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Abstract— For some time now, researchers have been seeking
to place software measurement on a more firmly grounded footing
by establishing a theoretical basis for software comparison.
Although there has been some work on trying to employ
information theoretic concepts for the quantification of code
documents, particularly on employing entropy and entropy-like
measurements, we propose that employing the Similarity Metric
of Li, Vitányi, and coworkers for the comparison of software
documents will lead to the establishment of a theoretically
justifiable means of comparing and evaluating software artifacts.
In this paper, we review previous work on software measurement
with a particular emphasis on information theoretic aspects, we
examine the body of work on Kolmogorov complexity (upon
which the Similarity Metric is based), and we report on some
experiments that lend credence to our proposals. Finally, we
discuss the potential advantages derived from the application
of this theory to areas in the field of software engineering.

I. INTRODUCTION

In the transition from the idea or concept for an element of
software to be implemented to the code that implements it and
beyond, it is recognised that there are several (possibly over-
lapping) stages (perhaps labeled by analysis, design, coding,
testing and support). In the production of quality software, we
assume that these stages — however they are assigned — are
documented. For the purposes of evaluation and assessment,
we therefore need to be able to compare documents that
describe or specify [1] — or indeed implement — software.

In software engineering, the comparison or measurement
of software documents (including source code and executable
objects) has traditionally been assigned to the subfield of
software measurement – often called ‘metrics’. The task of
characterising something that is effectively infinitely malleable
has been frought with difficulty. It has been difficult to agree
what to measure and the suitability of what is measured, and
to validate the measures against the implementations. Thus
the field has largely become a means of providing indica-
tors, symptoms to be evaluated by experienced practitioners
rather than a means of objectively measuring attributes of
software and their significance. We believe that the Similarity
Metric (of Li, Vitányi and others) can help in this regard.
Kolmogorov complexity, on which the measure is based, in a
very precisely defined sense describes the inherent complexity
of objects. Since the documents produced to describe, specify
or implement code are also ‘objects’ which embody their

intended meaning, we regard them as being inherently suitable
comparands for this method.

To be more specific, we wish to examine ways in which the
Similarity Metric can be employed in software engineering.
This will include the comparison of specifications or descrip-
tions of software before the software is implemented.

This paper is structured as follows. In the next sections,
we introduce software measurement, information theory and
Kolmogorov complexity. There follows an overview of the
work, largely by Li and Vitányi, on the definition of a universal
comparator, the Similarity Metric [2], whose foundation is
the complexity theory of Kolmogorov. In the next section,
we will attempt to relate complexity and measurement from
the viewpoint of the field of software engineering, in par-
ticular software measurement. After a section in which we
apply Cilibrasi’s implementation [3] of an approximation of
the Similarity Metric [4] to a set of software engineering
examples, we discuss what we believe to be the significance of
these techniques to the software engineering field and outline
additional applications beyond those detailed herein. We close
with our conclusions and acknowledgements.

II. SOFTWARE MEASUREMENT

A. Introduction

The field of software measurement has a long history [5],
[6], [7] and a broad literature. We can measure software to
examine its performance; its structure or design; its correct-
ness; its quality; its evolution (in terms of maintenance or
extension); the processes executed by its creators. Broadly
speaking, the field is important because only by performing
measurements (however, defined) on software and comparing
those measurements, can we make objective statements about
these topics. For a good overview of the field of software
measurement, see Fenton and Pfleeger [8].

B. Software Engineering: Metrics and Measures

Largely in agreement with Zuse [9], we define the words
‘measure’, ‘measurement’ and ‘metric’ as follows.

• A measure is a mapping from empirical objects (objects
to be measured) to formal objects (measurement values).
We will define a measurement to be the result of applying
a ‘measure’.



• A metric is a means of determining the distance between
two entities. A metric function (of two arguments) must
also (1) return null for identical entities; (2) be symmetric;
and (3) obey the triangle inequality.

In the literature, different definitions for these words are com-
mon. In particular, in software engineering, other conventions
are often followed. Lorenz and Kidd [10], for example, make
the following two definitions.

• Metric A standard for measurement. Used to judge the
attributes of something being measured such as quality
or complexity, in an objective manner.

• Measurement The determination of the value of a metric
for a particular object.

Our definitions are more in agreement with the mathematics
literature but potential for confusion should be borne in mind.

We will not discuss further the extensive literature con-
cerning definitions, axiomatic approaches or properties that
software ‘metrics’ might have [11], [12], [13], [14], [15].

III. INFORMATION THEORY, ENTROPY

In his 1948 paper [16], Shannon was concerned with the
transmission of information from a source to a sink over a
channel. He considered encoding of information, discrete and
continuous encodings, and transmission in the presence or
absence of noise. As a measure of the ‘quantity’ of information
to be passed through a channel, he introduced entropy, an
analogue of the thermodynamic entropy of Boltzmann. In the
discrete case, (Shannon) entropy takes its well-known form

H(X) = −
∑
xεX

pxlogpx (1)

where H(X) is the entropy for a source emitting codes x from
a set X , and the px are the probabilities the codes x occur.

It can be claimed that Shannon’s paper marked the founding
of the field of information theory. Certainly, an indication of
the quantity of information being produced by a source is a
useful concept that has since been applied in many fields [17].

IV. KOLMOGOROV COMPLEXITY

To quote from the book [18] by Li and Vitányi, “Shannon’s
entropy measures the uncertainty in a statistical ensemble of
messages, while Kolmogorov complexity measures the algo-
rithmic information in an individual message.” Also sometimes
known as ‘algorithmic entropy’, Kolmogorov complexity was
introduced independently by Solomonoff [19], Kolmogorov
[20], and Chaitin [21].

More formally, the Kolmogorov complexity, K(x) of a
binary string x is the length of the shortest (prefix-free) binary
program to compute x on a universal computer such as a
universal Turing machine. K(x) represents the number of bits
necessary to (computationally) describe the string x.

Although this definition sounds somewhat abstract, there
are indeed strong connections with the Shannon entropy [22],
[23]. It can be shown, for example, that the expected value
of the Kolmogorov complexity for a random string for any
probability distribution function will have a value to within

an additive constant (dependent only on the executing Turing
machine) of the Shannon entropy.

As might be expected, there are also connections between
Kolmogorov complexity and thermodynamics. Bennett et al.
[24] describe how it can be related to the thermodynamic cost
(minimal entropy increase in the environment) of data trans-
formations. This follows from early work on thermodynamics
in computing by Landauer [25].

V. MEASURING SIMILARITY

A. Information Distance

The idea of being able to calculate a value for the com-
plexity of objects leads naturally to the idea of being able
to compare how similar objects are to each other. In their
1998 paper, Bennett et al. [26] investigated the idea of ‘an
“absolute information distance metric” between individual
objects’ that they have subsequently shown [27] to obey the
(mathematical) metric properties up to an additive constant.
The information distance was to form the basis of the subse-
quent normalised similarity metric. Here, normalisation means
that 0 ≤ d(x, y) ≤ 1 with 0 indicating identical objects.

B. The Similarity Metric

A first attempt at a normalised similarity metric was
presented by Li et al. [28]. However, in their 2004 paper
[27], Li et al. presented an improved version, the normalised
information distance (NID) given by

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
(2)

Here K(x|y), for example, is the conditional Kolmogorov
complexity of x given y. This is the length of the shortest
program for a universal Turing machine to output x when
given an input y. They showed that this new distance satisfies
the metric properties up to an additive term of O(1/K), where
K is the maximum of Kolmogorov Complexities involved.
Then 1 − NID(x, y) has the natural interpretation of the
number of bits of shared information per bit of information of
the string with more information.

C. Practical Implementation — CompLearn

Since the idea of the NID concerns compression of data,
the normalised information distance can be approximated by
using real compressors, including most commonly known
compressors, which obey certain properties (idempotency,
monotonicity, symmetry and distributivity) [4]. The resulting
measure is called the normalised compression distance (NCD).

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
(3)

where C(x), for example, denotes the approximation of a
Kolmogorov complexity K(x) by the length of the compressed
data produced by an instance of a real compressor and xy
denotes the concatenation of x and y.

Although the theory for the NID is exact, additional the-
oretical work was carried out by Cilibrasi and Vitányi [4]



to show that the NCD was a good approximation whose
difference from the NID was dependent only on the quality of
the approximation of a ‘perfect’ compressor by a real one.

An implementation of the NCD has been made publicly
available as the CompLearn toolkit [3]. We have employed
version 0.9.7 of the toolkit in the experiments that follow. The
toolkit compressors we employ are the Lempel-Ziv zlib algo-
rithm, the bzip2 block-sorting compressor and the blocksort
algorithm provided in CompLearn by Cilibrasi.

VI. SOFTWARE, COMPLEXITY, INFORMATION THEORY

Campbell [29] was already considering whether entropy
could be used as a metric (in the mathematical sense) as
early as 1965. A 1972 paper by Hellerman [30] employed
entropy to measure information in a computer’s memory as
a measure of computational work. However, possibly the first
use of entropy in the discussion of design was van Emden’s
1969 paper [31] and his later thesis [32]. Van Emden’s concern
was the use of a form of entropy (called “surplus entropy”,
or “entropy loading”) to decide how to decompose an object
into subcomponents. This work was taken up by Chanon who
showed [33], [34] how van Emden’s work could be employed
for the structuring of software. See also [35], [36], [37].

Since this early work, numerous authors have sought to
apply information theory concepts to software engineering.
A full review would be a paper in its own right. To list
some examples, judging the information-theoretic complexity
of software specifications was studied by Coulter et al. [38].
Bansiya et al. [39] modeled the complexity of object-oriented
systems using entropy. (See Tegarden et al. for a ‘metrics’
approach [40].) ‘Coupling’, the degree of interconnection or
dependency between software components, and ‘cohesion’,
the degree of internal interconnection, were modeled in in-
formation theoretic terms by Allen et al. [41], [42]. There
are also studies of apportioning complexity [43], [44] and
of the correlation between forms of code complexity and the
likelihood of errors [45], [46].

Research on using information theory based methods for
quantifying software continues, a recent paper by Sarkar et al.
[47] being one good example.

VII. EXAMPLES

A. Experiments in other fields

There should be no doubt that Cilibrasi’s implementation
of Li and Vitányi’s Similarity Metric has already proven its
utility and correctness. Amongst others, it has been applied
to program plagiarism detection [48], genomics [4], cross-
language textual similarity [49], and the classification of
musical styles [50]. Although a subsequent paper by Vitányi
[51] states that the program has also been applied to the
classification of programs written in the languages Ruby and
C, we have not found details of these experiments. In addition,
we are unaware of any descriptions of applications of these
techniques in the field of software engineering.
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Fig. 1. ncd operating on sources

B. Sample Experiment — The ‘slocate’ package

The open-source software package slocate [52] is designed
to catalogue and index (as the superuser) all files present in a
specified area of a filesystem but to answer queries such that
the visibility of files is filtered by the authorisation privileges
of the current software user. slocate is an ideal candidate for
one of our experiments: its code is short but performs fairly
complex operations; it has a long history with many publicly
available releases; and it has also been redesigned on at least
one occasion. Reference indices (for use in diagrams) and
source lengths in kilobytes for the releases of slocate that we
studied are as shown in table I.

TABLE I
slocate RELEASES, INDICES, SIZES (KILOBYTES)

Rel. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.1
Ind. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Size 26.626.724.023.929.731.332.270.372.372.770.773.682.691.392.067.4

1) Source Code: For each version, we applied the ncd
program from CompLearn to the concatenation of all “.h” and
“.c” files whose lengths were shown in table I. A plot of (half
of) the NCD similarity matrix is shown in figure 1.

2) Indexing Trace: Using the strace program which pro-
vides a listing of calls to system functions from user programs,
we created a trace (sequence of program calls) of the operation
of the versions of the slocate program creating a database on
the same data. Figure 2 shows a plot of (half of) the NCD
similarity values.

3) Search Trace: The strace program was again used to
produce a trace of system calls, this time for answering the
same search query on the database produced in the previous
experiment. Figure 3 shows the plot of (half of) the results of
running ncd on these traces.
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C. Analysis

Each of the figures shows a pairwise similarity between
different versions of slocate. The ncd similarity matrix is
(almost) symmetric and so values below (not on) the main
diagonal of the matrix have been zeroed to permit easier
viewing. Remember that NCD values close to zero denote
similarity and those close to one denote strong dissimilarity.

Let us examine figure 1. From left to right, the columns
represent the NCD values for increasing versions. For indices
1 to 7, we see a steep increase in the degree of dissimilarity
with increasing versions so that, above index 8, the degree
of dissimilarity forms a plateau in the top-left corner. From
index 8 onwards, we see (up the columns) increasing degrees

of dissimilarity leading to a ‘back wall’ for the final index.
This diagram tells us that the author was justified in his

versioning system since the discontinuities correspond to ma-
jor releases (2.0, 3.1). We can also see the gradual differences
between minor versions. We can claim that this is evidence
of good incremental design. We can further claim that this
is evidence of good structure since the changes introduced
between minor versions were permitted by the design without
engendering major modifications.

Figure 2 shows the results of comparing the (system) opera-
tions for building an index with each version of slocate being
run on the same input. Differences between operations for
minor releases of the 1.x code are very apparent. Differences
in operations for the 2.x series are more gradual and there
appears to be some similarity to the operations of the 3.x series
(forming the ‘back wall’ of the figure). We see that NCD is
detecting the right differences for our purposes.

Now examine figure 3 showing the result of a search on the
respective databases. Looking along the columns, indices 1 and
2 show that the first two versions behave differently from the
others. We can see another ‘ridge’ at index 5. The two previous
versions were ‘optimising’ the code whereas this version
adds functionality (globbing, greater compatibility with GNU
locate). We can also see a plateau between (horizontal) indices
6 and 10 for indices 11 to 15 indicating that the final releases
of the 2.x series behave differently from both the 1.x series and
earlier versions of the 2.x series. Again, we note the presence
of the ‘back wall’ in the diagram. The operations performed
by version 3.1 are clearly different from those of the 2.x series.

Finally, compare the diagrams with each other. We see
clear similarities between figures 1 and 2 and clear differences
between these two and figure 3. The building of the database
mirrors the versioning with little work being done on it
between minor releases. The bulk of the change we see is
in the search of the database even within versions.

Suppose a developer has data about their current project
similar to that presented here. The developer is aware of
the changes being made but may not be so aware of their
repercussions. By comparing current behaviour with that of
previous versions, the developer can see where a possibly
small change in the code results in a much larger change in
behaviour (that might not be immediately apparent).

These plots are clearly of great utility to both managers and
coders alike. For minimal investment of time and energy, it is
easy to see important aspects of change throughout the version
history of the project. The successful application of NCD to
strace logs we consider very promising but there are many
other applications for this technique.

The recent trace function method (TFM) [53], a successor
of the earlier trace assertion method [54], permits software
specification in terms of traces as do other formalisms such
as enumerative specification [55], [56], path expressions [57]
and the work of Broy [58]. This suggests the following.

Firstly, using simulation techniques applied to those spec-
ifications we can generate traces for the specified software.
Whereas our earlier experiments required working code and



the strace program, we can obtain the data for our comparisons
at the design stage thereby permitting the measurement of the
development progress and of the complexity of the software
before the implementation work has begun. We believe that
even the design should be done in incremental steps and these
tools will be helpful in measuring this. Given a sufficient body
of data, design complexity can be validated and properties of
future designs quantified before coding begins.

Secondly, Peters et al. [59] are seeking to encode program
specifications written using TFM in OMDoc [60] XML files.
These encodings of software specifications exist before the
implementations the specifications describe. Descriptions of
existing software can also be created using this encoding. In
future experiments, we will be interested to examine OMDoc
descriptions or specifications of software.

VIII. DISCUSSION, FUTURE WORK

The work of Li, Vitányi and Cilibrasi provides a fundamen-
tally new and theoretically justified approach that we can apply
to our problems. Its application in the field of software engi-
neering presents many opportunities to help practitioners do
a better job of creating quality software. There are numerous
additional applications of the techniques that we have shown.

• We can automate the monitoring of the evolution of code
as it moves through different phases of implementation,
testing and maintenance. This will allow us to track the
introduction of additional complexity or to see simplifi-
cations made without loss in functionality.

• Once an interface for an implementation is specified,
application of these methods will permit the comparison
of different implementations. We can compare internal
designs for different modules and identify similar mod-
ules as potential refactoring candidates.

• Given some estimate of the complexity of a design, we
will be better able to make management decisions about
the quantities of resources required to complete a given
design or programming task.

• Given a specification, we can implement that specification
in many possible programming languages. If we can find
a common representation of their execution output, we
can compare different languages to see if they aid or
hinder the creation of implementations.

• By measuring the modules that comprise the implemen-
tation, we will be able to make estimates of the relative
complexities of the code for those units. Since error
density has been shown to correlate with code complexity,
we will have better ideas of where to concentrate our
testing efforts and of where errors are likely to occur.

• Gathering requirements and creating usage scenarios al-
lows us to decide what needs to be created and to evaluate
whether a given task is viable. Given a suitable encoding,
the comparison of different sets of requirements for the
same project would permit some evaluation of relative
complexities before going on to design.

• The work of different coders or designers working to
a common specification can be compared using this

method. Planning for future change, a more experienced
designer might produce a more complex design. However,
even the ability to reveal this is of great utility.

• In addition we intuit connections with considerations of
coverage [61] that we would like to investigate.

We are aware that these suggestions do have some draw-
backs. The interpretation of these comparisons requires some
thought. An attempt to compare a ‘large’ set of documents
might fail for practical reasons. More importantly, however,
the question of the coding of the documents needs to be
considered. Vitányi has stated [51] that while the technique is
robust with respect to a change in underlying compressor types
(although see [62]), there are still situations in which a naı̈ve
application of the technique may fail. He states that further
research is necessary to examine the case where the input
strings are overly sensitive to the encoding used. Nevertheless,
we foresee that applying the Similarity Metric in software
measurement will provide many areas for future exploration
and are highly encouraged by our results so far.

IX. CONCLUSION

In this paper, we have shown that the application of the
similarity metric of Li and Vitányi (based on Kolmogorov
complexity theory) in the field of software engineering will
provide a theoretically sound basis on which to found software
measurements. We claim that having a theoretically justified
means of comparison of software documents, at many stages
in the software lifecycle, will have a beneficial effect on
the reproducibility and justifiability of measurement claims.
We have shown that using this method can provide useful
information for software engineers during design, testing and
maintenance. We have described several ways in which this
theory can be applied and, in future publications, we will
elaborate on our suggestions and their practical utilisation.
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