
Application of Tabular Methods to the Specification and

Verification of a Nuclear Reactor Shutdown System

M. Lawford (lawford@mcmaster.ca)∗

Dept. of Comp. and Software, McMaster University, Hamilton, ON, CANADA L8S 4L7

P. Froebel (peter.froebel@ontariopowergeneration.com)
G. Moum (g.moum@ontariopowergeneration.com)

Ontario Power Generation, 700 University Ave., Toronto, ON, CANADA M5G 1X6

August 20, 2001

Abstract. This paper describes the use of tabular methods at Ontario Power Generation
Inc. (OPGI) 1 on the Darlington Nuclear Generating Station Shutdown System (SDS) Trip
Computer Software Redesign Project. We first motivate the selection of tabular methods and
provide an overview of the Systematic Design Verification (SDV) procedure. After reviewing
some preliminary concepts, the paper describes how the Software Engineering Standards and
Methods (SESM) Tool suite is used with SRI’s automated proof assistant, PVS, to provide tool
support for the use of tabular methods in the software engineering process. Examples based
upon the Systematic Design Verification of an actual SDS subsystem are used to illustrate
the benefits and limitations of the current implementation of the formal method. Finally, the
paper discusses related work, draws conclusions regarding the effectiveness of the method and
examines how its limitations can be addressed by further theoretical and applied work.

Keywords: Safety Critical Software, Tabular Methods, Formal Specification and Verification,
Theorem Proving, PVS

1. Introduction

The main purpose of this paper is to provide a tutorial introduction to the
application of tool supported tabular methods to the specification and verifi-
cation of safety critical software. Emphasis is placed on how to make the method
practical. The authors are of the opinion that it is important to make such formal
methods accessible to practicing engineers to improve the quality of both safety
critical software and formal methods. A secondary goal is to make formal methods
theoreticians aware of some of the implementation issues that must be addressed
to make formal methods widely applicable to industrial software applications.
To achieve these goals we will examine the Systematic Design Verification (SDV)
procedure that was applied as an integral part of the software development process

1 Ontario Power Generation Inc. is the electricity generation company created from Ontario
Hydro on April 1, 1999.

∗ Partially supported by the Natural Sciences and Engineering Research Council of Canada.

c© 2001 M. Lawford & Ontario Power Generation. Printed in Canada.

tables.tex; 20/08/2001; 16:52; p.1

2 M. LAWFORD, P. FROEBEL AND G. MOUM

for the Darlington Nuclear Generating Station Shutdown System (SDS) Trip
Computer Software Redesign Project. Henceforth we will refer to this project as
the SDS Redesign Project.

Ontario Power Generation Inc. (OPGI) and Atomic Energy of Canada Limited
(AECL) have jointly defined a detailed engineering standard to govern the spec-
ification, design and verification of safety critical software systems. The CANDU
Computer Systems Engineering Centre of Excellence Standard for Software Engi-
neering of Safety Critical Software [17] states the following as its first fundamental
principle:

The required behavior of the software shall be documented using mathematical

functions in a notation which has well defined syntax and semantics.

The current implementation of the software engineering process makes extensive
use of tool supported tabular methods. It results in the production of a coher-
ent set of documents that allow for the static analysis of the properties of the
requirements, described in the Software Requirements Specification (SRS), and
then verifies the design, described in the Software Design Description (SDD),
against the requirements.

While proponents of formal methods have been advocating their use in the
development and verification of safety critical software for over two decades
[26, 12, 28], there have been few full industrial applications utilizing rigorous
mathematical techniques. This is in part due to industry’s perception that formal
methods are difficult to use and fail to scale to “real” problems. To address these
concerns, a method must supply integrated tool support to automate much of
the routine mechanical work required to perform formal specification, design and
verification.

There have been some notable industrial and military applications of tool
supported formal methods to software systems requirements analysis (e.g., [21,
7, 11, 3]), though typically the formal methods advocates were not given the op-
portunity to fully integrate their techniques with the overall software engineering
process. As a result these applications required at least some reverse engineering
of existing requirements documents into the chosen formalism. A potential prob-
lem of this scenario is that two “specifications” may result, the original, often
informal, specification used by developers, and the formal specification used by
verifiers. Rather than focusing on requirements analysis, the part of the software
engineering process presented here focuses on verifying that a design meets the
specified software requirements using documents that, from the start, have been
designed for use with the tools of the formal method.

The SDS Redesign Project represents one of the first times that a software
engineering process has been designed with the application of tool supported
formal methods to specification and verification as a primary goal. This change in
focus was necessitated by regulatory requirements, a situation that is becoming

tables.tex; 20/08/2001; 16:52; p.2

APPLICATION OF TABULAR METHODS 3

increasingly common for industries utilizing software in safety critical applica-
tions. The major factors considered in choosing a particular formal method for
the Redesign Project were:

− learning curve and ease of understanding

− ability to provide tool support

− previous history indicating the ability to successfully scale to industrial ap-
plications

We now address these three points in more detail.

Since they are frequently used in many settings and provide important visual
information, tables are easily understood by domain experts, developers, testers,
reviewers and verifiers. Other methods such as VDM or Z utilize unfamiliar nota-
tion and special languages with a significant learning curve [35]. As we describe
later, the Systematic Design Verification (SDV) procedure avoids this problem
through the use of tabular notation in both the requirements and design docu-
ments utilized by all project team members. To create the tabular specifications,
custom “light-weight” formal methods tools (in the sense of [6, 10]) are used
to help create and debug the tables from within a standard word processor. To
perform the verification these tools then extract the tables from the documents
and generate input files for SRI’s Prototype Verification System (PVS) auto-
mated proof assistant [33]. Further explanation of the tool support is provided in
Section 3.4.

OPGI had strong evidence that a verification procedure employing tabular
methods would meet the requirements of the Redesign Project. Prior to the
Redesign Project, OPGI successfully used manual manipulation of tables with an
earlier version of the same verification procedure detailed in Section 3 to verify
a smaller scale Digital Trip Meter system [23]. The creation of the specialized
tools that allowed verification to be done with the help of PVS played a large
role in making the method feasible for the larger Redesign Project. A further
reason for the adoption of tabular methods is that they have been successfully
applied to a wide variety of applications. In particular, they have been used
successfully with PVS on problems such as the verification of hardware division
algorithms similar to the one that caused the Pentium floating point bug [31].
Further description of the tools support and rationale for OPGI’s choice of tools
is provided in Section 3.4.

Tabular methods are well suited to the documentation of the SDS control
functions that typically partition the input domain into discrete modes or oper-
ating regions. The examples in Section 4 aptly demonstrate this property while
illustrating some of the other major benefits of this, and other, tool supported
formal methods, including providing:

tables.tex; 20/08/2001; 16:52; p.3

4 M. LAWFORD, P. FROEBEL AND G. MOUM

− Independent checks which are unaffected by the verifier’s expectations,

− Domain coverage - Tools can often be used to check all input cases - some-
thing that is not always possible or practical with testing,

− Detection of implicit assumptions and ambiguous/inconsistent specifications,

− Additional capabilities such as the generation of counter examples for de-
bugging, type checking, verifying whole classes of systems, etc.

The examples used to illustrate these points are not contrived. They are based
upon real examples from the SDS Redesign Project, although they have been
simplified to eliminate unimportant details that would distract the reader from
key concepts.

Section 2 provides an overview of the basic concepts required to understand the
tabular methods examples from the SDS Redesign Project. Section 3 describes
how a functional version of the 4-variable model of [30] can be decomposed to
facilitate tool support and to reduce the manual effort required to perform and
document the specification and verification tasks. It also describes the underlying
semantics of our model and explains how the Software Engineering Standards
and Methods (SESM) Tool suite is used with PVS to provide tool support for
the use of tabular methods throughout the software engineering process and the
Systematic Design Verification (SDV) procedure in particular. Examples based
upon the verification of an actual SDS subsystem are employed in Section 4 to
illustrate the benefits and limitations of the current implementation of the formal
method and tools. Section 5 provides discussion of related work focusing on the
application of tool supported formal methods to industrial control software design.
Finally, in Section 6, the paper draws conclusions regarding the effectiveness of the
method and examines how its limitations can be addressed by further theoretical
and applied work.

2. Preliminaries

In this section we define the notation we will use throughout the remainder of the
paper. We review the key principles of sequent calculus and tabular specifications
that will allow the reader to interpret the examples and finally we provide a brief
overview of the support for analysis of tabular specifications available in PVS.

2.1. Notation

Functions and relations are shown in italics (e.g., f , REQ). All sets of time
series vectors from the 4-variable model are shown bold (e.g., BM). All other
mathematical terms are shown in italics (e.g., bm ∈ BM).

tables.tex; 20/08/2001; 16:52; p.4

APPLICATION OF TABULAR METHODS 5

For a set Vi, we will denote the identity map on the set Vi by idVi
(i.e., idVi

:
Vi → Vi such that vi 7→ vi). Given functions f : V1 → V2 and g : V2 → V3, we
will use g ◦ f to denote functional composition (i.e., g ◦ f(v1) = g(f(v1))). The
cross product of functions f : V1 → V2 and f ′ : V ′

1 → V ′
2 , defines a function

f × f ′ : V1 × V ′
1 → V2 × V ′

2 such that (v, v
′)

f×f ′

7→ (f(v), f ′(v′)).

Denote the set of all equivalence relations on V by Eq(V). Any function
f : V → R induces an equivalence relation ker(f) ∈ Eq(V), the equivalence
kernel of f , given by (v1, v2) ∈ ker(f) if and only if f(v1) = f(v2). We define
the standard partial order on equivalence relations as follows. Given equivalence
relations θ1, θ2 ∈ Eq(V), we say that θ1 is a refinement of θ2, written θ1 ≤ θ2, iff
(v, v′) ∈ θ1 implies (v, v

′) ∈ θ2 for all (v, v
′) ∈ V × V . We can now formally state

a basic existence claim for functions that will be used later in Section 4.2 when
we discover that a functional specification is unimplementable as stated.

Claim 1. Given two functions with the same domain, f : V1 → V3 and g : V1 →
V2, there exists h : V2 → V3 such that f = h ◦ g iff ker(g) ≤ ker(f).

2.2. The PVS Sequent Calculus

In this subsection we define the logical notation we will use and provide a brief
overview of the properties of the PVS sequent calculus that are required to
interpret the examples of Section 4. The reader is referred to [33] for a more
detailed introduction to PVS.

Let Pi, i = 1, . . . n and Qj, j = 1, . . . ,m be formulas in higher order logic and
let ` denote syntactic entailment. Henceforth we will use ¬P1, P1∧P2 and Q1∨Q2

to denote negation, conjunction and disjunction respectively. We will use P1 ⇒ Q1

as an abbreviation for ¬P1 ∨Q1 while the special symbols > and ⊥ will be used
to denote TRUE and FALSE. To reduce the number of parentheses required
to write our formulas we assume the following decreasing order of precedence of
operations: ¬,∧,∨,⇒.

In general when trying to prove properties of software, we will assume prop-
erties regarding the system inputs are all true (the Pi’s), and try to prove one
or more properties regarding the output (one or more Qj’s) is true. We formally
write, P1, P2, . . . , Pn ` Q1 ∨ Q2 ∨ . . . ∨ Qm, or equivalently P1 ∧ P2 ∧ . . . ∧ Pn `
Q1 ∨Q2 ∨ . . . ∨Qm.

tables.tex; 20/08/2001; 16:52; p.5

6 M. LAWFORD, P. FROEBEL AND G. MOUM

In sequent calculus this is written as:

P1 ∧ P2 ∧ . . . ∧ Pn

Q1 ∨Q2 ∨ . . . ∨Qm
or equivalently

P1

P2
...
Pn

Q1

Q2
...

Qm

(1)

In the second “sequent”, there are implicit ∧’s between the premises and implicit
∨’s between the conclusions. We will use sequent and equivalent standard logical
notation interchangeably throughout the paper.

Definition 1. For the sequents in (1) the characteristic formula is P1∧ . . . Pn ⇒
Q1 ∨ . . . Qm.

Note that the characteristic formula is a logical theorem iff the sequent is provable.

Below are two special cases of sequents:

(i)
Q1
...

Qm

(ii) P1
...
Pn

(2)

Case (2)(i), when there are no premises, corresponds to showing that the disjunc-
tion of the conclusions is a logical theorem (` Q1 ∨ . . .∨Qm), while (2)(ii), when
there are no conclusions, corresponds to proving that the premises are inconsistent
(P1 ∧ . . . ∧ Pn ` ⊥).

2.2.1. Proofs in PVS Sequent Calculus

Proofs are done by transforming the sequent until one of the following forms is
obtained:

...
P

P
...

or

...

>
...

or

...
⊥
...

(3)

The sequent transformations used in sequent calculus proofs can all be translated
to proof rules in natural deduction or other axiomatizations of logic and vice

tables.tex; 20/08/2001; 16:52; p.6

APPLICATION OF TABULAR METHODS 7

versa. The following are sequent transformations that we will make use of in the
examples.

Negations occurring at the top level in premises of conclusion can be eliminated
(or added) by moving the formula to the other side of the sequent and dropping
(adding) the negation:

(i)

P1

¬Q
Q1

Q2

⇐⇒

P1

Q

Q1

Q2

(ii)

P1

¬P
Q1

Q2

⇐⇒

P1

P

Q1

Q2

(4)

The above sequent transformation rules are implemented in PVS as part of such
commands as FLATTEN.

When using sequent calculus, it is common to split a proof into smaller proofs
or subgoals. This can be done by the two transformations shown in (5) below:

(i)
...

Q1 ∧Q2
...

↙ ↘
...
Q1
...

...
Q2
...

(ii) P1 ∨ P2
...
...

↙ ↘
P1
...
...

P2
...
...

(5)

The transformation (5)(i) uses the fact that, P1, . . . , Pn ` Q1∧Q2 iff P1, . . . , Pn `
Q1 and P1, . . . , Pn ` Q2, to “split” ∧ in the conclusions into two subproofs.
Similarly it is possible to split ∨ in the premises into two subgoals since P1∨P2 ` Q

iff P1 ` Q and P2 ` Q

The splitting transformations are implemented by the low level PVS com-
mand SPLIT. As mentioned above, these and other transformations, are used
to transform the sequent and all of its subgoals into one of the forms in (3).
While typically many of these low level commands are combined into a single
high level proof step or “strategy” in PVS, a thorough understanding of these
low level sequent transformations is useful for understanding how PVS proofs
work and what it means when they fail. We now consider how it may be possible
to interpret a sequent when it is not possible to reach one of the final forms in
(3).

2.2.2. Unprovable Sequents and Counter Examples

Suppose we wanted to use sequent calculus to check if the following formula is a
logical theorem:

(Q⇒ P1 ∨ P2) ∧ P1 ∧ (P2 ⇒ Q)⇒ Q

tables.tex; 20/08/2001; 16:52; p.7

8 M. LAWFORD, P. FROEBEL AND G. MOUM

Using the fact that (Pi ⇒ Q) ⇔ (¬P ∨ Q) and applying in sequence the
transformations (1), (4)(i), and (1), we obtain the sequent:

Q⇒ P1 ∨ P2

P1

P2 ⇒ Q

Q

After spitting disjunctions and implications in the premises and further applica-
tion of the transformations, we obtain the (unprovable) sequent:

P1

Q

P2

which has characteristic formula P1 ⇒ (Q∨P2). This formula is false when P1 = >
and P2 = Q = ⊥. One can easily verify that this assignment provides a counter
example showing the original formula is not a logical theorem.

2.3. Tabular Specification of Functions

The example below and the description of PVS and its support for tables in the
following section are largely based upon [25].

A function f : T1 × . . .× Tm → Tr may have a tabular representation:

f(x1, . . . , xm) =
c1 c2 . . . cn

e1 e2 . . . en

or

c1 e1

c2 e2
...
...

cn en

(6)

Here each ci is a boolean expression and ei is a term of type Tr. The interpretation
is that when ci is true f returns ei. In this case for the table to properly define a
(total) function, it is sufficient for it to satisfy the following two conditions:

Disjointness: requires that the columns (rows) do not overlap. i.e., i 6= j ⇒
¬(ci ∧ cj).

Completeness: requires that at least one column (row) is applicable to every
input. i.e., (c1 ∨ c2 ∨ . . . ∨ cn) is always TRUE.

The disjointness condition can be weakened to make the conditions both neces-
sary and sufficient by requiring that where there is overlap between columns,
the columns produce the same results. In practice, such overlaps may cause
problems. It is often the case that mathematically equivalent expressions are
not computationally equivalent due to, e.g., numerical errors. This opens up the
possibility of different outcomes for the same specification depending upon how
the designer implements the specified function.

tables.tex; 20/08/2001; 16:52; p.8

APPLICATION OF TABULAR METHODS 9

Example 1. Let x be a real valued variable. Then the function:

sign(x) =

−1, x < 0
0, x = 0
1, x > 0

has the equivalent tabular representation:

x < 0 x = 0 x > 0

−1 0 1

For the purposes of this paper we will restrict ourselves to simple horizontal
and vertical condition tables or minor variations thereof such as the ones shown
above. More compact tabular representations such as Structured Decision Tables
[23], Normal, Inverted and Vector Function tables [27] exist for the specification
of complex functions. The fundamental notions of disjointness and completeness
are easily generalized to these other types of tables.

2.4. PVS Support for Tables

PVS consists of a specification language for creating input files containing user
defined theories and an interactive theorem prover and decision procedures for
typechecking and verifying these theories. The specification language is a higher
order logic based on the simple theory of types augmented by dependent types and
predicate subtypes. Although the specification language allows for the addition
of axioms to the system, their use is discouraged since any additional axioms may
introduce inconsistencies into the proof system, weakening any guarantees of the
correctness of the results. If the specification contains no additional axioms, then
typechecking can guarantee that the system introduces no additional inconsisten-
cies [32]. The system provides strong assurances that definitional constructs such
as recursive function definitions are conservative extensions of the logic.

While much of the typechecking required to ensure conservative extension of
the PVS logic can be done automatically, predicate subtypes and, as we will see,
tabular specification of functions, can cause PVS to generate proof obligations
called Type Correctness Conditions (TCCs) that must be discharged using the-
orem proving. The proof strategies built into the theorem prover automatically
handle many of these proof obligations, leaving the user to interactively prove the
more complex TCCs. The proof of any theorems in a user input file are considered
incomplete until the user defined theory and any theories it imports have been
typechecked and any generated TCCs have been proved.

The PVS specification language provides facilities for declaring types, func-
tions, variables, constants and formulas. It also provides the COND construct
as a basic method of specifying function tables. The COND construct for the

tables.tex; 20/08/2001; 16:52; p.9

10 M. LAWFORD, P. FROEBEL AND G. MOUM

COND

c1 -> e1, IF c1 THEN e1

c2 -> e2, ELSIF c2 THEN e2

...
...

cn−1 -> en−1, ELSIF cn−1 THEN en−1

cn -> en ELSE en

ENDCOND ENDIF

Figure 1. General COND construct and PVS interpretation

general table of (6) is shown on the left side of Figure 1. The right side shows
the equivalent IF-THEN-ELSE statements that PVS uses as the internal inter-
pretation of the COND statement. The result is that the standard built in PVS
commands easily handle the COND construct by first translating them into the
IF-THEN-ELSE statments.

2.4.1. Typechecking COND Statements

The following PVS statements uses the PVS COND construct to define the sign
function of Example 1.

signs: TYPE = { i: int | i >= -1 & i <= 1}

sign_cond(x:real): signs =

COND

x<0 -> -1,

x=0 -> 0,

x>0 -> 1

ENDCOND

The & above represents conjunction in the PVS specification language. Use of
COND causes PVS to automatically generate Disjointness and Completeness
TCCs (proof obligations). These can often be automatically discharged (proved)
by PVS’ built in proof strategies. As we will see in Section 4, when the built in
proof strategies fail, the resulting unprovable sequent(s) can often provide useful
information regarding the incompleteness or inconsistency of specifications.

% Disjointness TCC generated for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

% unfinished

sign_cond_TCC3: OBLIGATION

tables.tex; 20/08/2001; 16:52; p.10

APPLICATION OF TABULAR METHODS 11

(FORALL (x: int):

NOT (x < 0 AND x = 0)

AND NOT (x < 0 AND x > 0)

AND NOT (x = 0 AND x > 0));

% Coverage TCC generated for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

% unfinished

sign_cond_TCC4: OBLIGATION

(FORALL (x: int): x < 0 OR x = 0 OR x > 0);

2.4.2. PVS Table Construct

The PVS specification language provides various TABLE constructs to make the
prover input more readable. For example:

sign_htable(x:real): signs = TABLE

%-------------------%

|[x<0 | x=0 | x>0]|

%-------------------%

| -1 | 0 | 1 ||

%-------------------%

ENDTABLE

The TABLE constructs are translated into PVS COND constructs for typecheck-
ing and proving purposes. It is possible to represent more complex tables such as
two dimensional tables through the use of nested CONDs.

3. Systematic Design Verification Procedure and Tools

This section provides an overview of the Systematic Design Verification (SDV)
procedure and corresponding tool support employed on the Redesign Project. We
highlight elements of the process, such as the decomposition of proof obligations,
that facilitate tool support and reduce the effort required to perform rigorous
design verification, including creation and maintenance of the process documents.
Although the SDV procedure covers other types of verification problems, such
as verification of pseudocode, real-time properties, input queues, etc., we will
concentrate on the verification of functional properties utilizing tabular notation.
The reader is referred to [24] for the complete procedure.

tables.tex; 20/08/2001; 16:52; p.11

12 M. LAWFORD, P. FROEBEL AND G. MOUM

3.1. SDV Procedure Overview

The software engineering process described here is based upon the Standard for

Software Engineering of Safety Critical Software [17] that was jointly developed
by OPGI and AECL. This standard requires that the software development and
verification be broken down into series of tasks that result in the production of
detailed documents at each stage. The software development stages relevant to
this paper are governed by the Software Requirements Specification Procedure
[16] and the Software Design Description Procedure [22]. These procedures re-
spectively produce the Software Requirements Specification (SRS) and Software
Design Description (SDD) documents. In addition to other methods, these doc-
uments make use of a form of Parnas’ tabular representations of mathematical
functions [15, 27] to specify the software’s behavior. Tables provide a mathemati-
cally precise notation (see [14] for the formal semantics) for the SRS and SDD in
a visual format that is easily understood by domain experts, developers, testers,
reviewers and verifiers alike [35].

The underlying models of both the SRS and SDD are based upon Finite State
Machines (FSM). The SDD adds to the SRS functionality the scheduling, main-
tainability, resource allocation, error handling, and implementation dependencies.
The specification technique for defining the implementation is based upon an
abstract state machine model that will execute the implemented source code. The
primary difference between this abstract state machine and the FSM describing
the SRS is that execution is not instantaneous, but takes a finite amount of time,
and thus the order of execution must be specified to avoid race conditions. The
SRS is produced by software experts with the help of domain experts. It is used
by lead software developers to produce the SDD which is then used by all the
developers to produce the actual source code.

The software engineering standard [17] requires that the SDD be formally veri-
fied against the SRS and then the code formally verified against the SDD to ensure
that the implementation meets the requirements. These formal verifications are
governed by the SDV Procedure and Systematic Code Verification Procedure.
For the purposes of this paper we will concentrate on the SDV process.

The objective of SDV is to verify, using mathematical techniques or rigorous
arguments, that the behavior of every output defined in the SDD is in compliance
with the requirements for the behavior of that output as specified in the SRS.
It is based upon a specialization of the 4-variable model of [30] that verifies the
functional equivalence of the SRS and SDD by comparing their respective one
step transition functions. The resulting proof obligation in this special case:

REQ = OUT ◦ SOF ◦ IN (7)

is illustrated in the commutative diagram of Figure 2. Here REQ represents
the SRS state transition function mapping the monitored variables M to the
controlled variables C. The function SOF represents the SDD state transition

tables.tex; 20/08/2001; 16:52; p.12

APPLICATION OF TABULAR METHODS 13

M C

I O

REQ

SOF

IN OUT

Figure 2. Commutative diagram for 4-variable model

function mapping the behavior of the implementation input variables represented
by statespace I to the behavior of the software output variables represented by
the statespace O. The mapping IN relates the specification’s monitored variables
to the implementation’s input variables while the mapping OUT relates the im-
plementation’s output variables to the specification’s controlled variables. The
following section briefly outlines the refinement of the relational methods in [30]
to the simple functional case in (7).

3.2. Specialization of the 4-Variable Model

In the 4-variable model of [30], each of the 4 “variable” state spaces M, I, O,
and C is a set of functions of a single real valued argument that return a vector
of values - one value for each of the quantities or “variables” associated with
a particular dimension of the statespace. For instance, assuming that there are
nM monitored quantities, which we represent by the variables m1,m2, . . . ,mnM

,
then, the possible timed behavior of the variable mi can be represented as a
function mt

i : R → Type(mi), where mt
i(x) is the value of the quantity mi at

time x. We can then take M to be the set of all functions of the form mt(x) =
(mt

1(x),m
t
2(x), . . . ,m

t
nM
(x)). Thus the relations corresponding to the arrows of

the commutative diagram then relate vectors of functions of a single real valued
argument.

In order to simplify the 4-variable model to a FSM setting, we restrict ourselves
to the case where each of the 4 “variables” M, I, O, and C is a set of “time
series vectors”. For example,M actually refers to all possible sets of observations
ordered (and equally spaced) in time, each observation being a vector of nM

values. We will use the term monitored variable to refer to quantity mi which is
the ith element in the vector (i ∈ {1, . . . , nM}). Letm ∈M be a time series vector
of observations of the monitored variables. With a slight abuse of notation, we
will use mi(z) to denote the zth observation of the ith element (z ∈ {0, 1, 2, . . .})
of the monitored variables for the time series vector m. Similarly m(z) represents
the zth observation of the nM values in the monitored variable vector for time
series m.

tables.tex; 20/08/2001; 16:52; p.13

14 M. LAWFORD, P. FROEBEL AND G. MOUM

For this model, the time increment between each of the observations is defined
to be the positive real value δ > 0. Thus observation z corresponds to time (z∗δ).
The increment δ is taken to be at least an order of magnitude less than any time
measurements of interest. The value of mi at any point between two observations
(i.e., in the range of time [z ∗ δ, (z + 1) ∗ δ)) is defined to be equal to mi(z).

Each of the “variables” M,C, I,O in the specialized 4-variable model has the
same frequency of observation, but may have a different number of values in its
vector. The value nM is defined to be the number of elements in M, which are
observed over time, while nI is defined to be the number of elements in I, which
are observed over time. Normally nI = nM . Similarly nO is defined to be the
number of elements in O, which are observed over time and nC is defined to be
the number of elements in C, which are observed over time. Normally, nC = nO.

Requirements (REQ): The required behavior of the subsystem is described
with REQ. At OPGI REQ is modeled as a FSM, defining a relation over M ×
C. While, in general, the FSM could be nondeterministic, much of the system
behavior can be modeled by a deterministic FSM with the result that for the
verification of these properties we can assume that REQ is a function (i.e., REQ :
M→ C).

In this case a new set of time series vectors, S, is introduced to describe
the state of the FSM. Let c ∈ C, m ∈ M, s ∈ S, and z ∈ {0, 1, 2, . . .}.
The zth value of a controlled variable time series vector c(z) depends on both
the values of m(z) and s(z), related by the vector function OUTPUT (i.e.,
c(z) = OUTPUT (m(z), s(z))). Also, the value s(z + 1) depends on both the
values of m(z) and s(z), related by the vector function NEXTSTATE. (i.e.,
s(z + 1) = NEXTSTATE(m(z), s(z)).

The SRS procedure [16] shows how a set of functions f1, f2, ...fj can be defined
such that when a subset of them are composed, they define the OUTPUT func-
tion. When a different, though not necessarily disjoint, set of them are composed,
they define the NEXTSTATE function. We have called the process of defining
these functions the “decomposition of REQ”.

Design (SOF): The implemented behavior of the subsystem is described with
SOF . SOF can be modeled as a directed graph with p + 2 nodes. Within this
graph, each node is either one of p FSMs, or I, or O, and each edge represents
data flow between two of these. The node containing Imust not be the destination
of any edge. The node containing O must not be the source of any edge. In this
way, SOF defines a (functional) relation over I × O. If the design is produced
following the SDD procedure, then each of the FSMs represents a program called
from the mainline. We assume a constant mainline loop structure, with each
program called 1 or more times within the loop.

For a large number of the implementation properties, the FSMs composing
SOF can be modeled as deterministic FSM allowing us to consider the special
case when SOF defines a function. In this case, when both REQ and SOF are

tables.tex; 20/08/2001; 16:52; p.14

APPLICATION OF TABULAR METHODS 15

functions, if we are also able to restrict ourselves to functional maps for IN and
OUT , we can verify the commutative diagram in Figure 2 by comparing the one
step transition functions of the FSMs defining REQ and SOF . More detailed
descriptions of the underlying SRS and SDD models can be found in [16] and
[22], respectively, as well as [24].

3.3. Decomposing the Proof Obligations

In Figure 3 we decompose the proof obligation (7) to isolate the verification of
hardware interfaces. TheMp and Cp state spaces are the software’s internal rep-

M

I

IN

C

O

OUT

Mp Cp

SOFreqSOFin SOFout

REQ

AbstM AbstC

Figure 3. Vertical decomposition: Isolation of hardware hiding proof obligations

resentation of the monitored and controlled variables, referred to as the pseudo-
monitored and pseudo-controlled variables, respectively. The proof obligations
associated with SDV then become

AbstC ◦REQ = SOFreq ◦ AbstM (8)

AbstM = SOFin ◦ IN (9)

idC = OUT ◦ SOFout ◦ AbstC . (10)

The first of these equations represents a comparison of the functionality of the
system and should contain most of the complexity of the system. The last two
represent comparisons of the hardware hiding software of the system. These
obligations are often fairly straightforward and are discharged manually.

As an example to help the reader interpret the above decomposition, suppose
an actual physical monitored plant parameter belonging to M is the tempera-
ture of the primary heat transport system which might have a current value of
500.3 Kelvin. The hardware corresponding to the temperature sensors and A/D
converters might map this via IN to a value of 3.4 volts in a parameter in I.
A hardware hiding module might then process this input corresponding to the
mapping SOFin, producing a value of 500 Kelvin in the appropriate temperature
variable belonging to the software state spaceMp. Further “vertical” decomposi-
tion is performed by isolating outputs and in effect restrictingM and projecting
C to the variables relevant to a particular subsystem such as the pressure sensor
trip described in the Section 4.2.

tables.tex; 20/08/2001; 16:52; p.15

16 M. LAWFORD, P. FROEBEL AND G. MOUM

The observant reader may have noted that the controlled variable abstraction
function is defined as AbstC : C→ Cp which is seemingly the “wrong” direction.
The proof obligation (10) forces AbstC to be invertible, preventing the possibility
of trivial designs for SOFreq being used to satisfy the main obligation (8). As
we will see below, this allows the verifier to define only one abstraction mapping
for each pair of corresponding SRS and SDD state variables that occur as both
inputs and outputs in the decomposition. The SDV procedure provides recourse
for the case when there is not a 1-1 correspondence between C and Cp through
the use of a pseudo-SRS that can be defined to more closely match the SDD. The
interested reader is referred to [23] for further details.

Typically the verification of a subsystem as represented by (8), the inner part of
the commutative diagram, can be decomposed “horizontally” at both the SRS and
SDD level into a sequence of intermediate verification steps, thereby reducing the
larger, more complex proof obligation into a number of smaller, more manageable
verification tasks. This is represented in Figure 4 where each equality of the form:

SOFi ◦ AbstVi−1
= AbstVi

◦REQi (11)

becomes a verification block. Here Vi and Vip are the statespaces associated with
subsets of internal state variables that make up the abstract state machines (e.g.,
previous values of inputs, outputs or other internal state information relating to
operating history). The price paid for this vertical and horizontal decomposition is

M

Mp

C

Cp

REQ

. . .

SOF1 SOFn
. . .

REQ1 REQ2 REQn

SOF2

V1 V2 Vn−1

AbstCAbstM

SOFreq

V1p

AbstV1

V2p V(n−1)p

AbstV2
AbstVn−1

Figure 4. Horizontal (sequential) decomposition of proof obligations

that for each block the verifier must provide a cross reference between the internal
variables making up the Vi−1,Vi state spaces at the SRS level and the internal
variables making up the V(i−1)p,Vip state spaces at SDD level, as well as defining
the abstraction functions, AbstVi−1

and AbstVi
. Now the benefits of defining all

the abstraction functions, including AbstC , from top to bottom (SRS to SDD) in
Figures 3 and 4 becomes more apparent. The values of many of the controlled
variables from the previous execution pass of the SRS and SDD often become

tables.tex; 20/08/2001; 16:52; p.16

APPLICATION OF TABULAR METHODS 17

inputs to the calculation of current internal state and output variables. Similarly,
state variables that are the output of one sequential block become the input of
the following block. Defining all abstraction functions from top to bottom and
then only performing the check for invertibility at the outputs embodied by (10)
allows the verifier to use the same abstraction functions whether a state variable
occurs at the input or output of a block. This technique reduces the number of
abstraction functions required by up to one half.

3.4. Tool Support

An experience report of the first use of the above method prior to the use of
support tools is detailed in [34]. The report cites the excessive amount of time
required to perform the verification by hand as a major short fall of the method.
As a result, OPGI and AECL undertook efforts to automate the SDV procedure.

The automation involved the development of a series of “light-weight” CASE
tools known as the SESM Tools integrated with the PVS proof assistant from SRI.
While the use of light-weight tools for the creation and analysis of requirements
has been widely advocated in the literature (e.g., [6, 10]), combining lightweight
tools with model-checkers and theorem provers can provide additional analysis
and verification capabilities (e.g., [2, 11]). The light-weight tools such as those
belonging to the SESM tool suite provide the ability to rapidly debug specifica-
tions and analyze simple properties, while a system such as PVS can be used for
more in depth analysis and verification.

The SESM Tools have been designed to allow the designers and verifiers to
use standard word processors such as Corel WordPerfect or Microsoft Word to
create input documents employing tabular definitions of functions. This capa-
bility provides the team members with a familiar environment that results in
highly readable software documentation. Figure 5 provides a graphic overview of
the relationship between the documents and tools employed in the verification
process. The word processor, augmented with the SESM tool macros, is used to

SRS.rtf

SDD.rtf

DVR.rtf

PVS
processor
Word

 +
SESM
Tools

SDD.doc

DVR.doc

SRS.doc

block

proofs
comp.

Document flow
Information flow

Tool
SDV

b001.pvs
b002.pvs
b003.pvs
etc...

Figure 5. Relationship between tools and documents of the SDV process

create and debug, first the software requirements in the SRS, then the software

tables.tex; 20/08/2001; 16:52; p.17

18 M. LAWFORD, P. FROEBEL AND G. MOUM

design in the SDD and finally the Design Verification Report (DVR). The SESM
tools provide completeness and consistency checks of the SRS, SDD and DVR
documents that can be run offline on an entire document or invoked interactively
via a macro from within the word processor to debug individual tabular function
definitions as they are created. Additionally the tools check for the existence of
circular dependencies in the requirements specified by the SRS.

The DVR provides the cross reference between the SRS and SDD inputs,
outputs and functions and defines the abstraction functions that are part of
the block decomposition of the proof obligations. These parts of the DVR are
manually generated by the verifier with guidance provided by the SRS and SDD
documents. Next, the word processor is used to create Rich Text Format (RTF)
versions of these three documents that become input for the SDV Tool. RTF
provides a standard input format for the SESM tools independent of the word
processor used to create the documents. In addition to creating a log file with
details of numerous document checks, the SDV tool also produces a PVS input
file for each verification block containing the theorems, and associated function
and type definitions, that must be proved for the block as required by the SDV
procedure.

PVS is then used to typecheck the SESM tool output and prove the theorems.
Type-checking of the tabular function definitions within PVS provides redundant
verification of the completeness and and consistency checks and handle cases with
more complicated types currently unsupported by the SESM tools.

Although the PVS specification language and interactive proof environment
have their own steep learning curve, the verifiers require only a small subset of
PVS’ capabilities to perform the verification. Additionally, by designing the SESM
tools to employ standard word processors for document creation, we have insured
that no other team members require knowledge of the underlying proof system.
While the examples presented in this paper make use of only a fraction of PVS’
capabilities, integrating the SESM tools with PVS provides the opportunity to
increase the scope of the computer assisted verification to include the real-time
properties [1, 4, 20] and functional properties involving tolerances [19]. Addi-
tional reasons for choosing PVS were its existing support for tabular methods
[25] integrated with theorem proving and model-checking and the abilities of
its extensive type-checking capabilities to be used to detect software errors [32].
Notwithstanding these strong arguments in favor of PVS, the SDV tool has been
designed so that after parsing the RTF documents it produces an intermediate
flat text file format containing the relevant information prior to translation into
PVS. This provides the ability to use alternative or supplemental verifications
systems in the SDV process with relatively little effort.

The tools and procedures described here have been applied successfully to the
SDS Redesign Project, which was completed early 1999. The project consisted
of a complete redesign the software for two different trip computer systems. The
complete systems are relatively small. Excluding comments and blank lines, one

tables.tex; 20/08/2001; 16:52; p.18

APPLICATION OF TABULAR METHODS 19

consists of approximately 12,000 lines of FORTRAN and assembler while the
other was roughly 17,000 lines of Pascal and assembler. For both of the systems
the SRS and SDD documents consisted mainly of formal tabular specifications
and some informal description. Each requirements document (SRS) was approx-
imately 400 pages while each design document (SDD) was over 500 pages. The
resulting design verification documents (DVR) were each over 600 pages once
completed (excluding PVS input and output), though this also includes the results
of the verification procedure.

Much of the time and effort in the project was spent on document preparation.
These documents form part of the formal submission required by the regulator
and hence had to be prepared as part of the software engineering process employed
on the SDS Redesign Project. The generation of the PVS code from documents
took several hours on a Windows NT based 75 MHz Pentium system with 32MB
of RAM and resulted in 11,000+ lines in 60 files for the first system and 13,000+
lines in 102 files for the second (line counts exclude blank lines and comments).
The verification was performed by engineers with no previous experience with
PVS or similar proof systems who received week-long training courses in PVS.
The block comparison proofs and documentation of any discrepancies uncovered
in the process took one person less than 2 weeks for each of the systems.

As the SESM tools are further refined and the verifiers gain more experience,
this part of the SDV procedure should require less time. Also, with the ability to
rerun proofs in batch mode, it should be possible to perform the formal verification
of minor revisions much faster. The SDV procedure and SESM tools are now being
used on the first revisions of the trip computer software. As a result of the success
of these projects, OPGI is also considering expanding the use of the tools to the
engineering of non-safety critical software systems.

4. Examples and Discussion

The Darlington Nuclear Generating Station Shutdown Systems (SDS) are “poised”
systems that are not called upon to operate in normal conditions but rather
monitor the plant parameters and react to shutdown or “trip” the reactor only
if anomalous behavior is observed. The reactor process control is performed by
a separate Digital Control Computer so that the safety critical shutdown func-
tionality can be isolated in a separate high reliability system. This limits the
scope of the formal verification activity to the smaller, more manageable SDS
Trip Computer software.

This section demonstrates how tabular methods can be used with the SDV
procedure of Section 3 to verify parts of a simplified reactor pressure trip subsys-
tem. The examples have been simplified to highlight the main concepts and are
formatted for clarity of presentation. For example, while a typical trip subsystem

tables.tex; 20/08/2001; 16:52; p.19

20 M. LAWFORD, P. FROEBEL AND G. MOUM

monitors plant parameters, (e.g., pressure and power) using multiple sensors,
we have simplified the presentation to single sensors for each plant parameter.
Although simplified, these examples are typical of many of the verification blocks
from the SDS Redesign Project.

The examples deal with the power conditioning and sensor trip sections of
a typical parameter trip subsystem. In the first example we see how proper
application of tabular methods forces a designer to properly document all as-
sumptions. The second example uses a simplified sensor trip to demonstrate how
the verification task can be partitioned, and highlights the limitations of the
current SDV tool regarding support for tolerances. The final example illustrates
the benefits of the domain coverage provided by quantifier reasoning by discover-
ing counter examples that may have been more difficult to detect using testing.
Further limitations of the tool regarding the verification of timing properties are
also discussed. In all the examples, the SDD tables utilize variable and function
names of six characters or less since they are taken from the design targeted to a
legacy FORTRAN compiler.

4.1. Detection of Implicit Assumptions

In this example we consider the design of the power conditioning of the subsystem.
The reactor protective system is designed to provide coverage over the full power
range of the reactor. Some of the trip logic is only applicable at or near the
full power operating limit. To account for this situation, some of the trip logic
is overridden or “conditioned out” at low power levels. At high power levels
the logic is “conditioned in” to the reactor trip calculations. The SRS contains
tabular specifications for the power conditioning functions of several different
plant parameters, each having its own different conditioning in and conditioning
out values that appear in its function table as constants.

Below we provide a sample SRS function table for pressure conditioning logic.

f PressCond(f EstPower : real, f PressCond−1 : bool) : bool =
f EstPower ≤ k PressOUT FALSE

k PressOUT < f EstPower < k PressIN f PressCond−1

k PressIN ≤ f EstPower TRUE

The behavior of the function is illustrated in Figure 6. To eliminate “chatter”
a deadband is used to create a hysteresis effect. When the estimated power
f EstPower drops below k PressOUT , the logic associated with the pressure
sensor is “conditioned out” by setting f PressCond to FALSE. When the power
exceeds k PressIN , the logic is “conditioned in” and is used to evaluate the
system. While f EstPower is between k PressOUT and k PressIN , the value
of f PressCond is left unchanged by setting it to its previous value, indicated
by the “−1” subscript on the function name in the table and “No Change” in

tables.tex; 20/08/2001; 16:52; p.20

APPLICATION OF TABULAR METHODS 21

Time

No Change

FALSE

TRUE

t1

k PressIN

k PressOUT

f EstPower

Figure 6. The f EstPower deadband for power conditioning function f PressCond.

Figure 6. For example, in the graph of f EstPower in Figure 6, f PressCond

would start out FALSE, then become TRUE at time t1 and remain TRUE.

Upon considering the fact that there are several virtually identical SRS power
conditioning functions that only differ in the names and values of their con-
stants, the developer decided to reuse logic in the design specified by the SDD by
writing one general power routine and passing in sensor parameters for different
sensors. The following design was proposed by the developer for a general Power
Conditioning function called PwrCnd:

PwrCnd(Prev : bool, Power,Kin,Kout : posreal) : bool =
Power ≤ Kout Kout < Power < Kin Power ≥ Kin

FALSE Prev TRUE

(12)

In the above, Prev is the argument for the power conditioning status of the
particular sensor from the previous pass.

The PVS specification of the proposed general power conditioning function is
shown in Figure 7. Note the similarity to the original table in (12).

PwrCnd(Prev:bool, Power, Kin, Kout:posreal):bool = TABLE

%---%

|[Power<=Kout | Power>Kout & Power<Kin | Power>=Kin]|

%---%

| FALSE | Prev | TRUE ||

%---%

ENDTABLE

Figure 7. PVS Specification of general PwrCnd function

Typechecking the definition generates an unprovable disjointness TCC. The
PwrCnd TCC1 disjointness TCC and the unprovable sequent that results from

tables.tex; 20/08/2001; 16:52; p.21

22 M. LAWFORD, P. FROEBEL AND G. MOUM

trying to prove PwrCnd TCC1 are shown in Figure 8. The first three formulas of

% Disjointness TCC generated (at line 19, column 54) for

% TABLE

% |[Power <= Kout | Power > Kout & Power < Kin | Power >= Kin]|

% | FALSE | Prev | TRUE ||

% ENDTABLE

% unfinished

PwrCnd_TCC1: OBLIGATION

(FORALL (Kin: posreal, Kout: posreal, Power: posreal):

NOT (Power <= Kout AND Power > Kout & Power < Kin)

AND NOT (Power <= Kout AND Power >= Kin)

AND NOT ((Power > Kout & Power < Kin) AND Power >= Kin));

PwrCnd_TCC1 :

[-1] Kin!1 > 0

[-2] Kout!1 > 0

[-3] Power!1 > 0

[-4] Power!1 <= Kout!1

[-5] (Kin!1 <= Power!1)

|-------

[1] FALSE

Rule?

Figure 8. Disjointness TCC and resulting unprovable sequent for PwrCnd

the sequent contain the type information for Kin, Kout and Power. All are of
type posreal = {x : real|x > 0}. The names ending in “!1” are skolem constants -
arbitrary constants of the appropriate type that are used to eliminate quantifiers
from the formulas.

Following the procedure outlined in Section 2.2.2, we write down the charac-
teristic formula for the unprovable sequent in Figure 8.

0 < Kin∧ 0 < Kout∧ 0 < Power ∧Kin ≤ Power ∧ Power ≤ Kout⇒ FALSE

With a slight abuse of notation, the above can be simplified to

¬(0 < Kin ≤ Power ≤ Kout)

By taking Kout = Power = Kin, we obtain a counter example that makes the
above characteristic formula false. One can easily verify that the counter example
satisfies the conditions of two or more columns of the table for PwrCnd, thereby
proving the table as defined does not properly specify a function. Substituting the

tables.tex; 20/08/2001; 16:52; p.22

APPLICATION OF TABULAR METHODS 23

counter example values into the tabular specification for PwrCnd, we see that
the conditions for both the first and third result columns are satisfied producing
the inconsistent result that PwrCnd must be both TRUE and FALSE in this
case.

The implicit (and undocumented) assumption that the developer made was
that, as in the case of the SRS function in Figure 6, the conditioning in threshold
exceeds the conditioning out threshold (i.e., Kin > Kout.). This led the designers
to omit the counter example cases of the form Kin ≤ Kout from the table. Such
an undocumented assumption has obvious potential danger in a setting where
logic (and code) may be reused by other developers or maintenance staff who are
unaware of the assumption.

The assumption can be made explicit either by including an assertion in the
function definition that the SDV Tool then parses and translates into a proof
obligation when the function is used, or by redesigning the function table to
properly handle the Kin ≤ Kout case possibly by generating an error message.

Another method of making the assumption explicit is through the use of depen-
dent typing to create a new version of the PwrCnd table that makes the assumed
relation between Kin and Kout explicit as shown in Figure 9. The Disjointness and

PwrCnd(Prev:bool, Power, Kin:posreal, Kout:{x:posreal|x<Kin}):bool

= TABLE

%---%

|[Power<=Kout|Power>Kout & Power<Kin|Power>=Kin]|

%---%

| FALSE | Prev | TRUE ||

%---%

ENDTABLE

Figure 9. Use of dependent typing to make Kin > Kout assumption explicit.

Completeness TCCs for the table are proved automatically by PVS. This version
of the PwrCnd function causes PVS to automatically generate a TCC requiring
a proof that the Kin > Kout relationship will not be violated whenever the
function is used.

The above example illustrates how the use of tool supported tabular methods
can be used to detect undocumented assumptions in a design. We note that the
SESM Tool suite includes SRS and SDD development tools that can be used to
perform checks similar to the PVS Disjointness and Completeness TCCs, directly
on some of the simpler tables in the SRS and SDD documents. The requirements
and design developers can use these tools as they create the documents to catch
such problems before PVS is applied at the verification stage.

tables.tex; 20/08/2001; 16:52; p.23

24 M. LAWFORD, P. FROEBEL AND G. MOUM

4.2. Abstraction Functions Effects and Tolerances

In this section we study the verification of a simplified pressure sensor trip that
monitors a pressure sensor and is “tripped” when the sensor value exceeds a
normal operating setpoint. As was the case with the power conditioning example
above, the SRS specification of the pressure sensor trip also makes use of dead-
bands to eliminate chatter. The proposed SRS and SDD implementations for the
sensor trip are give in Figure 10 by f PressTrip and PTRIP , respectively. In
the function definitions, f PressTripS1 and PREV play corresponding roles as the
arguments for the previous value of the state variable computed by the function.

Figure 10 also contains the supporting type, constant and abstraction function
definitions for the verification block. The abstraction function posreal2AI models
the A/D conversion of the sensor values by taking the integer part of its input
using the built in function floor(x) from the PVS prelude file. It is used to map
the real valued SRS input Pressure to the discrete SDD input PRES which has
type AI. AI consists of the subrange of integers between 0 and 5000, denoted by
subrange(0, 5000) in Figure 10.

At the bottom of the specification, the theorem Sentrip1 is an example of a
block comparison theorem that is used to prove a specific instance of the general
block verification equation (11) that relates the SRS and SDD inputs and outputs.
If Pressure and PRES were both real numbers, related by the identity map, then
the block comparison theorem Sentrip1 would be easily proved, but in this case,
where PRES is a discrete input, attempting the block comparison produces the
following unprovable sequent:

{-1} real_pred(Pressure!1)

{-2} Tripped?(f_PressTripS1!1)

{-3} Pressure!1 < 2450

{-4} floor(Pressure!1) <= 2400

|-------

{1} Pressure!1 <= 2400

Using sequent transformation (4)(i), we negate formula {1} and move it to the top
half of the sequent and then apply transformation (1) to obtain the characteristic
formula:

f PressTripS1 = Tripped∧
Pressure < 2450 ∧ floor(Pressure) ≤ 2400 ∧ ¬(Pressure ≤ 2400)⇒ ⊥

which simplifies to

¬(f PressTripS1 = Tripped ∧ 2400 < Pressure < 2450
∧floor(Pressure) ≤ 2400)

For any value of Pressure in the open interval (2400, 2401) when f PressTrip

was tripped in the previous pass, the above formula is FALSE. The problem

tables.tex; 20/08/2001; 16:52; p.24

APPLICATION OF TABULAR METHODS 25

sentrip : theory

begin

k PressSP : int = 2450
k DeadBand : int = 50

KDB : int = k DeadBand
KPSP : int = k PressSP

Trip : type = {Tripped,NotTripped}
AI : type = subrange(0, 5000)

f PressTrip((Pressure : posreal), (f PressTripS1 : Trip)) : Trip = table

Pressure ≤ k PressSP − k DeadBand NotTripped
k PressSP − k DeadBand < Pressure ∧ Pressure < k PressSP f PressTripS1

Pressure ≥ k PressSP Tripped
endtable

PTRIP((PRES : AI), (PREV : bool)) : bool = table

PRES ≤ KPSP − KDB FALSE
KPSP − KDB < PRES ∧ PRES < KPSP PREV

PRES ≥ KPSP TRUE
endtable

Trip2bool((TripVal : Trip)) : bool = table

TripVal = Tripped TRUE
TripVal = NotTripped FALSE
endtable

posreal2AI((x : posreal)) : AI = table

x ≤ 0 0
0 < x ∧ x < 5000 floor(x)

x ≥ 5000 5000
endtable

Sentrip1 : theorem

(∀ (Pressure : posreal, f PressTripS1 : Trip) :
Trip2bool(f PressTrip(Pressure, f PressTripS1)) =
PTRIP(posreal2AI(Pressure),Trip2bool(f PressTripS1)))

end sentrip

Figure 10. Formatted PVS specification for pressure sensor trip example

tables.tex; 20/08/2001; 16:52; p.25

26 M. LAWFORD, P. FROEBEL AND G. MOUM

occurs because whenever 2400 < Pressure < 2401, the abstraction function
posreal2AI maps Pressure to the same value as 2400, but when f PressTripS1 =
Tripped, the SRS function f PressTrip maps Pressure values greater than 2400
to Tripped while 2400 gets mapped to NotTripped. Therefore ker(posreal2AI) 6≤
ker(f PressTrip), so by Claim 1 we know that there is no SDD design that can
satisfy the block comparison theorem Sentrip1.

This is an example of when mathematical functional equality may be more
strict than practically necessary. Due to the accuracy of the sensors, all input
values have a tolerance of ±5 units. In this case, the SDD function PTRIP

actually has acceptable behavior. Although the SESM tools do not yet support
it, the functional 4-variable model they currently use can be easily extended
to incorporate tolerances. In this case the input tolerances can be taken into
account in PVS using existential quantification over a dependent type (see [19]
for full details). Currently tolerances are taken into account using rigorous manual
arguments.

4.3. Domain Coverage and Timing Limitations

The following example shows how the tools complement testing by covering all
input cases using quantifier reasoning. It also demonstrates the current limitation
of tool support for the verification of timing properties. The example deals with
a trip status indicator that is used to flag when pressure sensor trip has occurred.
Once every 5 seconds the Trip Computer transmits the status indicator flag. The
transmitted indicator value depends upon the history of the pressure sensor trip
in the previous 5 seconds. If there was a sensor trip at any time during the last
5 seconds, the transmitted indicator value is TRUE, otherwise, it is FALSE.

The original SRS specification of the trip status indicator is:

f PressStatus(f PressTrip : Trip, f PressStatus−1 : bool, tnow : posreal) :
bool =

f PressTrip = Tripped TRUE

NOT [f PressTrip = Tripped] tnowMODk Comdelay = 0 FALSE

tnowMODk Comdelay 6= 0 f PressStatus−1

The interpretation of the above table is that if there is a sensor trip then the
status indicator f PressStatus is set to TRUE. When there is not a sensor trip,
if it is time to transmit (tnowMODk Comdelay = 0 corresponds to the case when
the current time is a multiple of 5 seconds) then f PressStatus is “cleared” by
setting it to FALSE. Otherwise it is left at its previous value f PressStatus−1.

To simplify the verification, we replace the timing condition by the boolean
variable Transmit which is TRUE when tnowMODk Comdelay = 0. The format-
ted PVS for this version of the SRS function is shown in Figure 11. In addition
to the tabular function implementations, the SDD contains the main program

tables.tex; 20/08/2001; 16:52; p.26

APPLICATION OF TABULAR METHODS 27

f PressStatus((f PressTrip : Trip), (f PressStatusS1,Transmit : bool)) : bool = table

f PressTrip = Tripped TRUE
¬(f PressTrip = Tripped) ∧ Transmit FALSE
¬(f PressTrip = Tripped) ∧ ¬Transmit f PressStatusS1
endtable

STATUS((PRES : AI), (PREV : bool)) : bool = table

PRES ≤ KPSP − KDB PREV
KPSP − KDB < PRES ∧ PRES < KPSP PREV

PRES ≥ KPSP TRUE
endtable

Status1 : theorem

(∀ (Pressure : posreal, f PressTripS1 : Trip, f PressStatusS1 : bool,Transmit : bool) :
f PressStatus(f PressTrip(Pressure, f PressTripS1), f PressStatusS1,Transmit) =
if¬(Transmit) then STATUS(posreal2AI(Pressure), f PressStatusS1)
else FALSE
endif)

Figure 11. Formatted PVS input for the trip status indicator block comparison

thread that provides the function call sequence for the main program loop. The
SDD status indicator logic is composed of two parts. The first part, determined
by the function STATUS as part of the pressure sensor trip module, mimics the
sensor trip logic of PTRIP . The second part is performed in the main program
thread by a conditional statement that checks a timer value to determine when it
is time to transmit and reset the indicator value. This part of the status indicator
computation is modeled by the IF-THEN-ELSE statement that is part of the
block comparison theorem.

The definitions from Figure 11 can be appended to the specification in Fig-
ure 10. To avoid the abstraction function problems of Section 4.2, AI is changed
to posreal and the abstraction function posreal2AI is changed to the identity
function. Attempting to prove the block comparison theorem Status1 results in
several unprovable sequents, including the one below:

{-1} real_pred(Pressure!1)

{-2} Transmit!1

{-3} Tripped?(f_PressTripS1!1)

|-------

{1} Pressure!1 <= 2400

The characteristic equation for the sequent simplifies to:

¬(Transmit ∧ f PressTripS1 = Tripped ∧ Pressure > 2400) (13)

tables.tex; 20/08/2001; 16:52; p.27

28 M. LAWFORD, P. FROEBEL AND G. MOUM

The counter example resulting from negating (13) corresponds to the case when
there is a transmission and hence the SDD program thread clears the status indi-
cator. On the other hand, the SRS status indicator remains TRUE due to either
(i) a current sensor trip directly forced by a high pressure value (Pressure ≥
2450) or (ii) the current pressure value remaining in the deadband (2400 <

Pressure < 2450) when the pressure sensor trip was previously tripped. While
the first case is not as serious since it will be corrected on the first pass after
the transmission if Pressure ≥ 2450, the second case is more serious since as
long as 2400 < Pressure < 2450, the SDD status indicator will be FALSE

while PTRIP is TRUE! Both of these cases would requires the tester to use the
specific test input that would be unlikely to occur in the reactor under normal
operating conditions. While thorough unit testing should uncover this problem,
detecting the problem during SDV allows it to be corrected prior to coding.

In this example we abstracted the timing properties to perform the verification
and found a particular input sequence that the developers had not considered
where the SRS and SDD differed. Timing properties are multi-pass properties
that need to take into consideration scheduling and possibly sequences of previous
inputs and states. Currently the SDV procedure requires separate manual rigorous
arguments, though some preliminary work [20] has been done on adapting the
timing verification techniques in [5] to handle these problems.

5. Related Work

This section provides a comparison with previous works focusing on application
of tool supported formal methods to industrial control software problems. The
discussion attempts to illustrate the distinguishing features of this work as well
as point out its current limitations relative to these previous efforts.

The general SDV procedure and use of tabular methods at OPGI has been
previously documented in [23, 29, 34]. Here we have provided further details about
how the 4-variable model of [30] is specialized to our discrete time setting and then
decomposed to facilitate application of the model to full scale industrial examples
as outlined in [24]. More significantly, we have outlined how the procedure the
has been adapted to provide practical, semi-automated tool support to the formal
methods of the SDV procedure using the SESM Tool suite integrated with PVS.
The tool support is now an integrated part of the overall software engineering
process. They have been applied as part of the critical path of completion of the
Darlington SDS Redesign project. The examples from Section 4 are drawn from
this experience and help to illustrate the benefits and limitations of the method.

In this paper we have focused on the procedure and tools necessary to formally
verify whether a software design meets its requirements. While applications of tool
supported formal methods to industrial examples have been previously described

tables.tex; 20/08/2001; 16:52; p.28

APPLICATION OF TABULAR METHODS 29

in [11, 3, 21, 7], these case studies typically focus on requirements analysis. Also,
in these examples applying tool supported formal method typically involved some
reverse engineering of previously developed requirements documents. As a result
these methods were not part of the production software engineering process but
instead were viewed as pilot projects. The SDV procedure described here did not
involve reverse engineering as an addon to the project but rather was an integral
part of the overall software development process and, as such, was on the critical
path to completion of the project. We will now examine each of these previous
applications in further detail.

The Requirements State Machine Language (RSML) was first introduced by
Leveson et al. in [21] to model the requirements of the onboard aircraft traffic
collision avoidance system (TCAS II). It is based upon a state-chart like graphical
notation augmented with tabular representation of transition guard conditions
via the methods AND/OR tables. Requirements in RSML can be automatically
checked for consistency and completeness [7].

Building on the original use of tabular methods in the A-7 [12], Heitmeyer
et al. have made extensive use of the Software Cost Reduction (SCR) tabular
methods supported by the “light-weight” SCR∗ tool suite [8, 9]. It has been
used extensively for the creation and analysis of requirements for industrial and
military software applications (e.g., [11]). In [11] the authors also describe work
that has been done to allow users to to incorporate more heavy duty analysis
tools such as the explicit state model checker SPIN [13] with SCR∗.

Crow and Di Vito have used PVS’ support for tabular specification and other
functionality to formalize parts of the space shuttle’s software system in [3].
Similar to the work described here, they employ a simple conventional abstract
state machine semantics. The studies focused on requirements analysis while the
translations into PVS were done manually by experienced PVS users. As a result,
more manual effort was required to keep the PVS versions of the specification of
the subsystems up to date with the main requirements documents.

The examples cited above produced formal methods specifications that were
not (at least initially in the case of [21]) part of the main project documentation.
Therefore keeping these formal documents up to date with subsequent revisions
of the main project documents can become problematic (e.g., in [3] the authors
note “convergence [of the ‘official’ documents and PVS code] was slow” due to
“frequent and extensive” changes as the requirements were reviewed). The SDV
procedure presented here results in simpler configuration control of the system
documents. Only the word processor documents that are used by everyone in-
volved in the project need to be modified when the software is revised. Once
the input documents are prepared, the generation of the PVS is effectively a
pushbutton operation. The problem of keeping the tool input up to date with the
latest “official” version of the documents is avoided by having the SESM tools
generate the theorem prover input directly from the documents. Since these are
standard word processor documents, the document authors and maintainers do

tables.tex; 20/08/2001; 16:52; p.29

30 M. LAWFORD, P. FROEBEL AND G. MOUM

not need to learn any specialized formal methods tools, though they do have to
adhere to a more rigid document format.

The completeness and consistency checking provided by the SESM tools and
PVS is local in the sense of SCR as opposed to the global sense of RSML [7].
While SCR∗ implements similar table checks, our approach appears to be novel
for its redundancy. The SESM tools provide a first check of the completeness and
consistency of each table and then typechecking in PVS repeats the check, helping
to reduce the potential for a single point of failure preventing the detection of
any errors.

Considering the restricted application setting of modeling a single SDS digital
controller with appropriately conditioned input signals, allows us to simplify the
semantics of our underlying model. At the requirements level our underlying
model is based upon a discrete time model where all inputs are “sampled” and
then all state variables and outputs are simultaneously updated. In contrast,
both the SCR and RSML semantics involve external events triggering sequences
of specific internal transitions that are assumed to occur before the next event.
While there are some cases where the state chart like notation RSML and more
complicated semantics of both SCR and RSML would be better suited to specify
the systems requirements, the vast majority of the SDS system requirements
are easily modeled by tabular specifications with our simplified semantics. These
are typically “single pass” properties such as the power conditioning example of
Section 4.1 that rely on at most the value of current input and previous state.

The method presented here does not currently support the verification of
“multi-pass”, concurrent and real-time properties that would be more easily
modeled with a formalism such as RSML or the timed automata employed in [2].
The SDV procedure currently handles these properties using manual verification.
In the future, the SESM tool suite could try to support the verification of such
properties by combining PVS’ support for model checking tabular relations [25]
with recent work on the use of PVS to verify real-time properties [2, 5, 20].
Ideally the SESM tools should be enhanced to allow the system designers to use
alternative formal notations and tools where they are more appropriate.

The current combination of the SESM tools and PVS is lacking some of the
more user friendly features of other tabular specification systems. In particular,
the simulation, automatic counter example generation and dependency graph
generation capabilities of SCR∗ would be very useful to developers and verifiers
alike. Extending the SESM tools to interface with tabular methods tools such as
SCR∗ could provide a cost effective way of adding these capabilities to the current
verification system. If the Timed Automata Modeling Environment (TAME) is
integrated with the SCR∗ as proposed in [2], this approach may also make it pos-
sible to hide some of the complexity of the PVS proof system behind a specialized
user interface.

Currently the SESM Tool suite only supports functional verification. This is
a severe limitation since often the SRS and SDD behaviors are not functionally

tables.tex; 20/08/2001; 16:52; p.30

APPLICATION OF TABULAR METHODS 31

equivalent but they are within specified tolerances as was the case in the sensor
trip example of Section 4.2. In [19] we show how the functional 4-variable model of
the SDV can be extended to a relational 8-variable model that provides for input
and output tolerances on functional specifications. We also show how adding
existential quantifiers over dependent types to the original block comparison
theorems, allows PVS to easily handle variables with tolerances. These tolerances
are already included in the SRS and SDD documents, hence future revisions of
the SESM tools could parse these tolerances and incorporate them into the block
comparison theorems.

In other related work, the authors of [18] use tool supported Colored Petri Nets
(CPN) and PVS for requirements analysis of a reactor shutdown system. While
CPN can be used to model multi-pass properties, the method makes extensive use
of additional new axioms to model each CPN, thereby weakening PVS’ guarantees
of consistent extension of the logic [32]. We note that the tabular methods used
in this work and [25] do not introduce any additional axioms.

6. Conclusions

Experience has shown that review and testing alone are not usually sufficient
to guarantee the correct operation of a safety critical software system. This
problem is partly due to the overwhelming amount of detail associated with a
complete system. The SDV procedure of Section 3 provides a rigorous framework
for the effective application of tabular methods to industrial software verification
problems. The utility of the method is in part due to the use of simple algebraic
properties to decompose the verification problem into manageable pieces in a way
that limits the amount of manual effort required by the verifiers. Tool support
also helps, making it easier to handle large volumes of material associated with
such problems.

On the SDS Redesign project all team members used tabular notation as the
main basis for specifying, designing, and verifying the safety critical software. The
use of standard word processors to create the main project documents containing
the tables reduces the learning curve required to implement a rigorous software
engineering process and creates highly readable project documents. The SESM
Tool suite aids in the document creation process by helping the document creators
to debug tabular specifications. The tools extract the tabular specifications and
generate PVS code to perform the block comparisons of the SDV procedure.

The use of PVS reduces human error in the mathematical proofs (e.g. dropping
a negation) by taking care of much of the details of routine logical manipulations.
Although only basic knowledge of sequent calculus and PVS is needed to obtain
useful counter examples by interpreting the unprovable sequents that result when
block comparisons fail, the SDV procedure has been designed so that only the
verifiers need to understand PVS.

tables.tex; 20/08/2001; 16:52; p.31

32 M. LAWFORD, P. FROEBEL AND G. MOUM

A nice feature of PVS is that proofs can be run at various levels of detail
depending on their intended use. An initial verification pass can be automatically
run with minimal output using a default high level proof strategy such as (GRIND)
to detect problem areas. On the other hand, the final verification procedure
proof output can be performed using only low level commands such as (EXPAND
...), (FLATTEN), (SPLIT) and (LIFT-IF) that can be more easily followed by
a reviewer.

In conclusion, tabular methods have been successfully applied at OPGI to the
development and verification of SDS Trip Computer Software. Carefully designed
formal software development and verification procedures were central to this
success by enabling the effective application of tool supported tabular methods
as an integrated part of the complete software engineering process. While the
initial results are encouraging, further work needs to be done in both academia
and industry to address the current procedural and tool limitations regarding
tolerances and timing and to provide a friendlier user interface.

Acknowledgements

The authors would like to thank Mike Viola of Ontario Power Generation and Jeff
McDougall of JKM Software Technologies Inc. for their comments and construc-
tive criticism regarding early drafts of this document. The authors would also like
to thank the anonymous referees for their insightful and instructive criticisms of
the manuscript.

References

1. Archer, M. and C. Heitmeyer: 1996, ‘TAME: A Specialized Specification and Verification
System for Timed Automata’. In: A. Bestavros (ed.):Work In Progress (WIP) Proceedings
of the 17th IEEE Real-Time Systems Symposium (RTSS’96). Washington, DC, pp. 3–
6. The WIP Proceedings is available at http://www.cs.bu.edu/pub/ieee-rts/rtss96/
wip/proceedings.

2. Archer, M., C. Heitmeyer, and S. Sims: 1998, ‘TAME: A PVS Interface to Simplify
Proofs for Automata Models’. In: User Interfaces for Theorem Provers. Eindhoven, The
Netherlands. Informal proceedings available at http://www.win.tue.nl/cs/ipa/uitp/
proceedings.html.

3. Crow, J. and B. L. Di Vito: 1998, ‘Formalizing Space Shuttle Software Requirements:
Four Case Studies’. ACM Transactions on Software Engineering and Methodology 7(3),
296–332.

4. Dutertre, B. and V. Stavridou: 1997a, ‘Formal Requirements Analysis of an Avionics
Control System’. IEEE Transactions on Software Engineering 23(5), 267–278.

5. Dutertre, B. and V. Stavridou: 1997b, ‘Requirements Analysis of Real-Time Control
Systems Using PVS’. In: C. M. Holloway and K. J. Hayhurst (eds.): LFM’ 97: Fourth
NASA Langley Formal Methods Workshop. Hampton, VA, pp. 65–74. Available at
http://atb-www.larc.nasa.gov/Lfm97/proceedings/.

tables.tex; 20/08/2001; 16:52; p.32

APPLICATION OF TABULAR METHODS 33

6. Easterbrook, S., R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton: 1998, ‘Experi-
ences Using Lightweight Formal Methods for Requirements Modeling’. IEEE Transactions
on Software Engineering 24(1), 4–14. Special Section on Formal Methods in Software
Practice.

7. Heimdahl, M. P. E. and N. G. Leveson: 1996, ‘Completeness and Consistency in Hier-
archical State-Based Requirements’. IEEE Transactions on Software Engineering 22(6),
363–377. Special Section: Best Papers of the 17th International Conference on Software
Engineering (ICSE-17).

8. Heitmeyer, C., A. Bull, C. Gasarch, and B. Labaw: 1995, ‘SCR*: A Toolset for Specifying
and Analyzing Requirements’. In: Compass ’95: 10th Annual Conference on Computer
Assurance. Gaithersburg, Maryland, pp. 109–122.

9. Heitmeyer, C., J. Kirby, and B. Labaw: 1997, ‘The SCR Method for Formally Specifying,
Verifying, and Validating Software Requirements: Tool Support’. In: Proceedings of the
19th International Conference on Software Engineering. pp. 610–611.

10. Heitmeyer, C., J. Kirby, B. Labaw, and R. Bharadwaj: 1998a, ‘SCR*: A Toolset for Spec-
ifying and Analyzing Software Requirements’. In: Proc. 10th Int. Conf. Computer Aided
Verification (CAV’98), Vancouver, BC, Canada, June-July 1998, Vol. 1427 of Lecture
Notes in Computer Science. pp. 526–531.

11. Heitmeyer, C., J. Kirby, Jr., B. Labaw, M. Archer, and R. Bharadwaj: 1998b, ‘Using Ab-
straction and Model Checking to Detect Safety Violations in Requirements Specifications’.
IEEE Transactions on Software Engineering 24(11), 927–948.

12. Heninger, K. L.: 1980, ‘Specifying Software Requirements for Complex Systems: New
Techniques and Their Applications’. IEEE Transactions on Software Engineering SE-6(1),
2–13.

13. Holzmann, G. J.: 1997, ‘The Model Checker SPIN’. IEEE Transactions on Software
Engineering 23(5), 279–295. Special Issue: Formal Methods in Software Practice.

14. Janicki, R. and R. Khédri: 2001, ‘On a Formal Semantics of Tabular Expressions’. Science
of Computer Programming 39(2-3), 189–213.

15. Janicki, R., D. L. Parnas, and J. Zucker: 1997, ‘Tabular Representations in Relational
Documents’. In: C. Brink, W. Kahl, and G. Schmidt (eds.): Relational Methods in Com-
puter Science, Advances in Computing Science. Springer Wien NewYork, Chapt. 12, pp.
184–196.

16. Jankowski, E. and J. McDougall: 1995, ‘Procedure for the Specification of Software Re-
quirements for Safety Critical Software’. CANDU Computer Systems Engineering Centre
of Excellence Procedure CE-1001-PROC Rev. 1.

17. Joannou et al., P.: 1995, ‘Standard for Software Engineering of Safety Critical Software’.
CANDU Computer Systems Engineering Centre of Excellence Standard CE-1001-STD
Rev. 1.

18. Koo, S., H. Son, and P. Seong: 1999, ‘Mathematical Verification of a Nuclear Power
Plant Protection System Function with Combined CPN and PVS’. Journal of the Korean
Nuclear Society 31(2), 157–171.

19. Lawford, M., J. McDougall, P. Froebel, and G. Moum: 2000, ‘Practical application of
functional and relational methods for the specification and verification of safety critical
software’. In: T. Rus (ed.): Proceedings Algebraic Methodology and Software Technology,
8th International Conference, AMAST 2000, Iowa City, Iowa, USA, May 2000, Vol. 1816
of LNCS. pp. 73–88.

20. Lawford, M. and H. Wu: 2000, ‘Verification of real-time control software using PVS’. In: P.
Ramadge and S. Verdu (eds.): Proceedings of the 2000 Conference on Information Sciences
and Systems, Vol. 2. Princeton, NJ, pp. TP1–13–TP1–17.

tables.tex; 20/08/2001; 16:52; p.33

34 M. LAWFORD, P. FROEBEL AND G. MOUM

21. Leveson, N. G., M. P. E. Heimdahl, H. Hildreth, and J. D. Reese: 1994, ‘Requirements
Specification for Process-Control Systems’. IEEE Transactions on Software Engineering
20(9), 684–707.

22. McDougall, J. and J. Lee: 1995, ‘Procedure for the Software Design Description for
Safety Critical Software’. CANDU Computer Systems Engineering Centre of Excellence
Procedure CE-1002-PROC Rev. 1.

23. McDougall, J., M. Viola, and G. Moum: 1994, ‘Tabular Representation of Mathemat-
ical Functions for the Specification and Verification of Safety Critical Software’. In:
SAFECOMP’94: The 13th International Conference on Computer Safety, Reliability and
Security. Anaheim, California, pp. 21–30.

24. Moum, G.: 1997, ‘Procedure for the Systematic Design Verification of Safety Critical
Software’. CANDU Computer Systems Engineering Centre of Excellence Procedure CE-
1003-PROC Rev. 1.

25. Owre, S., J. Rushby, and N. Shankar: 1997, ‘Integration in PVS: Tables, Types, and Model
Checking’. In: E. Brinksma (ed.): Tools and Algorithms for the Construction and Analysis
of Systems (TACAS ’97), Vol. 1217 of Lecture Notes in Computer Science. Enschede, The
Netherlands, pp. 366–383.

26. Parnas, D.: 1977, ‘The use of precise specifications in the development of software’. In:
IFIP Congress. pp. 861–867.

27. Parnas, D.: 1992, ‘Tabular Representation of Relations’. Technical Report 260, Commu-
nications Research Laboratory, McMaster University.

28. Parnas, D.: 1995, ‘Using Mathematical Models in the Inspection of Critical Software’. In:
M. G. Hinchey and J. P. Bowen (eds.): Applications of Formal Methods, International
Series in Computer Science. Prentice Hall, Chapt. 2, pp. 17–31.

29. Parnas, D. L., G. J. K. Asmis, and J. Madey: 1991, ‘Assessment of safety-critical software
in nuclear power plants’. Nuclear Safety 32(2), 189–198.

30. Parnas, D. L. and J. Madey: 1995, ‘Functional documents for computer systems’. Science
of Computer Programming 25(1), 41–61.

31. Rueß, H., N. Shankar, and M. K. Srivas: 1999, ‘Modular Verification of SRT Division’.
Formal Methods in Systems Design 14(1), 45–73.

32. Rushby, J., S. Owre, and N. Shankar: 1998, ‘Subtypes for Specifications: Predicate
Subtyping in PVS’. IEEE Transactions on Software Engineering 24(9), 709–720.

33. Shankar, N., S. Owre, and J. M. Rushby: 1993, ‘PVS Tutorial’. Computer Science Labora-
tory, SRI International, Menlo Park, CA. Also appears in Tutorial Notes, Formal Methods
Europe ’93: Industrial-Strength Formal Methods, pages 357–406, Odense, Denmark, April
1993.

34. Viola, M.: 1995, ‘Ontario Hydro’s Experience with New Methods for Engineering Safety
Critical Software’. In: SAFECOMP’95: The 14th International Conference on Computer
Safety, Reliability and Security. Belgirate, Italy, pp. 283–298.

35. Wassyng, A. and et al.: 1990, ‘Choosing A Methodology For Developing System Require-
ments’. Ontario Hydro/AECL SD-2 Study Report.

tables.tex; 20/08/2001; 16:52; p.34

