
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328115457

Documenting Simulink designs of embedded systems

Conference Paper · October 2018

DOI: 10.1145/3270112.3270115

CITATION

1
READS

310

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Leadership In Automotive Powertrain (LEAP) - Embedded Software View project

Model Management for Compliance and Reuse View project

Gordon Marks

McMaster University

2 PUBLICATIONS 6 CITATIONS

SEE PROFILE

Vera Pantelic

McMaster University

21 PUBLICATIONS 214 CITATIONS

SEE PROFILE

Mark Stephen Lawford

McMaster University

92 PUBLICATIONS 1,098 CITATIONS

SEE PROFILE

Gehan mustafa kamel Selim

McMaster University

19 PUBLICATIONS 299 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mark Stephen Lawford on 09 October 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/328115457_Documenting_Simulink_designs_of_embedded_systems?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/328115457_Documenting_Simulink_designs_of_embedded_systems?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Leadership-In-Automotive-Powertrain-LEAP-Embedded-Software?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Model-Management-for-Compliance-and-Reuse?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gordon_Marks?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gordon_Marks?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/McMaster_University?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gordon_Marks?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vera_Pantelic?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vera_Pantelic?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/McMaster_University?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vera_Pantelic?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Lawford?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Lawford?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/McMaster_University?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Lawford?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gehan_Selim3?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gehan_Selim3?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/McMaster_University?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gehan_Selim3?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Lawford?enrichId=rgreq-4a99268a70bfd914ac505092b34d599d-XXX&enrichSource=Y292ZXJQYWdlOzMyODExNTQ1NztBUzo2Nzk5MTQ0NDk2OTA2MjVAMTUzOTExNTY0NTk0MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Documenting Simulink Designs of Embedded Systems
Alexander Schaap, Gordon Marks, Vera Pantelic, Mark Lawford, Gehan Selim, Alan Wassyng,

Lucian Patcas

McMaster Centre for Software Certification, McMaster University

Hamilton, ON, Canada

{schaapal,marksgw,pantelv,lawford,selimg,wassyng,patcaslm}@mcmaster.ca

ABSTRACT
The importance of appropriate software design documentation has

been well-established. Yet in industrial practice design documen-

tation of large software systems is often out of date or entirely

lacking in large part due to the effort required to produce and main-

tain useful design documents. While model-based design (MBD)

partially addresses this problem, large complex models still require

additional design documentation to enable development and main-

tenance. This paper introduces tool support for documenting the

Software Design Description (SDD) of embedded systems developed

using MBD with Simulink. In particular, the paper proposes a tem-

plate for a SDD of a Simulink model. Then, the tool support we have

developed for semi-automatic generation of SDDs from the template

is introduced. The tool support integrates MathWorks’ Simulink

Report Generator and our previously developed Signature Tool that

identifies the interfaces of Simulink subsystems.

CCS CONCEPTS
• Software and its engineering→Maintaining software;Model-
driven software engineering; Software maintenance tools;

KEYWORDS
Software documentation, tools, Matlab/Simulink, model-based

design, Software Design Description, Simulink Report Generator

ACM Reference Format:
Alexander Schaap, Gordon Marks, Vera Pantelic, Mark Lawford, Gehan

Selim, Alan Wassyng, Lucian Patcas. 2018. Documenting Simulink Designs

of Embedded Systems. In ACM/IEEE 21th International Conference on Model
Driven Engineering Languages and Systems (MODELS ’18 Companion), Octo-
ber 14–19, 2018, Copenhagen, Denmark. ACM, New York, NY, USA, Article 4,

5 pages. https://doi.org/10.1145/3270112.3270115

1 INTRODUCTION
High-quality software documentation has been viewed by many

authors as a major factor in the successful development and main-

tenance of high-quality software [8–10]. In practice, however, soft-

ware documentation is often neglected due to cost/time pressures

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5965-8/18/10. . . $15.00

https://doi.org/10.1145/3270112.3270115

resulting in either a complete lack of documentation, or documen-

tation that is poorly organized, incomplete, ambiguous, inaccurate,

and not kept up-to-date during software maintenance [9].

Model-based design (MBD) has become a prevalent paradigm in

development of modern embedded systems, withMatlab/Simulink

as a widely used MBD environment across industries. In order for

model-based development to be successful in delivering software

that is fit for purpose and maintainable, it seems reasonable to apply

relevant software engineering practices in MBD with Simulink. In

particular, our experience working with large automotive compa-

nies employing MBD with Simulink confirms that improvements in

appropriate software documentation is likely to facilitate effective

and efficient maintenance of large production-scale Simulink mod-

els. A common reason for the lack of an adequate documentation

culture in MBD is the “model as documentation” perspective. The

analogous perspective plagued traditional software engineering

expressed by the “code is documentation” motto [8]. Arguments

against the perspective that models are documentation are anal-

ogous to the ones presented in [8], applied to models instead of

code: production-size models—similar to complex code—are noto-

riously hard to understand without proper abstractions. Different

abstractions offering complementary views of models are essential

in developing and maintaining models effectively and efficiently.

While good software engineering practices dictate that a number

of documents be produced during software development, the focus

of this work is on a model’s Software Design Description (SDD), es-
sential in development and maintenance of large Simulink models

of embedded systems. The SDD details the model’s interface for

users of the model and how the model implements its requirements

for developers of the model by describing the internals of the model.

The term Software Design Description is borrowed from traditional

software engineering terminology. In this paper, we suggest a tem-

plate for the SDD of Simulink models of an embedded system, and

propose semi-automated tool support for the SDD’s production.

Although we have identified a strong need in industry for SDD

templates for Simulink models, there seems to be little existing

work on documenting Simulink models. Rau [1] describes an in-

tegrated approach to documenting Simulink models, however the

resulting tool is not available. In particular, the work advocates

integration of a model and documentation (making documenta-

tion available from the model) so that the two can be maintained

simultaneously. Further, Rau emphasizes the need to precisely de-

fine what is to be documented and how, so that developers can

fill in the provided fields. It appears MathWorks has incorporated

many of Rau’s suggestions into Simulink Report Generator, a tool
that automatically generates documentation for Simulink models

and simulations. In particular, the introduction of DocBlocks into

Simulink allows developers to document directly in a model. In

https://doi.org/10.1145/3270112.3270115
https://doi.org/10.1145/3270112.3270115

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark A. Schaap et al.

fact, we use Simulink Report Generator to support the genera-

tion of the design documentation suggested in this paper. While

Simulink Report Generator itself offers a template for a model’s

design documentation, the information in the template is very low-

level, automatically extracted from executable Simulink models.

Consequently, the resulting document offers very little abstraction

from the Simulink implementations, which limits its use in under-

standing, maintaining, and testing designs. This is exactly what this

paper hopes to rectify by proposing a SDD template and automating

generation of SDDs based on the template with an in-house tool

that leverages Simulink Report Generator.

It is also worth noting that our work, although inspired by experi-

ence in the automotive industry and applied to automotive software,

generalizes to documenting Simulink models across industries.

The main contributions of the work presented in this paper are:

(1) We define a template for SDDs of Simulink models of embedded

systems. Our experience points to the lack of the definition of

documentation content as a major obstacle to effective utilization

of documentation in software development. First, developers are

often not aware of what information should be included in the

documentation. This is especially true for domain experts, experts

in a specific field of application (power electronics, motor control,

etc.), who typically are unfamiliar with software engineering con-

cepts. Second, even if a template for documentation exists, it often

only loosely defines the desired content. This issue leads to incon-

sistent documentation across different Simulink models within the

same embedded system, effectively making collaboration between

stakeholders very hard, even impossible, as the stakeholders do

not know where to find the needed information.

(2) We developed a tool, the Simulink Design Documenter, to highly
automate production of SDDs for Simulink models. The tool uses

MathWorks’ Simulink Report Generator and an in-house tool, the

Signature Tool [2, 7], to partially automate production of SDDs from

Simulink models. Simulink Design Documenter is available via

Matlab Central
1
. A demo for the tool is available via YouTube

2
.

The remainder of this paper is organized as follows. Section 2

presents the SDD template and illustrates it with an example. Sub-

sequently, Section 3 highlights the tool support provided for our

template. Finally, Section 4 presents conclusions.

2 SDD TEMPLATE
It seems obvious that the content of a Simulink SDD can draw par-

allels with a SDD in traditional software engineering. Therefore,

existing recommendations on traditional software design documen-

tation can be adopted, including, e.g., the ones given in standards

such as [4]. The running example in this paper will be a Simulink

model designed to estimate the rotor position in an electric motor

of a hybrid electric vehicle. The system
3
was developed as part of

a research project with a large automotive OEM (Original Equip-

ment Manufacturer). The focus is on the signal-injection subsystem

shown in Fig. 1, but the approach is applicable to the whole model.

The proposed SDD table of contents is shown in Listing 1.

1
https://www.mathworks.com/matlabcentral/fileexchange/63252

2
https://youtu.be/WBmHbhPmgRs

3
The term “system” in this section is used to indicate both a Simulink model and a

subsystem.

Listing 1: Outline of SDD generated by the tool
Title Page

Changelog

Table of Contents

1 Introduction

1.1 Document Purpose

1.2 Scope

2 Preliminaries and Notation

2.1 Acronyms

2.2 Definitions

2.3 Notation

3 Design Description of "System of Interest"

3.1 Purpose

3.2 Interface

3.2.1 Inputs

3.2.2 Outputs

3.2.3 Updates

3.3 Calibrations

3.4 "System of Interest" Requirements Specification

3.5 Internal Design

3.5.1 System Snapshot

3.5.2 Subsystems and Functions

3.5.3 Local Declarations

3.5.4 Description

3.5.5 Rationale

3.5.6 Anticipated Changes

3.5.7 Design Description of Child Subsystem 1

(of "System of Interest")

<Structure recurses back to Section 3.1>

3.5.8 Design Description of Child Subsystem 2

(of "System of Interest")

<Structure recurses back to Section 3.1>

...

4 Appendix

The remainder of this section describes items in Listing 1.

Title Page & Changelog. The sections are included as traditional

parts of live documentation.

Introduction. Chapter 1 contains the purpose and the scope of

the document, not the purpose and the scope of the Simulink design.

An example purpose:

The purpose of this document is to provide a detailed design de-

scription for this system. To provide the description, the system

will be described in a hierarchical fashion starting with the top-

level and progressively working toward lower level descriptions

of the most significant subsystems of the system.

Preliminaries & Notation. Chapter 2 contains subsections for def-
initions, acronyms, and the notation used in the document. Each

subsection is in turn divided into general and system specific sub-

sections. An example of the definitions is shown below:

2.2 Definitions.
General Definitions.

State of Charge (SOC): The percentage of usable charge

(Ampere-hours) contained in a battery relative to its usable

capacity when fully charged. While 0% and 100% are not ab-

solute limits, they are recommended extremes for cell state.

From the user’s perspective, it is the equivalent of a fuel gauge

for (hybrid) electric vehicles. The inverse of the SOC is Depth

of Discharge (DoD, also a percentage). If the battery is fully

charged, the SOC is 100% and the DoD is 0%.

System-Specific Definitions.

N/A

https://www.mathworks.com/matlabcentral/fileexchange/63252
https://youtu.be/WBmHbhPmgRs

Documenting Simulink Designs of Embedded Systems MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

Design Description. Chapter 3 documents the design of the model

and its constituent subsystems. It is divided into subsections cov-

ering Purpose, Interface, Calibrations, Requirements Specification,

and Internal Design.

Purpose. A succinct description of what the system is designed

to accomplish, e.g.:

This subsystem injects sinusoidal signals and voltage pulses,

which are to be utilized for the motor for rotor position estima-

tion and magnetic polarity detection.

Interface. A Simulink system has Inports and Outports—explicit

inputs and outputs of the system, respectively. Further, there exist

two mechanisms in Simulink that result in implicit data flow: Data

Stores and Goto/Frommechanisms. A detailed analysis of data flow

mechanisms in Simulink can be found in [2]. The interface of a sys-

tem in a SDD captures both explicit and implicit data flow through

the system, and includes lists of all the system’s inputs, outputs

and updates [2]. Inputs include both Inports and implicit inputs

corresponding to Data Stores defined outside of the system that

are only read from in the current system or in any of its children,

as well as Froms reading from Gotos defined and located outside

of the system. Similarly, outputs include Outports and the implicit

outputs corresponding to Data Stores defined outside the system

that are only written to in the current system or any of its children,

as well as Gotos located in the system or any of its children, acces-

sible from outside of the system. Updates include all Data Stores

defined outside of the system that are both read from and written

to in the system or any of its children. Further, for each of the data

items in the interface, its data type, range (if applicable), units and

description are included. An example is shown below:

3.5.8.4.8.2. Interface.

3.5.8.4.8.2.1. Inputs.

Table 3.3. Inports

Name Data Type Min Max Unit Description
State uint16 0 1 N/A Boolean to enable or

disable the inverter.

(From theCANbus.)

Data Store Reads.

N/A

Global Froms.

N/A

Scoped Froms.

N/A

Calibrations. Lists the model’s configurable constants. The sec-

tion is not applicable to subsystems, but only the top-level system

(model) being documented.

Requirements Specification. Documents black-box behaviour of a

system. Maintaining traceability between the documented require-

ments and the components of the design that fulfill them is very

important. When the Simulink system implements requirements

documented in an external document (in e.g., MS Word), the devel-

oper should create traceability links between blocks in the system

and the requirements document. Any links to external requirements

should be displayed in a table:

Link# Link Description Link Target (Document)
1. “Estimate rotor position with-

out encoder sensor”

..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx..\..\..\requirements\srs.docx

Internal Design. Describes the internal details of the Simulink

system. It contains: the System Snapshot, Subsystems and Func-

tions, Local Declarations, Description, Rationale, and Anticipated

Changes sections as well as nested Design Descriptions of any

subsystems under the current system that are useful toward under-

standing the overall system.

System Snapshot. This should be an image of the system of in-

terest as shown in Fig. 1.

Figure 1: Example System Snapshot

Subsystems and Functions. Contains a list of subsystems, libraries,

model references and functions included in the system, as illustrated

below for the system from Fig. 1:

Block Description

MATLAB

Function

Determine when to inject a voltage pulse or high fre-

quency sinusoidal wave.

Local Declarations. Includes a table of declarations local to the

system including local data store declarations and Goto Tag Visibil-

ity blocks that define accessibility of Goto block tags.

Description. A description of how the internal structure of the

system fulfills its purpose. It should describe internal algorithms,

signals, and constants. For example:

If the ‘State’ boolean input is 0 (or false), t (time) stays at 0. If

‘State’ is 1, then time (t) monotonically increases by TsTsTsTsTsTsTsTsTsTsTsTsTsTsTsTsTs until it
reaches 1 (at which time it is reset to 0).

Note that when State changes from 1 to 0, the time stays con-

stant for one step. This does not make a difference for the end

result. All other outputs are calculated based on time and state.

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark A. Schaap et al.

Rationale. Although there exists wide consensus on the impor-

tance of capturing and using a design rationale [5, 6], the concept is

still typically neglected in industrial software engineering practice.

Design rationale captures reasons behind design decisions. The ra-

tionale includes the alternatives that were considered in the design

process, and presents justification for selecting a design over the al-

ternatives. Rationale captures important knowledge about a design,

especially in organizations where there is a high staff turnover. It

enables efficient maintenance by saving developers’ time on explor-

ing design alternatives that a previous developer (or perhaps the

same one) already considered. Documenting rationale also saves

valuable resources during design reviews: again, the reviewer may

consider alternatives and compare them to the final design. The

rationale can be captured with different levels of formality. While

most of the research in the area focuses on an informal capture of

design rationale, there has been some work done on a formal repre-

sentation of design rationale for model-based designs [3]. However,

how to document the rationale is not the focus of this paper. An

example rationale is listed below:

3.5.8.4.8.4.6. Rationale.

The decision was made to inject voltage on the d-axis instead

of the q-axis because experimentation demonstrated that this

yields better results. Time increases monotonically and stays

constant for one time step before dropping to zero when State

changes to 0. This has no effect on the result, and is a result

of an iterative design process. TheMatlab function vol_pulse

redefines Ts, which should be provided as an input by a con-

stant block reading from the accompanyingMatlab file. This

function is structured for clarity and ease of experimentation,

not efficiency. vd_sin is always calculated, again for simplicity

rather than efficiency (but could be done conditionally instead).

Anticipated Changes. Describes what portions of the system are

likely to change so that the design and implementation can accom-

modate such changes.

Appendix. The last chapter is Appendix and may contain any

supplementary information as defined by the developer.

Of course, the proposed template will not fit the needs of every

embedded system or organization. Instead, it is intended as a start-

ing point for a template that can be adapted to suit particular needs.

Section 3.3 discusses template customization.

3 TOOL SUPPORT
In this section, we discuss the tool, the Simulink Design Docu-

menter, that automates the production of a SDD from the template

described in the previous section. The Simulink Design Documenter

leverages two tools: MathWorks’ Simulink Report Generator and

our Signature Tool. First, we will introduce the leveraged tools.

Then, we will describe Simulink Design Documenter.

3.1 Supporting tools
3.1.1 Simulink Report Generator. Simulink Report Generator is

a MathWorks tool that generates reports from Simulink models and

simulations in a variety of file formats. Simulink Report Generator

Main Setup File (.rpt)

Simulink Report Generator

GenSDD.m script Configuration File (.m)

Other Setup Files (.rpt) Matlab scripts (.m)

Signature Tool Simulink model

reads

calls

runs

callscalls

call

call

extracts

from
extracts from

extracts

from

extracts

from

Figure 2: Architecture of Simulink Design Documenter

provides a graphical interface, which is used to modify report setup

files (.rpt files) that specify what items the user wants to include

in a report. To do this, the user selects and configures a series

of built-in “components” that represent commands to execute in

constructing a specific report. These components are analogous to

lines of code in traditional imperative programming languages. For

example, the “System Snapshot” component automatically adds a

snapshot of a given Simulink system into the report.

The choice of Simulink Report Generator as the main tool to

support the generation of SDDs from our template was natural—

Simulink Report Generator appeared to be the only commercially

available tool capable of significantly aiding in the documentation

process for Simulink systems.

3.1.2 Signature Tool. The Signature Tool [2, 7] is an in-house

tool that extracts the interface of Simulink systems. The Simulink

Design Documenter uses the Signature Tool to generate the ta-

bles within both the Interface and Local Declarations sections of

generated SDDs.

3.2 Simulink Design Documenter
Figure 2 provides an architectural view of the Simulink Design

Documenter. The tool is run through the GenSDD.m script which

reads the Configuration File and uses Simulink Report Generator

to run the Main Setup File and create the SDD. The Main Setup

File is created via Report Explorer (the GUI for Simulink Report

Generator). Other Setup Files (also created using Report Explorer)

are nested within the main one and are used to ensure consistent

formatting as well as to construct the hierarchy of sections in the

Design Description portion of the generated document. The Other

Setup Files use the Signature Tool to get data for the Interface and

Local Declarations sections of the SDD. Finally, Matlab scripts

are used to help with formatting and structuring the hierarchy of

sections.

Documenting Simulink Designs of Embedded Systems MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

3.3 Using Simulink Design Documenter
This section explains how to generate a SDD using the Simulink

DesignDocumenter. Amore complete and detailed guide to creating

SDD documents with the Simulink Design Documenter comes with

the tool itself.

The first step is to create a configuration file for the system

being documented by modifying a default file that comes with the

tool. Configuration options allow the developer to set the author

name(s), add an image to the title page, etc. The most notable option

is the selection of subsystems to document. By default, the tool will

generate documentation for all subsystems within the top three

layers in the subsystem hierarchy of the system being documented.

Once the configuration file is in place, the user needs to fill out

the Purpose, Internal Design, Rationale, and Anticipated Changes

DocBlocks for the systems being documented. The content of each

DocBlock will be copied to the corresponding section of the SDD

once the SDD is generated. The content within DocBlocks can be in

either ASCII text or RTF format. The Simulink Design Documenter

provides a library of pre-configured DocBlocks that correspond

to different sections and explains what content the user should

provide. For example, a Purpose DocBlock is included for the overall

system and each subsystem being documented. Changelog, System

Specific Acronyms, System Specific Definitions, and System Specific

Notation sections from the template are also added via DocBlocks.

Of course, for each of these sections, only one block is needed for

the whole model rather than per subsystem, because they pertain

to the whole SDD.

The other introductory sections, the General Acronyms, General

Definitions, and General Notation sections, can be included by

creating corresponding ASCII text or RTF files onMatlab’s search

path. The Document Purpose and Scope can be created similarly

potentially leveraging default content provided with the tool. These

sections are meant to include general information which would

apply across numerous SDDs within an organization.

Requirements for a system are included via a DocBlock and/or

RMI (Requirements Management Interface) links to external doc-

umentation, such as requirements and/or testing documentation.

These links are only included when the appropriate option is set in

the configuration file.

The system’s calibrations may be added by indicating its calibra-

tions file in the configuration file.

The interface tables and local declarations are included auto-

matically and may show block names, physical units, minimum

value, maximum value, data type, and description. Also, the content

of sections Title Page, Table of Contents, System Snapshot, and

Subsystems and Functions is automatically generated.

Once the aforementioned DocBlocks, RMI links, configurations,

and external documents are in place, the tool automatically gen-

erates an SDD following the structure of Listing 1. Rerunning the

tool regenerates the document from scratch and overwrites the

previously generated document.

In order to customize the template itself, the developers need

to edit the tool’s report setup files, or other files included with the

Simulink Design Documenter. For example, the changelog table

skeleton can be edited using the familiar MS Word interface. As

another example, a developer might want to swap two sections

within the report. This would require only a simple modification:

the developer would use the Report Explorer to locate the groups

of components which generate each section within the appropri-

ate report setup file(s), and would then reorder those components

appropriately. Similar effort would be required for the addition of

a new section into the report: this modification entails copying

of components which create an existing section and then pasting

them into the desired location in the report setup file, and changing

the name of the section.

The tool has several limitations. For example, Simulink Report

Generator lacks flexibility in formatting the generated documents.

For example, the spacing between sections is often larger than

desired.

4 CONCLUSION
In our collaboration with large automotive companies, we have

witnessed how difficult and time consuming it is to document, ade-

quately, complex software designs in Simulink models. This work

addresses the issue by defining suggested content and format of

the design documentation of Simulink models for large, complex

embedded systems. This enables greater consistency within a doc-

ument, as well as between documents inside an organization. The

tool presented in this paper effectively removes much of the man-

ual documentation burden from developers. Developers still need

to concern themselves with providing relevant content, but the

guidance provided by the tool helps even in this regard. Future

work includes adding a GUI to improve the tool’s usability, and

performing the evaluation of the tool in an industrial setting.

REFERENCES
[1] Andreas Rau. [n. d.]. Integrated Specification and Documentation of SIMULINK

Models. ([n. d.]). http://www.it-designers.info/uploads/media/iac2002.pdf Inter-

national Automotive Conference.

[2] Marc Bender, Karen Laurin, Mark Lawford, Vera Pantelic, Alexandre Korobkine,

Jeff Ong, Bennett Mackenzie, Monika Bialy, and Steven Postma. 2015. Signature

Required: Making Simulink Data Flow and Interfaces Explicit. Science of Computer
Programming 113, Part 1 (2015), 29–50. https://doi.org/10.1016/j.scico.2015.07.005

Model Driven Development (Selected & extended papers from MODELSWARD

2014).

[3] Adriana Pereira De Medeiros, Daniel Schwabe, and Bruno Feijó. 2005. Kuaba

ontology: design rationale representation and reuse in model-based designs. In

Conceptual Modeling–ER 2005. Springer, 241–255.
[4] IEEE. 2009. IEEE Standard for Information Technology – Systems Design –

Software Design Descriptions. IEEE Std 1016-2009 (Revision of IEEE Std 1016-1998)
(July 2009), 1–58.

[5] A. P. J. Jarczyk, P. Loffler, and F. M. Shipmann. 1992. Design rationale for software

engineering: a survey. In Proceedings of the Twenty-Fifth Hawaii International
Conference on System Sciences, Vol. ii. 577–586 vol.2. https://doi.org/10.1109/

HICSS.1992.183309

[6] N. G. Leveson. 2000. Intent specifications: an approach to building human-

centered specifications. IEEE Transactions on Software Engineering 26, 1 (Jan

2000), 15–35. https://doi.org/10.1109/32.825764

[7] Vera Pantelic, Steven Postma, Mark Lawford, Monika Jaskolka, Bennett Macken-

zie, Alexandre Korobkine, Marc Bender, Jeff Ong, Gordon Marks, and Alan

Wassyng. 2018. Software engineering practices and Simulink: bridging the gap.

International Journal on Software Tools for Technology Transfer 20, 1 (01 Feb 2018),
95–117.

[8] David Lorge Parnas. 2011. Precise Documentation: The Key to Better Software.
Springer Berlin Heidelberg, Berlin, Heidelberg, 125–148. https://doi.org/10.1007/

978-3-642-15187-3_8

[9] David Lorge Parnas and Paul C Clements. 1986. A rational design process: How

and why to fake it. IEEE transactions on Software Engineering 2 (1986), 251–257.

[10] Ian Sommerville. 2001. Software documentation. Software Engineering 2 (2001),

143–154.

View publication statsView publication stats

http://www.it-designers.info/uploads/media/iac2002.pdf
https://doi.org/10.1016/j.scico.2015.07.005
https://doi.org/10.1109/HICSS.1992.183309
https://doi.org/10.1109/HICSS.1992.183309
https://doi.org/10.1109/32.825764
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://www.researchgate.net/publication/328115457

	Abstract
	1 Introduction
	2 SDD Template
	3 Tool Support
	3.1 Supporting tools
	3.2 Simulink Design Documenter
	3.3 Using Simulink Design Documenter

	4 Conclusion
	References

