
Software Certification Experience in the Canadian Nuclear
Industry: Lessons for the Future ∗

Alan Wassyng
McMaster Centre for Software

Certification
McMaster University

1280 Main St W, Hamilton,
ON, Canada L8S 4K1

wassyng@mcmaster.ca

Mark Lawford
McMaster Centre for Software

Certification
McMaster University

1280 Main St W, Hamilton,
ON, Canada L8S 4K1

lawford@mcmaster.ca

Tom Maibaum
McMaster Centre for Software

Certification
McMaster University

1280 Main St W, Hamilton,
ON, Canada L8S 4K1
tom@maibaum.org

ABSTRACT
The computer controlled shutdown systems for the Nuclear
Power Generating Station at Darlington, Canada, have been
subject to licensing scrutinization on a number of occasions.
After the first licence was approved in 1990, the licensee,
Ontario Hydro, was given a number of years by the regula-
tor to redesign the shutdown systems so that they would be
more maintainable. This paper briefly describes the original
certification process, lessons learned, and the subsequent de-
velopment and certification of the shutdown systems. The
development, internal certification processes and the regu-
lator’s certification process are briefly described. Although
twenty years has elapsed since this work started, and there
are new analysis techniques and tools that could be applied
today, the original process itself has withstood the test of
time extraordinarily well. This paper describes principles
that explain why it was so successful, and how we can de-
velop more modern approaches from this experience.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—standards

General Terms
Documentation, Reliability, Standardization, Verification

Keywords
nuclear, software certification, safety-critical software

1. INTRODUCTION
The computer controlled shutdown systems for the Nu-

clear Power Generating Station at Darlington, Canada, were

∗Funded by the Ministry of Research and Innovation
through the Ontario Research Fund - Research Excellence
(Round 4)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10 ...$10.00.

the first safety systems in a nuclear power plant in Canada
that were implemented in software. After the first licence
was granted in 1990, the licensee, Ontario Hydro, was given
a number of years by the regulator to redesign the shutdown
systems so that they would be more maintainable during
the inevitable changes required in the future. This paper
briefly describes the original certification process, lessons
learned, the subsequent development and certification of the
shutdown systems, and some suggestions for improving the
processes and tools in light of more recent developments in
technology and in regulatory frameworks. We believe that
the safety-critical methodology developed over the years,
and the certification process adopted by the regulator were
largely very successful. This paper describes principles that
contributed to the success, and how we can develop more
modern approaches from this experience.

2. ANCIENT HISTORY
The Darlington Nuclear Generating Station (DNGS) in

Ontario, Canada was ready to go online in the late 1980s.
The two independent and diverse shutdowns systems, Shut-
down System One (SDS1) and Shutdown System Two (SDS2)
were the first nuclear safety systems in Canada that were
software based. This posed a problem for the regulators in
that they had no experience in evaluating the dependability
and safety of a computer-controlled safety system. The story
of the verification of the original Darlington shutdown sys-
tems is the subject of section 2.2. This original verification
project is important for a number of reasons:

• We learned fundamental lessons about certification of
safety-critical software from this experience, and these
lessons formed the basis of a whole new methodol-
ogy for the development of certifiable safety-critical
software-based systems.

• Many researchers think of this original (very costly)
experience when drawing conclusions about the On-
tario Hydro (OH, but now Ontario Power Generation)
approach to safety-critical software development and
verification – and that is quite misleading. As we
will show (section 3.3), the next generation safety-
critical methodology used at Ontario Power Gener-
ation (OPG) is much more effective in building and
certifying dependable, safe and maintainable software
systems.

219

• The regulator and the licensee had to learn together
how to develop and certify safety-critical software so
that the licensee did not face an insurmountable, out-
rageously expensive task, and the regulator was confi-
dent that the software was indeed safe, dependable and
maintainable, again without facing an insurmountable,
outrageously expensive task,.

2.1 Development of the Shutdown Systems for
Darlington NGS – 1980s

At the time that the shutdown systems for Darlington
were originally created, OH and Atomic Energy Canada
Limited (AECL – the manufacturers of the CANDU re-
actors) already had considerable experience in developing
software systems for use in the nuclear industry. They had
processes in place and a number of very experienced people.
However, as was typical in those days, the primary people
involved in this endeavour had a wealth of practical expe-
rience, but were not fully aware of some of the principles
emerging from academic work in formal methods. It was
also a time in which formal methods had a severe image
problem, having promised much but delivering much less
than promised.
The software was developed (and documented), but the

requirements documents were not detailed enough. In spite
of the deficiency with respect to requirements, a surprisingly
rigorous and comprehensive testing regime had already been
developed.

2.2 Verifying the Shutdown Systems for Dar-
lington NGS – 1989 / 1990

Presented with the fully developed and tested shutdown
systems, the Atomic Energy Control Board (AECB), which
was the Canadian regulatory body at that time, was faced
with the task of licensing DNGS, and thus had to evaluate
the safety and dependability of the shutdown systems. This
was not an easy task, and they turned to Dave Parnas for
advice. Parnas’ scheme for each of SDS1 and SDS2 was to:

• Have AECL and OH develop a document that was a
mathematically precise description of behaviour of the
shutdown system. Each document was based on exist-
ing requirements and design documents, supplemented
by expert knowledge of CANDU shutdown systems.
Also, each document was at a level somewhere between
software requirements and software design, and the be-
haviour was documented using tabular expressions.

• A team of analysts was given the task of develop-
ing tabular expressions, called program function tables
(PFTs) for each subprogram in the code. The PFTs
thus represented behaviour of each subprogram in a
form that related inputs to the program to the outputs
of the program. This presents a very different view
of the code, since intermediate variables, so prevalent
in code, are all replaced by equivalent expressions in-
volving only inputs and outputs to the program (and,
perhaps, their ‘previous’ values).

• Another team of analysts (completely independent from
the developers of the PFTs) then performed a compar-
ison of the tabular expressions in the reference docu-
ment with the PFTs developed from the code. Math-
ematical differences between these tabular expressions

then had to be further analyzed to ascertain whether or
not the differences resulted in differences in behaviour.

• After the analysis was completed, a walkthrough was
conducted at which representatives from AECB and
OH/AECL met so that the results could be presented
to the AECB. The walkthrough was moderated by an
independent consultant to the AECB.

Two (slightly different) views of this original verification
were published: one by people associated with the regulator
[16]; and the other by members of the team that performed
the analyses [1].

2.3 The Outcome
The eventual outcome of this verification activity proved

to be extremely interesting. After completing this very de-
manding effort – demanding for both the regulator and the
licensee, there were a number of important outcomes.

• DNGS was provisionally and conditionally licensed for
a specified number of years. At the time, the regulator
was satisfied that the shutdown systems would operate
correctly and safely.

• The license to operate was an important outcome since
the plant was ready to go online, and the delay in
obtaining regulatory approval proved to be extremely
costly.

• OH was informed that they would have to redesign
the shutdown system software so that it was not only
safe, but that it would be maintainable. The initial
license allowed no changes to the shutdown systems
because the designs were judged to be not maintain-
able enough, i.e., the regulator felt that if changes were
made to SDS1 or SDS2, it would be difficult to evaluate
the safety of those changes without repeating the entire
verification process described in the previous section –
plus testing, of course.

• OH decided that, if they were to continue to use soft-
ware for safety-critical applications, they needed to
learn from this extremely costly lesson, and develop a
rigorous approach to building and verifying such sys-
tems. The safety culture at OH and now OPG is ex-
tremely strong, and the way in which they tackled this
problem is a lesson for all companies/organizations in-
volved in the development of safety-critical systems.

• Verification after-the-fact, i.e., post-development, is
much more difficult than it needs to be.

• The verification step, from code back to (almost) re-
quirements level is large and complex, and there are
numerous good reasons why it would be better to ver-
ify a series of interim results.

3. MORE MODERN HISTORY
This section describes the development of OPG’s current

approach to the development of safety-critical software. De-
tails of the technical aspects of this methodology have been
published in [17, 13, 19, 14]. Most aspects of this approach
are also used at AECL. This methodology was developed
very carefully so that it would have a number of specific
attributes:

220

• Software developed using this methodology will be ‘cor-
rect’ with respect to its requirements; maintainable,
in that foreseen categories of changes can be made so
that the changes are predictably isolated; and that the
mathematically precise requirements can be read and
understood, but not necessarily developed by nuclear
engineers.

• The software will be dependable even in the event of
hardware failures, in which case it will be ‘very likely’
to result in safe behaviour even if it cannot evaluate
what would constitute correct behaviour at that mo-
ment.

• The quality and correctness of the software can be eval-
uated relatively easily by a regulator.

3.1 Shutdown System Studies
Knowing that redesigned versions of SDS1 and SDS2

would be required within a short number of years, OH em-
barked on a series of research projects dubbed the shut-
down system studies. These studies were components of
the “CANDU Shutdown System Study – Computerized Trip
Logic”, which examined a variety of topics that arose dur-
ing the DNGS shutdown systems’ developments, verifica-
tions and walkthroughs. Typical topics were programming
languages for safety-critical systems, hardware replacements
(the hardware at that stage was already old), self-checks and
fault tolerance, system requirement specification and verifi-
cation, enforced design diversity, guided inspections, soft-
ware organization, and others.
These studies laid the initial basis for the eventual

OH/AECL methodology for building safety-critical software
applications as described in the remainder of section 3.

3.2 The CANDU High-Level Standard
The CANDU Standard for Safety-Critical Software [12]

describes the software development and verification princi-
ples and attributes required. The standard is supplemented
by a collection of lower-level standards that provide more
detail for many of the procedures required.
The standard made use of existing international standards

of the day to ensure that it was in line with process stan-
dards used throughout the nuclear industry, but was some-
what different from such standards by placing slightly more
emphasis on the delivered product rather than simply man-
dating attributes of the process.

3.3 The Redesign Project
One of the primary goals of the redesign project was to

use information hiding to achieve a design that would be
extremely robust with regard to (predicted) future changes,
thus satisfying the regulator’s requirement that the system
had to be more maintainable than was the original version.
At the same time, OH and AECL used this opportunity
to research and document a comprehensive and integrated
methodology (see [19]) for the development of safety-critical
software. The project life-cycle was based on a spiral model
implementation of the major steps shown in figure 1. The
spiral model still imposed hard pre-requisites for starting an
activity. The figure also shows the tools that were used in
different phases of development and verification.

Requirements
 Documents

 Software
 Design
Document

 Code

Requirments

 Review

 Report

Design Review and

Verification Reports

 Code Review and

Verification Reports

Unit Test

 Report

Software Integration

 Test Report

Validation Test and

 Reliability Qual.

 Reports

Legend:
 Documents produced in
 the forward going development

 Documents produced for
 verifications, reviews and
 testing

 Tools connected to documents/activities

 Activities and data flow

Table Tools

Table Tools

Table Tools

Table Tools

Table Tools

Theorem
 prover

 Id. Extraction
 Tool

Code editor
& Compiler

 Logic
analyzer

Requirements
 Tool

Design Tool

Design Veri-
fication Tool

Design Tool

 Code Veri-
fication Tool

Simulation
 Tool

 Change
Request Tool

 Config.
Mgmt. Tool

 Test
Oracles

Unit Test
 Oracle

Figure 1: Life-cycle documents and tools. [18]

3.3.1 Lower-Level Standards
Lower-level standards (called procedures at OPG) were re-

searched and developed for all the activities in the life-cycle.
Some of the procedures applied to both SDS1 and SDS2,
but in many cases, there were different versions for SDS1
and SDS2. This occurred mainly because of the diversity en-
forced over the two systems. For SDS1, for example, there
are procedures for Hazards Analyses, Trip Computer De-
sign Requirements, Trip Computer Design Description, Re-
quirements Review, Software Design Description, Software
Design Review, Software Design Verification, Coding, Code
Review, Code Verification, a variety of testing procedures,
and a procedure for maintenance and revision of all docu-
ments. All of these are specified in a Software Development
Plan. Most of these “Procedures” typically have two major
sections. The first is the ‘process’. It includes how activ-
ities should be performed – and why they should be per-
formed – and why they should be performed in that man-
ner. The why is different from typical standards, and was
the subject of significant criticism at the time. There was
a definite preference amongst many software engineers that
standards should restrict themselves to a simple statement
of what should be done. Current thinking seems to vindi-
cate our original approach. Rationale is as important in the
documentation of standards as it is in the documentation
of software artifacts. The second major section is one on
‘documentation’. The documentation requirements serve to
clarify the expected outcomes from the process, and also
serve as a template. This helps both developers and certi-
fiers. The actual process and lessons learned were described
in [17]. Note that the regulators were kept in the loop during
the production of these lower-level standards – and this in-
cluded Dave Parnas, who acted as a consultant throughout
those years.

3.3.2 Development
The major steps in the software development (including

verification activities) were briefly described in [17, 18]. The
following points are worth highlighting:

221

• The requirements are (mainly) documented in a math-
ematical format, primarily through the use of tabular
expressions. The mathematical basis enables a preci-
sion not (easily) possible using natural language. The
function tables are relatively easy for nuclear engineers
to read and understand so that they can evaluate the
specified behaviour.

• The software design is also documented (mainly)
through the use of function tables. Since both the re-
quirements and design are described mathematically
it is possible to conduct a mathematical verification of
the design against requirements.

• Assuming that the programming language has a well-
defined semantics, and that the semantics is preserved
by the compiler, code is always a mathematical object,
so a mathematical verification can also be performed
against the design.

• We have thus satisfied one of our major objectives, de-
rived from lessons learned during the original verifica-
tion (section 2.3), namely that the verification should
be performed in at least two steps, each significantly
smaller than the original one was.

• The principle of information hiding was substantively
integrated into the development process. Lists of
likely changes, and, a natural adjunct, lists of unlikely
changes are developed during requirements and early
stages of the design, and are used to encapsulate each
likely change in a single software module. Constants
are defined in ranges rather than as distinct values.
The ranges are used during mathematical verifications
to ensure that changes to constants can be made with-
out incurring new verifications – as long as the changed
values remain within the predefined ranges.

• Hardware hiding modules are used to isolate the soft-
ware from changes in hardware, to make it possible to
use the requirements to describe directly the behaviour
of software modules, and also to facilitate the software
design verification.

• Supplementary functions are used to document design
decisions, module interfaces, and to facilitate software
design verification, by making it possible to perform
the verification piece-wise.

• Techniques to facilitate verification were introduced
into the forward-going process. For example, each
software subprogram is designed according to a get-
process-set protocol. This means that all inputs are
fetched at the start, followed by all required processing,
followed by output. If this is not done, mathematical
verification can be much more difficult.

• Fault tolerance principles were used to ensure that safe
behaviour was significantly more likely than unsafe be-
haviour in the face of hardware failure.

3.3.3 Certification
The regulators were aware of the process developed at

OH, and were, in principle, in agreement with the process.
Also, the process defined documents (products) that had to

be delivered, as well as the attributes that had to be ob-
servable within the documents. Since both the development
team and the regulator believed that ‘correctness’ was the
most important attribute, the requirements and the verifica-
tions steps assumed greater importance than other aspects
of the development output with respect to certification. The
regulators ‘audited’ the results by selecting a slice and then
conducting a walkthrough of the slice. We think this makes
excellent sense as a model for certification. It adds signif-
icantly to reasons why the regulator should be concerned
with people and process, not just product. Given that the
people and process pass inspection, the regulators do not
need to examine every aspect of the software product. It
should be sufficient to check the results for a representative
‘slice’. Since the developers cannot predict the slice ahead of
time, confirmation of attributes and ‘correctness’ of the slice
should be sufficient to gauge the dependability and correct-
ness of the software system. We believe this kind of approach
will work well even if we use assurance/safety cases [7, 3] to
present the ‘argument’ to the regulators.

4. CERTIFICATION LESSONS
While re-evaluating the DNGS experience that took place

during the period 1989 through 2002, a number of lessons
regarding software certification have become clear.

• Agreement on the certification process between regu-
lator and licensee is incredibly useful in making the
certification process predictable. In the case under dis-
cussion, this was possible because the number of li-
censees the nuclear regulator had to deal with at the
time was small, so that adequate time could be spent
in understanding the respective positions. If this is
not the case, which would be typical in many jurisdic-
tions, we could rephrase this lesson to say that detailed
understanding of a precise set of requirements of the
certification process will make that process predictable
– a huge plus for both the regulator and the licensee.

• The certification tripod of people, process, product is
important in building the confidence of the regulator,
but the regulator does not need to treat the three com-
ponents on an equal footing. For instance, the regula-
tor may be satisfied to get third party certification for
the people and process components, and then conduct
an audit of the product. There are many variations on
this theme, and different jurisdictions will have differ-
ent legal needs, capabilities and approaches.

• To emphasize the previous point: given confidence
about the people and process used in developing (and
verifying) a product, one excellent way for a regulator
to examine the software product is to conduct an audit
of a slice through that product. The chosen slice would
be specified only after completion of the development
process.

• The licensee must have confidence in the capabilities
of the regulator. There will inevitably be some con-
tentious issues in the certification of a safety-critical
product. The licensee and regulator must be able to
discuss the issues on an equal footing. The impor-
tant points here are that the regulator and the appli-
cant both have professional reputations, and that the

222

regime imposed by the regulator is detailed enough and
unambiguous enough so that there are no arguments
about interpretation.

• There is a truism in most engineering projects – qual-
ity cannot be achieved by testing/verification after the
fact. Quality has to be built into the development
process from the start, and this includes a number of
important items:

– Rationale should be explicitly stated in the re-
quirements, design, and implementation – and
also in the appropriate standards and certifica-
tion processes.

– The forward going development process should be
designed to aid verification techniques.

– The forward going development process should be
designed to aid the construction of the safety case
in conformance with the regulator’s requirements.

– Serious consideration and effort must be expended
in constructing a defense-in-depth approach, and
the various constituents of this approach should
be made explicit to all concerned. This holds both
for the issues related to safety of the system, as
well as the evidence used in the safety argument.
(For example, a proof of correctness using a theo-
rem prover that is not itself verified to be correct
needs to be supplemented with further evidence
to provide confidence in the result, e.g., another
proof using a different theorem prover.) This in-
cludes documenting it for the certification author-
ity.

• Mathematical precision can help build the confidence
of both the development team and the certification au-
thority. However, we need to guard against misplaced
confidence as well. We make mistakes in mathematics
just as we do in other disciplines. We need to recognize
that we are not (yet?) capable of describing everything
mathematically and have it readable, understandable,
and amenable to analysis. However, we should also
realize that if our requirements are not stated math-
ematically, we will be unable to perform mathemati-
cal verifications of design and implementation. These
mathematical verifications complement testing and are
an essential element in our defense-in-depth strategy to
build confidence in the safety/correctness of our prod-
uct.

• Arguments related to completeness are also essential
to building confidence in our system. Aspects of the
process that enable us to check for gaps in ‘coverage’
are extremely beneficial. We are used to this concept
with respect to testing, but it applies to many other
facets as well. One of the reasons we recommend the
use of tabular expressions is their capability to ensure
that we have covered the whole input domain of the
function.

5. OUR CURRENT VIEW
The OPG/AECL safety-critical software methodology has

stood the test of time. We believe it has helped teams pro-
duce highly-dependable software, and has provided a stable,

comprehensive and understandable platform to serve as a
basis for the regulator (now called the Canadian Nuclear
Safety Commission). We believe that this set of standards
defines an implicit assurance/safety case, and that we will be
able to effectively package in a safety case the products pro-
duced by following that standard effectively in a safety case
[20]. Some brief thoughts related to this idea are presented
in the remainder of section 5.

5.1 Advances in Theory and Tools
Most of the research related to the development of the

methodology was conducted in the early 1990s. A num-
ber of crucial advances have been made in the meantime.
One of the most important is the advent of model checking
[5]. Simulation of tabular expressions was in its infancy [9].
Both of these would enable us to analyze our requirements
in ways that were just not possible at that time. Proof-
checkers could be used to provide confirmation that proofs
produced by theorem provers (we used PVS [15]) could be
used without being backed-up by manual proofs. The prob-
lem with tool support in general is that most certification
authorities in safety-critical domains do not allow tools to
be used where they are the sole means of performing a task,
if the tool is not qualified to the same level of criticality as
the application it is used on.

Model checkers have improved their applicability to soft-
ware [11] and enhancements, such as symbolic model check-
ing [4], have allowed the technique to scale to industrial
sized problems. SAT and SMT solvers are now being in-
tegrated with theorem proving tools [8]. The SCR∗ toolset
now not only has advance simulation capabilities but also
integrated analysis techniques such as model checking [10].
Recently we have created a prototype tabular expression
toolbox for model based engineering with tabular expres-
sions from within Matlab/SIMULINK [6]. The toolbox al-
lows for verification of the correctness of the tables by in-
tegrating PVS and the CVC3 SMT solver [2] to provide re-
dundant checks of some properties.

5.2 Advances in the Development Process
The software development process has not changed much

in the time elapsed since 2002. The OPG methodology al-
ready incorporated many of the features that are now grow-
ing in importance, for example, rationale and traceability
were already key features. More modern programming lan-
guages than the ones used for DNGS (Pascal and FORTRAN
66) would make life easier, but the coding is really a small
part of the effort. Tool support for methodologies has im-
proved, but we did not mention such tools in section 5.1, for
the simple reason that commercial tools do not adequately
support the OPG process. The tools that were mentioned
in that section would have a definite impact on the devel-
opment process and their functionality should clearly be in-
troduced into the methodology. We strongly believe that
the development of effective tools will improve substantially
when the idea of integrating the development methods (see
[19]) becomes more commonplace. Truly integrated toolsets
can be developed from integrated methods.

5.3 Advances in the Certification Process
For the longest time there was very little new in the cer-

tification process suggested by nuclear regulators in North
America. Recently, there has been considerable activity in

223

the U.S. Nuclear Regulatory Commission (US NRC), as they
build their capability in certifying digital instrumentation
and control. A great deal of interest has been voiced in the
use of assurance/safety cases. We believe that safety cases
will actually represent a significant step forward in certifi-
cation of safety-critical systems in North America – they
are widely used in the U.K., and in Europe. However, we
caution that there is significant work to be done still before
safety cases are ready for day-to-day documentation of li-
censing submissions. Major problems that we feel need to
be addressed are that there is little to no theory that tells
us how to:

• Make trade-offs between different combinations of ev-
idence.

• Explicitly map claims to supporting evidence in a con-
sistent and thus predictable way.

• Evaluate the supporting evidence for claims through
explicit justification provided in the assurance case.

• Identify gaps in the completeness arguments presented.

• Present assurance cases within a domain in a consis-
tent way so that certifiers can build expertise in re-
viewing assurance cases.

6. CONCLUSIONS
Today’s regulatory regimes in domains like nuclear power

and medical devices are undergoing redevelopment in light
of pressures that are both technological, administrative and
social. Considering the last first, there is growing awareness,
because of many news stories reporting disasters, among
people around the world of both the prevalence of unsafe
software and systems in the world and the apparent defi-
ciencies of regulatory regimes. In order to stop the “bad
press”, regulators are having to examine what causes the
negative impact, both in technological terms and in terms
of the effectiveness of their regulatory regimes. Certainly,
technological developments have increased support for the
scenarios described above. Model checking and constraint
solving tools have made analysis of software systems signif-
icantly more effective. This aids the manufacturer signifi-
cantly in supplying evidence to support safety and efficacy
claims. The US FDA has recently requested that applicants
for licensing insulin infusion pumps should submit a safety
case as part of their application. This is to help manufactur-
ers to identify hazards more effectively and to aid the FDA
in assessing the application. In the nuclear domain, manu-
facturers are attempting to use FPGA technology to both
replace older analog subsystems, as well as in new builds
to implement some aspects of safety and control systems.
There are pressures in the nuclear domain to relax require-
ments for separation of safety and control functions, as well
as to relax requirements on physical and logical separation
of certain subsystems. These pressures act to increase the
complexity of safety subsystems, making the safety claim
harder to support and certainly making life much harder for
the regulators. It would appear that recent technological
developments both aid and hinder the discussion of safety
in software based systems.
The lessons learned from the OH/OPG experience are

salutary in light of these developments and pressures. Cer-

tainly, of primary importance is the insistence on separat-
ing safety and control in safety-critical systems. Integrating
safety and control just makes the resulting system much too
complex to provide guarantees of safety. If one day we have
complete mastery over software analysis for software of any
size, we might wish to abandon this design heuristic. With
the technology of today, and for the foreseeable future, the
public and regulators cannot and should not support such
moves. An interesting aspect of this experience noted above
was that the case made for safety had the substance, if not
the form, of what is today called the safety case. The re-
quirement in safety cases of having well defined (testable
in the scientific sense) claims, supported by evidence about
the product and connected by arguments about how claims
are supported by the adduced evidence, were present in the
regimes developed at OH/OPG with the active participation
of the regulator. The regulator’s requirement for the separa-
tion of safety and control was of immeasurable importance
in making the effective guarantees of safety possible.

7. ACKNOWLEDGMENTS
The work presented in this paper represents the com-

bined efforts of many current and former employees of On-
tario Power Generation and AECL, including: Glenn Archi-
noff, Dominic Chan, Rick Hohendorf, Roland Huget, Paul
Joannou, Peter Froebel, David Lau, Elder Matias, Jeff Mc-
Dougall, Greg Moum, Dave Vermey, Mike Viola, and Alanna
Wong. A special acknowledgement is due to David Parnas.
This work represents the successful application of many of
his ideas regarding software engineering, and his guidance
and mentorship during those years was truly invaluable.

8. REFERENCES
[1] G. H. Archinoff, R. J. Hohendorf, A. Wassyng,

B. Quigley, and M. R. Borsch. Verification of the
shutdown system software at the Darlington nuclear
generating station. In International Conference on
Control and Instrumentation in Nuclear Installations,
Glasgow, UK, May 1990. The Institution of Nuclear
Engineers.

[2] C. Barrett and C. Tinelli. CVC3. In W. Damm and
H. Hermanns, editors, Proceedings of the 19th

International Conference on Computer Aided
Verification (CAV ’07), volume 4590 of Lecture Notes
in Computer Science, pages 298–302. Springer-Verlag,
July 2007. Berlin, Germany.

[3] P. Bishop and R. Bloomfield. A methodology for
safety case development. In F. Redmill and
T. Anderson, editors, Industrial Perspectives of
Safety-critical Systems: Proceedings of the Sixth
Safety-critical Systems Symposium, pages 194–203,
Birmingham, UK, 1998. Springer.

[4] J. Burch, E. Clarke, K. McMillan, D. Dill, and
L. Hwang. Symbolic model checking: 1020 states and
beyond. Information and computation, 98(2):142–170,
1992.

[5] E. Clarke. Model checking. In Foundations of software
technology and theoretical computer science, pages
54–56. Springer, 1997.

[6] C. Eles and M. Lawford. A tabular expression toolbox
for matlab/simulink. In 3rd NASA Formal Methods

224

Symposium, volume 6617 of LNCS, pages 494–499.
Springer-Verlag, 2010.

[7] E. Fong, M. Kass, T. Rhodes, and F. Boland.
Structured assurance case methodology for assessing
software trustworthiness. In Secure Software
Integration and Reliability Improvement Companion
(SSIRI-C), 2010 Fourth International Conference on,
pages 32–33. IEEE, 2010.

[8] Formal Methods Program. Formal methods roadmap:
PVS, ICS, and SAL. Technical Report SRI-CSL-03-05,
Computer Science Laboratory, SRI International,
Menlo Park, CA, Oct. 2003.

[9] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw.
SCR*: A toolset for specifying and analyzing
requirements. In Compass ’95: 10th Annual
Conference on Computer Assurance, pages 109–122,
Gaithersburg, Maryland, 1995. National Institute of
Standards and Technology.

[10] C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj.
SCR*: A toolset for specifying and analyzing software
requirements. In Proc. 10th Int. Conf. Computer
Aided Verification (CAV’98), Vancouver, BC, Canada,
June-July 1998, volume 1427 of Lecture Notes in
Computer Science, pages 526–531. Springer, 1998.

[11] G. Holzmann. Software model checking. volume 180,
pages 309–355. IOS Press, Computer and System
Sciences, Marktoberdorf, Germany, Aug. 2000.

[12] P. Joannou et al. Standard for Software Engineering of
Safety Critical Software. CANDU Computer Systems
Engineering Centre of Excellence Standard
CE-1001-STD Rev. 1, Jan. 1995.

[13] M. Lawford, J. McDougall, P. Froebel, and G. Moum.
Practical application of functional and relational
methods for the specification and verification of safety
critical software. In T. Rus, editor, Proceedings
Algebraic Methodology and Software Technology, 8th
International Conference, AMAST 2000, Iowa City,
Iowa, USA, May 2000, volume 1816 of Lecture Notes
in Computer Science, pages 73–88. Springer, 2000.

[14] M. Lawford and A. Wassyng. Formal verification of
nuclear systems: Past, present and future. In
V. Kharchenko and T. Tagarev, editors, 1st

International Workshop on Critical Infrastructure
Safety and Security (CrISS-DESSERT’11), volume 1,
pages 43–51, Kirovograd, Ukraine, 2011. National
Aerospace University, Kharkiv, Ukraine.

[15] S. Owre, J. Rushby, N. Shankar, and F. von Henke.
Formal verification for fault-tolerant architectures:
Prolegomena to the design of PVS. IEEE Transactions
on Software Engineering, 21(2):107–125, Feb. 1995.

[16] D. L. Parnas, G. J. K. Asmis, and J. Madey.
Assessment of safety-critical software in nuclear power
plants. Nuclear Safety, 32(2):189–198, Apr.–June 1991.

[17] A. Wassyng and M. Lawford. Lessons learned from a
successful implementation of formal methods in an
industrial project. In K. Araki, S. Gnesi, and
D. Mandrioli, editors, FME 2003: International
Symposium of Formal Methods Europe Proceedings,
volume 2805 of Lecture Notes in Computer Science,
pages 133–153, Pisa, Italy, Aug. 2003. Springer-Verlag.

[18] A. Wassyng and M. Lawford. Software tools for
safety-critical software development. International
Journal on Software Tools for Technology Transfer
(STTT), 8(4–5):337–354, Aug. 2006.

[19] A. Wassyng and M. Lawford. Integrated software
methodologies - An engineering approach.
Transactions of the Royal Society of South Africa,
65(2):125–136, Oct. 2010.

[20] A. Wassyng, T. Maibaum, M. Lawford, and
H. Bherer. Software certification: Is there a case
against safety cases? In R. Calinescu and E. Jackson,
editors, Foundations of Computer Software. Modeling,
Development, and Verification of Adaptive Systems,
volume 6662 of Lecture Notes in Computer Science,
pages 206–227. Springer Berlin / Heidelberg, 2011.

225

