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Abstract—Model-based development (MBD) is increasingly
being used to develop embedded control software, with Matlab
Simulink/Stateflow being the most widely used MBD language in
the automotive industry. Stateflow truth tables, more traditionally
known as decision tables, are often used for implementing com-
plex decision-making logic. As the subsystems utilizing Stateflow
truth tables evolve, they often grow more complex and become
difficult to maintain and test. It is in part due to the nature
of decision tables that makes them more difficult to check for
desirable properties such as disjointness and completeness, re-
sulting in reduced readability and scalability. Tabular expressions
provide an alternative representation which does not suffer from
many of the same problems. With the safety-critical nature of the
automotive domain, as well as the continuous growth in both size
and complexity of models, well-defined and principled method-
ologies are required for maintaining and refactoring tables. This
paper presents a refactoring methodology for simplifying decision
tables through the use of tabular expressions to facilitate testing,
traceability and readability to help companies comply with ISO
26262. An automotive industrial case study is used to motivate
the work and demonstrate the proposed methodology.

I. INTRODUCTION

Model-based development (MBD) has become an increas-

ingly prevalent paradigm in numerous domains. This is in-

deed the case for the automotive industry, with Matlab

Simulink/Stateflow being the most widely used MBD platform

for embedded control software. Complex decision logic in

Simulink is often implemented using Stateflow truth tables
(traditionally known as decision tables1). In general, tabular

formats provide a way of presenting complex information in

a concise, well-organized manner. However, Stateflow truth

tables present several issues: lack of disjointness, allowance

of indirect satisfaction of completeness through the use of the

else case, ambiguous interpretation as a result of left-to-right

semantics, and decreased readability due to ineffective syntax

and non-Boolean type condition representation. The properties

of disjointness (ensuring determinism through non-overlapping

input cases) and completeness (requiring consideration of

all possible inputs) are integral to safety-critical systems,

as they raise the confidence in correct system performance

in all conditions, and also aid in detecting gaps for the

input cases considered. Furthermore, the readability of tables

impacts traceability to requirements, while also facilitating

understandability by those reviewing requirements. In the

1Stateflow truth tables are not truth tables in the classical sense, but are, in
fact, decision tables.

automotive industry, with the increasing reliance on software

for implementing vehicle functions, models continually grow

in size and complexity, and become increasingly difficult to

understand, maintain, refactor, and test. Our industrial partner,

an automotive OEM, has identified some designs containing

Stateflow truth tables as particularly problematic for develop-

ers. Therefore, we believe more effective tabular constructs

and reliable refactoring techniques for tables are becoming an

important need for automotive OEMs.

Moreover, the ISO 26262 standard [1] for safety-related

software development in the automotive domain, mandates the

avoidance of constructs with possibly ambiguous semantics,

and stresses the need for low complexity of designs. Addi-

tionally, it is expected for safety-critical software that com-

plex Boolean expressions be tested extensively with Modified

Condition/Decision Coverage (MC/DC). Not surprisingly, our

automotive partner aims to reduce time and effort spent on

testing while retaining or enhancing coverage. As a result,

reducing efforts for achieving good coverage and creation of

test cases while increasing MC/DC coverage is a priority.

In this paper, we propose a methodology for the transfor-

mation and simplification of decision tables in a guided refac-

toring approach. Within this methodology, we leverage the use

of tabular expressions, which strive to express complex logic

in a precise, yet concise, manner, and have been successfully

used in industry [2], [3]. They overcome the problems inherent

in decision tables by enforcing disjointness and explicit com-

pleteness. As we will see in Section II, Simulink’s diagnostic

tools do not enforce disjointness, and although completeness

is checked, it is a property easily forced. Furthermore, tabular

expressions are easily readable and understandable by both

software developers and domain experts, and, therefore, used

in software documentation. Translating decision tables to

tabular expressions remedies the deficiencies of disjointness

and completeness, while significantly increasing the read-

ability and understandability of implemented decision logic.

Consequently, the refactoring of such tables is facilitated as

logical simplifications are easier to detect and apply. Once the

simplifications have been applied to tabular expressions, then

they can be translated back to decision tables for code gen-

eration. The methodology has been applied in real industrial

case studies on current production vehicle models. These case

studies demonstrated the effectiveness of the methodology, and

as a result it has been adopted by our industry partner, with
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refactored designs incorporated into production code.

Refactoring general decision tables has been studied [4], [5];

however, comparable simplifications on tabular expressions

have not been explored. Work has been done on transforming

tables between various forms (e.g. inverted, normal, etc.) [6],

[7], and simplifications via table restructuring are available

in [8]. However, there are no simplifications defined on the

actual logic, with [9] being the closest with simple domain

restrictions. Additionally, a simple heuristic for transforming

between decision tables and horizontal condition tables (HCT)

specifically, is needed. A recent tabular construct for reactive

system requirements, EDT [10], gives similar motivations

towards understandable and testable tables in automotive.

Our methodology, while primarily motivated and described

in the scope of Simulink/Stateflow MBD, is equally applicable

to decision tables in any context. The approach contains two

novel components, both useful in their own right: transfor-

mations to/from decision tables and HCTs; and, five iterative

logical simplification strategies for tabular expressions.

The paper is structured as follows. Section II describes tab-

ular constructs used and their differences. Section III presents

the methodology, illustrated by its application to a real-world

automotive design from our industry partner. Section IV then

compares the original and refactored designs from different

aspects to give evidence of the value of the methodology. The

final section gives conclusions and directions for future work.

This paper is based on the Master’s thesis of the first

author [11], and we refer the reader to it for further details.

II. PRELIMINARIES

A. Decision Tables

Stateflow provides two formalisms for representing complex

decision logic within a model: Stateflow charts for implemen-

tation as a finite state machine; and Stateflow truth tables as

shown in Table I. In general, Stateflow truth tables offer a

more straightforward means of implementing purely logical

behaviour, and we have found them increasingly becoming

the standardized construct for decision logic in industry.

TABLE I: Stateflow truth table

Decisions
# Conditions D1 D2 D3 D4

1 Condition1 T T T -
2 Condition2 T - F -
3 Condition3 T T - -

Actions 1 2 3 4

# Actions
1 Action1

2 Action2

3 Action3

4 Action4

Decision tables are structured in three sections. A con-

dition section contains statements defining conditions. The

possible outcomes for a condition are true, false or “don’t

care,” represented as T, F, or - respectively. Decisions are

relationships resulting from the conjunction of conditions,

which are mapped to actions. The action section defines

the operations to be performed as a consequence of these

decisions being satisfied. Decision tables are read left-to-right,

with semantics interpreted as an if-then-else statement.

Table I corresponds to:

if Condition1 ∧ Condition2 ∧ Condition3 then Action1

elsif Condition1 ∧ Condition3 then Action2

elsif Condition1 ∧ ¬Condition2 then Action3

else Action4

endif

For syntactical correctness, Simulink flags the properties:

1) Overspecification: Too many decisions are defined such

that some are redundant and are never executed due to

the left-to-right semantics of the tables

2) Underspecification: Not enough decisions such that

some input cases are not covered

B. Tabular Expressions

Tabular expressions are an alternative and effective tabular

construct for the documentation and specification of software.

We provide a brief description of their semantics, however [12]

gives a detailed discussion. In this work, we use tabular

expressions in the form of horizontal condition tables (HCT),
shown in Table II. HCTs, especially those used for software

requirements documentation, define a single function and are

best used for describing a single behaviour [13]. Thus, we

make use of HCTs which compute a single output.

TABLE II: Horizontal condition table

Result
Conditions V ar

Condition1
Condition2 Result1
¬Condition2 Result2

¬Condition1 Result3

HCTs can also be interpreted as if-then-else state-

ments, however it is important to note that there is no defined

order in which the cases are evaluated:

if Condition1 ∧ Condition2 then V ar = Result1
elsif Condition1 ∧ ¬Condition2 then V ar = Result2
elsif ¬Condition1 then V ar = Result3

endif

For any table to properly define a (total) function, two

conditions must be satisfied:

1) Disjointness: Each distinct pair of rows, Rowi, Rowj

is disjoint, i.e. i �= j ⇒ ¬(Rowi ∧Rowj)
2) Completeness: The disjunction of all Rowis is true, i.e.

(Row1 ∨Row2 ∨ . . . ∨Rown) ⇔ true

Each row of a tabular expression can be thought of as a

decision, and the results column as the action section.

C. Comparison

Although currently in abundant use, decision tables have

many key shortcomings which have been identified in industry.

Disjointness is not properly enforced. Stateflow provides

diagnostic tools to detect overspecified tables, where too many
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decisions are defined such that some are never executed. How-

ever, overspecification is a subset of non-disjointness, and thus

the check fails to detect overlaps when the condition is still

executed, as is the case with partially overlapping conditions.

This is demonstrated in decisions (D1, D2) and (D2, D3) of

Table I. Left-to-right semantics are necessary to disambiguate

the apparently contradictory actions for overlapping decisions.

Completeness is properly checked, however, it is weakened

by the reliance on the else case decision as a catch-all. A

convenient but indirect means of ensuring completeness, it

indiscriminately accommodates remaining unspecified cases.

This does not lend itself well to safety-critical software, where

all cases must be explicitly considered. This potentially hides

errors in logic, despite the table being syntactically correct.

Implicit left-to-right semantics for the order of decision

evaluation can lead to inconsistent table interpretations, es-

pecially from the perspective of an outside reviewer with

no prior knowledge on the use of decision tables. A human

reader may seize upon the first column that is satisfied, but

miss earlier columns, therefore, misreading the table and

interpreting its behaviour incorrectly. Also, a simple swap of

two columns changes the semantics of the table. Historically,

decision table semantics allowed for decision evaluation in

any order [14], however, left-to-right semantics are now most

common. Notwithstanding, it is a property not readily apparent

through visual examination, nor is it intuitive in many cases.

Non-Boolean conditions, e.g. enumeration types and nu-

merical ranges, are not portrayed intuitively. For example,

when checking an enumerated type condition, each enumerator

is treated as a separate condition even if an inherent relation-

ship between them exists. To implement these separate yet

related conditions, diagonal patterns of T values are used, in-

evitably reducing readability. Further, because decision tables

fail to accommodate the mutually exclusive nature of these

conditions, an else case is needed to catch remaining input

combinations, even if they may not be technically possible.

Readability is further diminished when tables describe non-

trivial logic. They quickly become large and difficult to under-

stand by developers, fail to convincingly convey requirements,

and display redundant information. As a result, we have found

that they are not particularly scalable. Their interpretation

requires constant referral to the condition and action sections

in order to understand what the decisions signify. Hence,

checking for errors such as contradictions becomes a strenuous

task, and is not always supported by tools.

In comparison, tabular expressions address all these identi-

fied drawbacks of decision tables. For a table to be properly

defined, disjointness and completeness must be satisfied. Else

conditions are explicitly implemented as negations of one or

more conditions. This promotes a more careful consideration

of remaining cases, as opposed to mindlessly grouping them in

a catch-all else case. Further, there is no imposed order for row

evaluation, and they provide intuitive syntax for related non-

Boolean conditions, as well as readability. One must simply

scan the table in one direction, from left-to-right, instead of

continually referring to the condition and action sections.

Stateflow
Truth Table

Decomposition

Transformation
into Tabular
Expression

Tabular
Expression

Transformation
into Truth

Table

Simplified
Stateflow

Truth Table

SimplificationVerification

Legend

Artefact
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Fig. 1: Methodology for Stateflow truth table simplification

III. THE METHODOLOGY

An overview of the methodology is given in Figure 1. Its

strategy entails the transformation of the decision table into a

tabular expression, first starting with decomposition, then sub-

sequently transforming into a HCT. Using the HCT as the basis

for refactoring, a set of simplifications are applied iteratively,

which transform the table into a smaller, simplified format by

way of removing/rearranging decision points. Finally, the HCT

is transformed back into a Stateflow truth table. Alternatively,

the Tabular Expression Toolbox (TET), a Simulink toolbox

developed at the McMaster Centre for Software Certification,

can be used to directly implement the tabular expressions

in Simulink [15]. After any given transformation, formally

proving the table equivalence before and after can be done

using PVS (Prototype Verification System) by SRI [16].

A step-by-step description of the methodology is given

in the following subsections. It is also demonstrated on an

industrial automotive model, as supplied to us by our industrial

partner. The model contains a subsystem with four Stateflow

truth tables, each of which performs arbitration of driver

requests.

Due to space constraints, we present the application of

our method only on one of these four tables, Table III. It

is responsible for performing arbitration of driver requests to

change the state of cState1, using the current status of the

system, i.e. the previous arbitrated status, whether or not a

component is unlocked, and if the subsystem is faulty. Due to

the proprietary nature of these tables, the signal/variable names

have been obfuscated, but the logic remains unchanged.

A. Decomposition

If the table computes multiple outputs, it is decomposed into

multiple tables, each computing a single output. This approach
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TABLE III: Driver request arbitration from cState1

fReqFromSt1(eDrvrRequest:enum, bFaulty, bCmpntUnlocked:bool): enum =

Decisions
# Conditions D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

1 eDrvrRequest == cState1 T F F F F F F F F F -
2 eDrvrRequest == cState2 F T F F T F F T F F -
3 eDrvrRequest == cState3 F F T F F T F F T F -
4 eDrvrRequest == cState4 F F F T F F T F F T -
5 bCmpntUnlocked - T T T - - - - - - -
6 bFaulty - F F F T T T - - - -

Actions 1 2 3 4 5 5 5 5 5 5 1

# Actions
1 eArbRequest=cState1; bActionRequired=false
2 eArbRequest=cState2; bActionRequired=false
3 eArbRequest=cState3; bActionRequired=false
4 eArbRequest=cState4; bActionRequired=false
5 eArbRequest=cState1; bActionRequired=true

introduces modularity, provides better requirements traceabil-

ity, and often yields greater reductions during simplification.

Should this approach be infeasible in light of actions being

complex Matlab code2, abstraction of actions can be done by

implementing actions in functions outside of the table. The

new action becomes a simple function call. Alternatively, the

action numbers themselves can be seen as an abstraction of

the action and be used to represent the output instead.

TABLE IV: Decomposition with respect to eArbRequest

Decisions
# Conditions D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

1 eDrvrRequest == cState1 T F F F F F F F F F -
2 eDrvrRequest == cState2 F T F F T F F T F F -
3 eDrvrRequest == cState3 F F T F F T F F T F -
4 eDrvrRequest == cState4 F F F T F F T F F T -
5 bCmpntUnlocked - T T T - - - - - - -
6 bFaulty - F F F T T T - - - -

Actions 1 2 3 4 1 1 1 1 1 1 1

# Actions
1 eArbRequest=cState1
2 eArbRequest=cState2
3 eArbRequest=cState3
4 eArbRequest=cState4

Table III was decomposed into two tables, one of which

is Table IV, computing only eArbRequest. During this step,

Actions 1 and 5 both resulted in eArbRequest being assigned

cState1— thus, they were combined into Action 1.

B. Decision Tables To Tabular Expressions

The following transforms a Stateflow truth table to a HCT.

1) Augment Decisions with Conditions and Actions The two

notations differ in their representation of decisions. Thus, for

each decision, T values are replaced straightforwardly by the

condition they denote as being true. For F values, the condition

logic is negated. “Don’t cares” do not require replacement. A

similar treatment is given to actions, where actual values are

put in place of indices. Afterwards, all pertinent information

is contained within the decisions, and so condition and action

sections are removed, as shown in Table V. For readability

purposes, we denote the enumeration checking conditions as:

lStatei = (eDrvrRequest == cStatei), i = 1...4.

2) Transpose The entire table is transposed to orient the

data appropriately for tabular expression form, i.e. left-to-right

order of evaluation of decisions. Table VI shows the result.

2Departing from traditional decision tables, actions in Simulink truth tables
can make use of for loops, if statements, and persistent variables

TABLE VI: Transposing

lState1 ¬lState2 ¬lState3 ¬lState4 - - cState1
¬lState1 lState2 ¬lState3 ¬lState4 bCmpntUnlocked ¬bFaulty cState2
¬lState1 ¬lState2 lState3 ¬lState4 bCmpntUnlocked ¬bFaulty cState3
¬lState1 ¬lState2 ¬lState3 lState4 bCmpntUnlocked ¬bFaulty cState4
¬lState1 lState2 ¬lState3 ¬lState4 - bFaulty cState1
¬lState1 ¬lState2 lState3 ¬lState4 - bFaulty cState1
¬lState1 ¬lState2 ¬lState3 lState4 - bFaulty cState1
¬lState1 lState2 ¬lState3 ¬lState4 - - cState1
¬lState1 ¬lState2 lState3 ¬lState4 - - cState1
¬lState1 ¬lState2 ¬lState3 lState4 - - cState1

- - - - - - cState1

3) Group Related Conditions Related conditions are grouped

together in a single column. If the grouped conditions are

mutually exclusive, only the true condition is placed in the

cell. The related conditions in Table VI were the enumeration

checks located in the first four columns. Thus, Table VII

merges them and retains only the condition which is true.

TABLE VII: Grouping related conditions

1 lState1 - - cState1
2 lState2 bCmpntUnlocked ¬bFaulty cState2
3 lState3 bCmpntUnlocked ¬bFaulty cState3
4 lState4 bCmpntUnlocked ¬bFaulty cState4
5 lState2 - bFaulty cState1
6 lState3 - bFaulty cState1
7 lState4 - bFaulty cState1
8 lState2 - - cState1
9 lState3 - - cState1

10 lState4 - - cState1
11 - - - cState1

4) Ensure Disjointness and Completeness Firstly, the effect

of the left-to-right semantics is eliminated to introduce dis-

jointness. Decisions are sequentially inspected for overlaps in

conditions with preceding decisions. If a condition is found

to be overlapping, it is restricted to the remaining values

not covered in previous cases. Secondly, completeness is

ensured. Without considering the else case, if implemented,

each condition is examined to ensure that all its possible inputs

are covered. Absent cases are added, and the else case is

restricted so it does not overlap with preceding decisions, i.e.,

it is rewritten as the negation of other conditions.

In Table VII, rows 8-10 overlap with rows 2-7. Therefore,

the overlapping rows are made more specific in Table VIII.

The else case is removed also, as all cases are covered. It can

remain or be reinserted if needed to catch hardware errors.

5) Formatting Consecutive cells performing the exact same

condition checks are merged into single cells spanning across

rows. Likewise, “don’t care” cells are combined across

columns with previous conditions. The table is formatted so

that it complies with standard notation of tabular expressions

(e.g. headings and borders).

TABLE VIII: Ensuring disjointness and completeness

1 lState1 - - cState1
2 lState2 bCmpntUnlocked ¬bFaulty cState2
3 lState3 bCmpntUnlocked ¬bFaulty cState3
4 lState4 bCmpntUnlocked ¬bFaulty cState4
5 lState2 - bFaulty cState1
6 lState3 - bFaulty cState1
7 lState4 - bFaulty cState1
8 lState2 ¬bCmpntUnlocked ¬bFaulty cState1
9 lState3 ¬bCmpntUnlocked ¬bFaulty cState1

10 lState4 ¬bCmpntUnlocked ¬bFaulty cState1
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TABLE V: Augmenting decisions with conditions and actions

lState1 ¬lState1 ¬lState1 ¬lState1 ¬lState1 ¬lState1 ¬lState1 ¬lState1 ¬lState1 ¬lState1 -
¬lState2 lState2 ¬lState2 ¬lState2 lState2 ¬lState2 ¬lState2 lState2 ¬lState2 ¬lState2 -
¬lState3 ¬lState3 lState3 ¬lState3 ¬lState3 lState3 ¬lState3 ¬lState3 lState3 ¬lState3 -
¬lState4 ¬lState4 ¬lState4 lState4 ¬lState4 ¬lState4 lState4 ¬lState4 ¬lState4 lState4 -

- bCmpntUnlocked bCmpntUnlocked bCmpntUnlocked - - - - - - -
- ¬bFaulty ¬bFaulty ¬bFaulty bFaulty bFaulty bFaulty - - - -

cState1 cState2 cState3 cState4 cState1 cState1 cState1 cState1 cState1 cState1 cState1

TABLE IX: Formatting

Result
Conditions eArbRequest

lState1 cState1

lState2
¬bFaulty

bCmpntUnlocked cState2
¬bCmpntUnlocked cState1
bFaulty cState1

lState3
¬bFaulty

bCmpntUnlocked cState3
¬bCmpntUnlocked cState1
bFaulty cState1

lState4
¬bFaulty

bCmpntUnlocked cState4
¬bCmpntUnlocked cState1
bFaulty cState1

C. Simplification Transformations

Given any HCT, not necessarily as a result of the previous

steps, the following transformations are used to simplify

it iteratively. They can be applied in any order, based on

applicability and the desired final form of the table. Using

requirements as a guide may be helpful, as this refactoring

approach aims to provide better requirements traceability.

1) Condition Ordering: Manipulation of the condition or-

dering, both vertically and horizontally, can be employed to

influence the organizational and visual appearance of the tab-

ular expression, as well as to manipulate the implementation

of the tabular expression for code generation [12].

a) Vertical: Evaluation speed of the expression can be

increased by forcing specific conditions to be evaluated as

early as possible [12]. The vertical arrangement of conditions

can be adjusted to increase efficiency in the evaluation of cases

specifically by moving decisions with the most “don’t cares”,

i.e. fewest amount of evaluations, to the upper rows, allowing

for earlier evaluation. If the condition is nested, it can be

moved up/down so long as it remains nested.

TABLE X: Vertical reordering of bFaulty

Result
Conditions eArbRequest

eDrvrRequest == cState4 cState1

eDrvrRequest == cState2

bFaulty cState1

¬bFaulty
bCmpntUnlocked cState2
¬bCmpntUnlocked cState1

eDrvrRequest == cState3

bFaulty cState1

¬bFaulty
bCmpntUnlocked cState3
¬bCmpntUnlocked cState1

eDrvrRequest == cState4

bFaulty cState1

¬bFaulty
bCmpntUnlocked cState4
¬bCmpntUnlocked cState1

For visual consistency in vertical ordering, positive condi-

tions are moved to precede negated conditions in Table X.

b) Horizontal: The horizontal ordering of conditions is

used as a visual means of representing the dominance of

conditions with respect to the decision. Left-most conditions

are executed first, and thus moving conditions to the left

signifies that they are more important as they are evaluated

in more cases. Likewise, if it is advantageous to evaluate

certain conditions infrequently: nesting them is a good course

of action such that they are only checked after others are

evaluated, narrowing the cases said conditions are needed.

TABLE XI: Horizontal reordering of bFaulty

Result
Conditions eArbRequest

bFaulty cState1

¬bFaulty

eDrvrRequest == cState1
bCmpntUnlocked cState1
¬bCmpntUnlocked cState1

eDrvrRequest == cState2
bCmpntUnlocked cState2
¬bCmpntUnlocked cState1

eDrvrRequest == cState3
bCmpntUnlocked cState3
¬bCmpntUnlocked cState1

eDrvrRequest == cState4
bCmpntUnlocked cState4
¬bCmpntUnlocked cState1

Table XI demonstrates this technique. When bFaulty is

true State1 is always the output, no matter the value of

eDrvrRequest, i.e., if a fault arises, the safe response is to

remain in the current state. According to these requirements,

we wish to treat bFaulty as the more dominant condition

over eDrvrRequest. Thus, bFaulty is moved to the left, and

eDrvrRequest is removed when bFaulty is true.
2) Granted State Simplification: This simplification is par-

ticularly useful for systems which arbitrate operational modes.

Here, the conditions responsible for checking the mode are

eliminated when the resulting actions simply grant/accept the

change in output. The check is not required, as the condition’s

value is granted and passed through. Thus, we generalize

this situation by placing the mode variable directly in the

result column. A horizontal reordering of conditions may be

necessary, as is the case in Table XII.

TABLE XII: Granted state simplification of eDrvrRequest

Result
Conditions eArbRequest

1 bFaulty cState1
2

¬bFaulty

bCmpntUnlocked eDrvrRequest
3

¬bCmpntUnlocked

eDrvrRequest == cState1 cState1
4 eDrvrRequest == cState2 cState1
5 eDrvrRequest == cState3 cState1
6 eDrvrRequest == cState4 cState1

In Table XI, if no faults are detected and the component

is unlocked, the driver request is granted, i.e., regardless of

eDrvrRequest, the output is eDrvrRequest. Thus, Table XII

shows it removed as a condition and used directly as a result.
3) Removal of “Don’t Care” Conditions: If a condition

does not affect the outcome of a decision, it can be removed

from its computation by being treated as a “don’t care”. This

is done by identifying multiple instances of the same output

in the results column, then moving backwards through the

conditions required to reach these outputs. If the paths are the

same, save for one condition, they can be combined.
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TABLE XIII: Generic example of “don’t care” simplification

Result
Conditions Output

1
Condition1 . . . Conditioni

Conditionj Action1

2 ¬Conditionj Action1

n . . . . . .

Result
Conditions Output

Condition1 . . . Conditioni Action1

. . . . . .

In Table XIII, rows 1 and 2 result in the same output.

Each contains the same conditions, with the exception of row

2 negating Conditionj . Thus, these rows are combined. An

example of this simplification on a nested condition is given

in [11], with horizontal rearrangement being required after.

The removal of a Boolean condition with a cardinality of

two was shown, however, this simplification also applies to

conditions with a greater number of potential values. The

number of rows required to be combined is equal to its type’s

cardinality, where jointly the rows cover the range of the type.

TABLE XIV: Simplification of eDrvrRequest as “don’t care”

Result
Conditions eArbRequest

1 bFaulty cState1
2 ¬bFaulty

bCmpntUnlocked eDrvrRequest
3 ¬bCmpntUnlocked cState1

In our example, it is evident in Table XII that

eDrvrRequest has no impact when there is a fault and the

component is locked, as the output is cState1 regardless. In

this case, eDrvrRequest’s type has a cardinality of four,

so in order to treat it as a “don’t care”, four distinct rows

which make up the complete range of the condition’s type are

combined, namely rows 3-6. Thus, we apply the non-nested

simplification, which results in Table XIV. This concludes

the simplification of the automotive example. Although rows

1 and 3 result in the same output, they cannot be combined

unless they are expanded first, as described in Section III-C5.

General examples are given for the remaining simplifications.

4) Grouping: The constraint on merging the complete

range of a condition, given in Section III-C3, can be relaxed

when grouping a subset is desired. This is particularly useful

for enumerated types, shown in Table XV, employed for the

representation of modes where it is the case that removing

these mode-centric conditions in their entirety is not achiev-

able, nor necessary. A subset of conditions can be grouped,

however, they must lead to the same output.

5) Compound Simplification: This strategy expands an

already simplified row, enabling further table simplification

through the use of the newly introduced rows. Here, conditions

are straightforwardly expanded into all values of their type,

with the same action carried across all newly added rows.

This strategy essentially reverses Section III-C3 and III-C4. It

proves useful for the restructuring of already simplified tables,

and is beneficial when altering an existing table to display a

design in a specific manner that corresponds to a requirement.

TABLE XV: Generic example of grouping

Result
Conditions Output

eV ar == cEnum1

Condition1 Action1

¬Condition1
Condition2 Action2

¬Condition2 Action3

. . . . . . . . .

eV ar == cEnumi

Condition1 Action1

¬Condition1
Condition2 Action2

¬Condition2 Action3

. . . . . . . . .
eV ar == cEnumn . . . Actionn

Result
Conditions Output

eV ar == cEnum1 ∨ . . . ∨ eV ar == cEnumi

Condition1 Action1

¬Condition1
Condition2 Action2

¬Condition2 Action3

. . . . . . . . .
eV ar == cEnumn . . . Actionn

D. Tabular Expressions to Decision Tables

1) Remove Tabular Expression Formatting Strip tabular

expression-specific formatting conventions from the table, e.g.

headings. Expand each vertically merged cell, first dividing

it into the number of rows it was grouped over, and then

explicitly denoting the condition per cell. Horizontally merged

cells are also divided, but with the condition being moved to its

corresponding column, and the remaining newly added cells

denoted as “don’t care” conditions. The result is shown in

Table XVI.

TABLE XVI: Formatting removal

bFaulty - cState1
¬bFaulty bCmpntUnlocked eDrvrRequest
¬bFaulty ¬bCmpntUnlocked cState1

2) Transpose Re-orient the decisions such that they are read

in a top-down fashion, as shown in Table XVII.

TABLE XVII: Transposing

bFaulty ¬bFaulty ¬bFaulty
- bCmpntUnlocked ¬bCmpntUnlocked

cState1 eDrvrRequest cState1

3) Construct Condition Section Add a condition section,

populating each row with the corresponding condition in that

row of the decision. Replace the conditions of the decisions

with T/F Boolean constants, as in Table XVIII.

TABLE XVIII: Constructing condition section

Decisions
# Conditions D1 D2 D3

1 bFaulty T F F
2 bCmpntUnlocked - T F

Actions cState1 eDrvrRequest cState1

4) Construct Action Section Create the action section with a

numbered entry for each unique action found in the last row.

Replace actions with their corresponding index.

With this, the methodology is concluded. These heuristics

were designed to be an easy-to-follow process of performing

guided refactoring. The equivalence between steps is easy to

see. For the example, equivalence between the original and

refactored tabular expressions was proven with PVS. Verifying

equivalence between other intermediate steps is also possible.
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TABLE XIX: Constructing action section

Decisions
# Conditions D1 D2 D3

1 bFaulty T F F
2 bCmpntUnlocked - T F

Actions 1 2 1

# Actions
1 eArbRequest=cState1
2 eArbRequest=eDrvrRequest

IV. AUTOMOTIVE CASE STUDY

In this section, we investigate how the described method-

ology affects designs in terms of testability, complexity and

requirements traceability. The Simulink Design Verifier (SDV)
tool by Mathworks automatically generates test cases from

Simulink/Stateflow models in order to maximize a number of

test coverage metrics. It also calculates cyclomatic complex-

ity [17], a well-known metric that measures the amount of

decision logic in a model. We are concerned with reducing the

complexity, as well as reducing efforts in testing with regards

to the number of tests required for MC/DC coverage.

Analysis was done on the arbitration subsystem described

in Section III, with the refactored Stateflow truth tables taking

the place of the original tables. Although we only show a

single simplified table from this design, the methodology was

applied to the remaining three tables of the subsystem, each of

which resulted in two tables. The comparison between original

and refactored designs is given in Table XX as Case Study

1. Additionally, a second case study was done on a more

complex automotive system. Due to space constraints we refer

the reader to [11] for the full details, however, the results are

also summarized in Table XX.

TABLE XX: Testing and complexity analysis

Case Study 1 Case Study 2
Original Refactored Original Refactored

Tests 7 9 23 6
Test Steps 97 48 1214 24
Test Time (s) 18 7.8 100 3.6
Number of Objectives 1016 371 1954 498
Objectives Satisfied 797 (78%) 311 (84%) 1591 (81%) 445 (89%)
Objectives Proven Unsatisfiable 219 (22%) 60 (16%) 202 (10%) 53 (10%)
Objectives Undecided 0 0 161 (8%) 0
MC/DC Coverage 62% 63% 57% 74%
Cyclomatic Complexity 274 107 935 248

For the presented example, it is evident that the number

of test objectives significantly reduced (by more than half),

decreasing the number of test steps required to satisfy these

objectives, and ultimately decreasing the testing time needed.

MC/DC was slightly increased, and the number of satisfied

objectives increased from 78% to 84%, with the reason for

this improvement being the simplification of the decision

logic. This is confirmed by the cyclomatic complexity, which

decreased considerably (by a factor of ∼2.5). Case Study 2

gave the same trends in results, but boasted more significant

improvements. Moreover, due to the large and complex nature

of the original design, testing resulted in undecided objectives

which could not be proved/disproved by the SDV engine.

Application of the methodology resolved this issue.

Regarding their use as requirements, it is evident that the

refactored HCT made requirements more traceable and read-

able. A requirement for the system was, “remain in cState1
when there are no faults, but the component is locked,” and it

is clearly shown in the last row of Table XIV.

V. CONCLUSION

In this paper, a novel methodology for the guided refactoring

of tabular designs in MBD was developed. This methodology

was applied to an automotive industrial case study, resulting

in significant gains in terms of reduction of testing efforts,

minimization of complexity, and improved requirements trace-

ability. Currently, tools in the Matlab Simulink environment

for model refactoring are limited [18]; therefore, future work

entails automating this methodology.
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