the
environment. More details about how NAT affects implementability can be found
in [12].

We now return to the question of implementability of system requirements
and give the following definition for implementability.

Definition 1. System requirements REQ are implementable if an input inter-
face IN, an output interface OUT and software SOF exist such that IN �SOF �

OUT � REQ.

In Definition 1, a system implementation is given by the demonic composition
of IN, SOF, and OUT. As explained in Section 2.2, the demonic composition
ensures that there are no dead ends when integrating IN, SOF, and OUT. As
a satisfaction criterion, we use the demonic refinement of relations, which en-
sures that for every input in the domain of the requirements an implementation
will produce only results allowed by the requirements. The demonic refinement

380 L.M. Patcas, M. Lawford, and T. Maibaum

allows arbitrary system behaviour for the inputs outside the domain of the re-
quirements, but this should present no danger as it is assumed that for a final
product hazard analyzes have been conducted and all the inputs that could
lead to hazardous system behaviour have been added to the domain of REQ
as additional safety requirements. We call acceptable a system implementation
IN �SOF �OUT such that IN �SOF �OUT � REQ. Definition 1 implies that
the system requirements are implementable only if an acceptable system imple-
mentation exists. A software implementation is acceptable if and only if it is
part of an acceptable system implementation. Therefore, the implementability
of system requirements reduces to the existence of an acceptable software im-
plementation, which is relative to the choices made by the system designers for
the input and output hardware.

The question now is when does an acceptable software implementation exist?
The software must be able to observe specific changes in the monitored variables
via the input interface and react to these changes by modifying the values of the
controlled variables via the output interface, as specified in the requirements. We
introduce the notions of observability and controllability of system requirements
with respect to the input and, respectively, output hardware interfaces.

Definition 2. System requirements REQ are observable with respect to an input
interface IN if there exists a demonic right factor of REQ through IN.

For system requirements REQ to be observable, Definition 2 requires that there
exists a relationX ⊆ I×C such that IN �X � REQ. Observability is a necessary
condition for implementability since if IN �SOF �OUT � REQ we can take
X = SOF �OUT . Intuitively, observability says that in the worst case IN always
retains at least as much information about the monitored variables as REQ.

Definition 3. System requirements REQ are controllable with respect to an
output interface OUT if there exists a demonic left factor of REQ through OUT.

For system requirements REQ to be controllable, Definition 3 requires that there
exists a relation Y ⊆ M×O such that Y �OUT � REQ. Clearly controllability
is also necessary for implementability since if IN �SOF �OUT � REQ we can
always take Y = IN �SOF . The intuition for controllability is that in the worst
case OUT must be at least as precise as REQ.

In the remainder of the section, we will discuss how observability and con-
trollability affect implementability of system requirements in both the functional
and relational cases of the four-variable model.

3.1 Functional Case

Here we assume the extreme case where the specifications in the four-variable
model are all total functions.

Proposition 1. System requirements REQ are observable with respect to an
input interface IN if and only if ∀M ′ ∈ cov (IN). ∃M ′′ ∈ cov (REQ). M ′ ⊆ M ′′.

 A Separation Principle for Embedded System Interfacing 381

Proof. By (1) and specializing (9) to total functions. 	

Proposition 2. System requirements REQ are controllable with respect to an
output interface OUT if and only if ran (REQ) ⊆ ran (OUT).

Proof. By specializing (6) to total functions. 	

Proposition 3. System requirements REQ are implementable with respect to an
input interface IN and an output interface OUT if and only if REQ is observable
with respect to IN and controllable with respect to OUT.

Proof. By specializing (11) to total functions. 	

Because observability is defined only in terms of REQ and IN, and con-

trollability only in terms of REQ and OUT, a corollary of Prop. 3 is that for
an acceptable SOF to exist, IN and OUT are always separable. The practical
implication is that the input and output interfaces of a system modeled using
a functional four-variable model can always be designed independently and an
acceptable software implementation is guaranteed to exist.

3.2 Relational Case

We now consider the most general case where the specifications in the four-
variable model are partial relations.

Proposition 4. System requirements REQ are observable with respect to an
input interface IN if and only if the following conditions are both satisfied:

(i) dom (REQ) ⊆ dom (IN);

(ii) ∀M ′ ∈ cov
(
IN

∣∣
dom(REQ)

)
. ∃M ′′ ∈ cov (REQ). M ′ ⊆ M ′′.

Proof. Follows from (1) and (9). 	

Proposition 4(i) requires an input interface to “see” every input for which

the requirements specify system behaviour. Proposition 4(ii), also known as re-
finement of covers in mathematical topology, requires the accuracy of the input
interface to be the same or of finer granularity than what the requirements imply.

For example, in Fig. 5a, cov
(
IN

∣∣
dom(REQ)

)
= {{m1,m2,m3}} and cov (REQ) =

{{m1,m2}, {m3}}. The cell IN�(i1) = {m1,m2,m3} in cov
(
IN

∣∣
dom(REQ)

)
cor-

responds to i1 and represents the accuracy with which IN produces i1; in other
words, the software is not able to distinguish between m1, m2, or m3 when it
receives the input i1. The requirements in this example, on the other hand, re-
quire the system to make a distinction in how it treats m3 compared to m1

and m2, reflected by the two distinct cells REQ�(c2) = {m3} and, respectively,
REQ�(c1) = {m1,m2} in cov (REQ). The software will not be able to make this

distinction because the cell {m1,m2,m3} in cov
(
IN

∣∣
dom(REQ)

)
is not contained

382 L.M. Patcas, M. Lawford, and T. Maibaum

in any of the cells of cov (REQ). Consequently, the accuracy of IN is coarser
than required and REQ is not observable with respect to IN. In the example

depicted in Fig. 5b, cov
(
IN

∣∣
dom(REQ)

)
= {{m1,m2}, {m2}} and cov (REQ) =

{{m1}, {m1,m2}, {m2}} satisfy Prop. 4(ii). Because dom (REQ) = dom (IN),
Prop. 4(i) is also satisfied, hence REQ is observable with respect to IN, ensuring
that there is a way to relate the software inputs to values of controlled variables
via a demonic right factor of REQ through IN. Note that IN � REQ is the
largest, with respect to �, such factor (i.e., the least restrictive specification).

m1

m2

m3

i1

c1

c2

REQ

IN IN �REQ = ∅

(a) REQ is not observable

m1

m2

i1

i2

c1
c2

c3

REQ

IN
IN �REQ
well defined

(b) REQ is observable

Fig. 5. Observability

Proposition 5. System requirements REQ are controllable with respect to an
output interface OUT if and only if ∀C ′ ∈ cov

(
REQ�). ∃C ′′ ∈ cov

(
OUT�).

C ′′ ⊆ C ′.

Proof. Follows from (1) and (6). 	

The intuition for Prop. 5 is that for the system requirements to be controllable

the output hardware should allow for the same or finer control over the controlled
variables than what is implied by the requirements. The cells in the covers of
REQ� or OUT� are measures of the amount of control: the smaller the cell, the
more precise the control. For example, in Fig. 6a the cell REQ(m1) = {c1, c2}
in cov

(
REQ�) does not contain any of the cells of cov

(
OUT�). As such, OUT

does not have the right amount of control over the controlled variables and REQ
is not controllable with respect to OUT. Figure 6b depicts an example where
there is a way to relate the monitored values to software outputs via a demonic
left factor of REQ through OUT and, consequently, REQ is controllable. Note
that REQ � OUT is the largest, with respect to �, such factor (i.e., the least
restrictive specification).

In contrast to the functional case, in the relational case observability and
controllability are not sufficient for implementability. A counterexample to the
sufficiency of their conjunction is given in Fig. 7a, which combines the exam-
ples from Figs. 5b and 6b. In this example, REQ is observable and controllable
even though there is no acceptable software. By (12), any acceptable software
implementation is a demonic refinement of IN � REQ � OUT , which is not
well defined here. The reason for this is that i1 cannot be connected with either

 A Separation Principle for Embedded System Interfacing 383

m1

m2

o1
o2

o3

c1
c2

c3

REQ

OUT
REQ �OUT

not well defined

(a) REQ is not controllable

m1

m2

o1
o2

o3

c1
c2

c3

REQ

OUT
REQ �OUT
well defined

(b) REQ is controllable

Fig. 6. Controllability

m1

m2

i1

i2

o1
o2

o3

c1
c2

c3

REQ

IN OUT

IN �REQ �OUT
not well defined

(a) REQ is not implementable

m1

m2

i1

i2

o1
o2

o3

c1
c2

c3

REQ

IN OUT

SOF � IN �REQ �OUT

(b) REQ is implementable

Fig. 7. Implementability

o1 or o2 without breaking demonic refinement. For example, if we connect i1
with o1, then m2 will be connected with c1 via IN �SOF �OUT , something not
allowed by REQ. If we extend OUT with the pair (o2, c2) as in Fig. 7b, then
IN � REQ � OUT becomes well defined, hence an acceptable SOF is possible.
The demonic mid residual IN �REQ�OUT is the least restrictive specification
for acceptable software.

Proposition 6. System requirements REQ are implementable with respect to
an input interface IN and an output interface OUT if and only if the following
two conditions are both satisfied:

(i) dom (REQ) ⊆ dom (IN);

(ii) ∀M ′ ∈ cov
(
IN

∣∣
dom(REQ)

)
. ∃C ′ ∈ cov

(
OUT�). C ′ ⊆ ⋂

m∈M ′ REQ(m).

Proof. Follows from (1) and (11). 	

The conditions in Prop. 6 imply both observability and controllability. How-

ever, the requirements are implementable if and only if a certain balance exists
between observability and controllability. In Fig. 7b, REQ is implementable be-

cause if we consider the cell IN�(i1) = {m1,m2} in cov
(
IN

∣∣
dom(REQ)

)
, then

there is the cell OUT�(o2) = {c2} = REQ(m1)∩REQ(m2) in cov
(
OUT�); simi-

larly, for IN�(i2) = {m2} in cov
(
IN

∣∣
dom(REQ)

)
, there is OUT�(o3) = {c2, c3} =

REQ(m2) in cov
(
OUT�), hence Prop. 6(ii) is satisfied.

As can be seen in Prop. 6(ii), IN and OUT are coupled. In practice, this
means that for the requirements to be implementable, the input and output
hardware cannot be, in general, designed independently of each other.

384 L.M. Patcas, M. Lawford, and T. Maibaum

4 Separability

In this section, we present two stronger implementability conditions for the re-
lational setting that allow the input and output hardware to be designed inde-
pendently of each other.

We obtain the first stronger implementability condition by strengthening
controllability as follows.

Proposition 7. System requirements REQ are implementable with respect to an
input interface IN and an output interface OUT if the following two conditions
are both satisfied:

(i) REQ is observable with respect to IN;

(ii) ∀M ′ ∈ cov (REQ). ∃C ′ ∈ cov
(
OUT�). C ′ ⊆ ⋂

m∈M ′ REQ(m).

Proof. To prove the implementability of REQ we have to show that Prop. 6 is
satisfied. Proposition 6(i) follows easily from Prop. 7(i). Also from Prop. 7(i),

we have that for any M ′ ∈ cov
(
IN

∣∣
dom(REQ)

)
there is a M ′′ ∈ cov (REQ)

such that M ′ ⊆ M ′′. If we substitute M ′′ for M ′ in Prop. 7(ii), we get that
there exists a C ′ ∈ cov

(
OUT�) such that C ′ ⊆ ⋂

m∈M ′′ REQ(m). Because
M ′ ⊆ M ′′, we also have that C ′ ⊆ ⋂

m∈M ′ REQ(m). In conclusion, we have

proved that for any M ′ ∈ cov
(
IN

∣∣
dom(REQ)

)
there is a C ′ ∈ cov

(
OUT�) such

that C ′ ⊆ ⋂
m∈M ′ REQ(m), which is exactly Prop. 6(ii). 	

We call a relation REQ that satisfies Prop. 7(ii) strongly controllable with
respect to OUT. An example of strongly controllable requirements is in Fig. 7b.
Strong controllability is not necessary for implementability, as shown in Fig. 8a.
Here, the requirements are implementable and, consequently, controllable with
respect to OUT, although they are not strongly controllable. As such, strong
controllability reduces the number of output hardware choices when compared
with controllability. On the other hand, strong controllability ensures that IN
and OUT can be chosen independently of each other as long as they satisfy their
respective constraints in Prop. 7.

m1

m2

i1

i2

o1
o2

o3

c1
c2

c3

REQ

IN OUT

SOF

(a) REQ is implementable, but not
strongly controllable

m1

m2

i1

i2

o1
o2

o3

c1
c2

c3

REQ

IN OUT

SOF

(b) REQ is implementable, but not
strongly observable

Fig. 8. Strong observability and controllability not necessary for implementability

 A Separation Principle for Embedded System Interfacing 385

In the second stronger implementability condition, we strengthen observabil-
ity as follows.

Proposition 8. System requirements REQ are implementable with respect to
an input interface IN and an output interface OUT if the following conditions
are all satisfied:

(i) dom (REQ) ⊆ dom (IN);

(ii) ∀M ′ ∈ cov
(
IN

∣∣
dom(REQ)

)
. ∃C ′ ∈ cov

(
REQ�). M ′ ⊆ ⋂

c∈C′ REQ�(c);

(iii) REQ is controllable with respect to OUT.

Proof. Similar to the proof for Prop. 7. 	

We call REQ strongly observable with respect to IN if REQ and IN sat-

isfy Props. 8(i) and 8(ii). An example of strongly observable requirements is
in Fig. 8a. Strong observability is not necessary for implementability (Fig. 8b).
In this example, the requirements are implementable without Prop. 8(ii) being
satisfied. As such, strong observability restricts the acceptable choices of input
hardware compared with observability, but at the same time it allows the sepa-
ration of IN and OUT as long as they satisfy the constraints of Prop. 8.

5 Discussion

In this paper, we presented one necessary and sufficient (Prop. 6) and two
sufficient (Props. 7 and 8) implementability conditions that allow the system
designers to choose a pair of input and output hardware interfaces such that
an acceptable software implementation is guaranteed to exist. Implementability
does not imply that implementing the SOF relation is practical. Nevertheless,
it gives software engineers the confidence that their efforts are not destined to
fail from the beginning. If implementability is not satisfied, then no acceptable
implementation will be possible.

From a system development perspective, an important question is which
implementability condition to use and when. If separating IN and OUT at design
time is important, then one of the stronger implementability conditions should
be used as follows:

– if the input hardware is more difficult to design than the output hardware,
then it is desirable to have as many options as possible for the input hard-
ware. In such cases, Prop. 7 is more suitable because the implied strong
controllability limits only the choices of output hardware without overly-
restricting the input hardware. If for observability the necessary and suffi-
cient condition of Prop. 4 is used, then this will allow the widest possible
range of acceptable input hardware;

– similarly, Prop. 8 together with Prop. 5 should be used if having more de-
sign options for the output hardware is more important than for the input
hardware.

386 L.M. Patcas, M. Lawford, and T. Maibaum

If the system designers need as many acceptable options as possible for both the
input and output interfaces, and separability of IN and OUT is not as important,
then the necessary and sufficient implementability conditions in Prop. 6 should
be used.

The stronger implementability conditions in Props. 7 and 8 can be viewed
as a “separation principle” for embedded systems interfacing similar to the well
known separation principle for linear control systems design [7]. The analogy
is not perfect, however. An observer in the control engineering sense would be
constructed in the four-variable model as a simulation of a linear system inside
SOF. The relation IN represents the input hardware that obtains the samples
that would be used as input to the observer simulation. Similarly, a state feed-
back controller in the control engineering sense would be computed as a matrix
multiplication inside SOF, the results of which would then be sent to the physical
plant via the output hardware represented by OUT. Also, in control engineer-
ing observability and controllability of a plant are sufficient for separability of
observers and controllers, while in the relational four-variable model either ob-
servability or controllability of REQ needs to be strengthened in order for the
designs of the input and output interfaces to be separable.

The results presented in this paper are very general. The relations REQ, IN,
OUT, and SOF model input-output behaviours without internal states. Also,
we did not assume any structure on the sets M, C, I, and O. Because of this
generality, our implementability conditions do not explicitly consider constraints
that a practical implementation has to deal with, such as timing. In our current
formalization, the sets M, C, I, and O contain all the possible values for every,
respectively, monitored, controlled, input, and output variable. Time can be
added explicitly to the four-variable model by treating the elements of M, C,
I, and O as functions of time [11,8]. A useful research direction would be to
specialize our implementability conditions to their timed versions.

The results also have applicability beyond embedded systems. They can be
applied to essentially any system that can be modeled using a commutative dia-
gram similar to the one of the four-variable model (Figs. 1 and 2). Such commu-
tative diagrams also appear in stepwise refinement techniques where mappings
between behaviours at different levels of abstraction are rather frequent.

To be useful in practice, our implementability checks need to be supported
by tools. For a completely automated check, SMT solving may be a fruitful
direction, although many SMT solvers do not cope well with formulas that have
existential quantifiers within the scope of universal quantifiers. Another approach
would be to develop heuristic algorithms for the problem at hand. When SMT
solving and heuristics do not work, or in the case of very large or infinite relations,
verifying implementability will still be possible in an higher-order proof assistant
such as Coq, Isabelle, PVS etc., paying the price of having to do tedious and,
more than often, hard proofs.

We have formalized and checked the mathematics presented in the paper
with the proof assistant Coq. The files are available at www.cas.mcmaster.ca/

~patcaslm/papers/2014-iFM/coq.

 A Separation Principle for Embedded System Interfacing 387

388 L.M. Patcas, M. Lawford, and T. Maibaum

References

1. Brink, C., Kahl, W., Schmidt, G. (eds.): Relational Methods in Computer Science.
Advances in Computing. Springer (1997)

2. Desharnais, J., Mili, A., Nguyen, T.: Refinement and Demonic Semantics. In: Brink, et al.
(eds.) [1], ch. 11, pp. 166–183 (1997)

3. Faulk, S., Finneran, J., Kirby, J., Shash, S., Sutton, J.: Experience applying the CoRE
method to the Lockhead C-130J software requirements. In: Ninth Annual Conference on
Computer Assurance, Gaithersburg, Maryland (June 1994)

4. Frappier, M.: A Relational Basis for Program Construction by Parts. Ph.D. thesis,
Computer Science Department, University of Ottawa (1995)

5. Joseph, D.P., Tou, T.J.: On linear control theory. Transactions of the American Institute of
Electrical Engineers. Part II: Applications and Industry 80(4), 193–196 (1961)

6. Kahl, W.: Refinement and development of programs from relational specifications.
Electronic Notes in Theoretical Computer Science (ENTCS) 44(3), 51–93 (2003)

7. Kalman, R.E.: Contributions to the theory of optimal control. Bol. Soc. Mat.
Mexicana 5(2), 102–119 (1960)

8. Lawford, M., McDougall, J., Froebel, P., Moum, G.: Practical application of functional
and relational methods for the specification and verification of safety critical software. In:
Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 73–88. Springer, Heidelberg (2000)

9. Lempia, D.L., Miller, S.P.: Requirements engineering management handbook. Tech. Rep.
DOT/FAA/AR-08/32, U.S. Department of Transportation, Federal Aviation
Administration (June 2009)

10. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

11. Parnas, D.L., Madey, J.: Functional documents for computer systems. Science of
Computer Programming 25(1), 41–61 (1995)

12. Patcas, L.M., Lawford, M., Maibaum, T.: From system requirements to software
requirements in the four-variable model. In: Schneider, S., Treharne, H., Margaria, T.,
Padberg, J., Taentzer, G. (eds.) Proceedings of the Automated Verification of Critical
Systems (AVoCS 2013). Electronic Communications of the EASST, vol. 66 (2014)

13. Thompson, J., Heimdahl, M., Miller, S.P.: Specification-based prototyping for embedded
systems. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC/FSE 1999. LNCS, vol. 1687, pp.
163–179. Springer, Heidelberg (1999)

14. Van Schouwen, A.: The A-7 requirements model: Re-examination for real-time systems
and an application to monitoring systems. Tech. Rep. 90-276, Queens University, Ontario,
Canada (1990)

15. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of formal
methods in an industrial project. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003)

16. Wonham, W.M.: Lecture notes on supervisory control of discrete-event systems. Systems
Control Group, Department of Electrical & Computer Engineering, University of Toronto
(July 2013), http://www.control.toronto.edu/DES/

	A Separation Principle for Embedded System Interfacing
	1 Introduction
	2 Mathematical Preliminaries
	2.1 Relations and Covers
	2.2 Demonic Factorization of Relations

	3 Implementability
	3.1 Functional Case
	3.2 Relational Case

	4 Separability
	5 Discussion
	References

