
Software Inspection Using CodeSurfer
Paul Anderson, Tim Teitelbaum

I. Introduction

Software Inspection is a technique for detecting flaws in
software before deployment. It was introduced by Fagan
in 1976 [12], and since then its use has spread widely.
Despite the widespread adoption and success of software

inspection, many software products continue to be released
with large numbers of flaws. This can partly be attributed
to the inherent complexity of software systems. The com-
plexity of the software thwarts manual attempts to com-
prehend it.
Furthermore, the ideal situation for conducting software

inspections in the field may often not be feasible. Time, ge-
ographical, or other constraints may mean that the original
author of the code is not available to explain the structure
of the code or describe its intended properties. Documenta-
tion may be misleading or even missing. General-purpose
program understanding tools are crucial if code is to be
inspected efficiently. However such tools until now have
mostly operated on the surface-level syntactic features of
the code.
Yet another difficulty is raised by the fact that safety or

secuiry requirements of software may be extremely difficult
to show using manual techniques. For example, regulatory
authorities that specify standards for safety-critical pro-
grams such as the Federal Aviation Authority (FAA) or
the Nuclear Regulatory Commision (NRC) sometimes re-
quire that programs involved in the control of components
have specific properties such as “part A must be indepen-
dent of part B”. It is a difficult and error-prone process for
a human to determine whether these properties hold for a
program.
We believe that tools that allow reasoning about the deep

structure of the code at a high level of detail will be ex-
tremely useful for doing software inspections. In this paper
we describe how our own system—CodeSurfer1—provides
access to and queries on the system-dependence graph rep-
resentation of a program for the purposes of helping with
software inspections.
The remainder of the paper is structured as follows. Sec-

tion II presents some basic material on dependence graphs.
Section III describes CodeSurfer—our system for program
understanding. Section IV describes how queries on the
system dependence dependence graph can be used for soft-
ware inspection. Section V describes using model checking

GrammaTech, Inc., 317 N. Aurora St., Ithaca NY 14850.
{paul,tt}@grammatech.com

Partially supported by DARPA contracts F30602-00-0080: De-
pendence Graphs for Information Assurance of Systems (OASIS),
DAAH01-99-C-R192: Multi-Lingual Dependence-Graph Components
for Software and Hardware Analysis, Design, and Specialization, and
DAAH01-01-C-R129: Verification of Hierarchical Graph Structures
(SBIR)

1CodeSurfer is a registered trademark of GrammaTech, Inc.

techniques on the control-flow graph to reveal underlying
flaws in the software. Section VI describes the ways in
which CodeSurfer has been designed to be open and exten-
sible. Section VII shows how this work relates to other work
in software inspection. Finally, Section VIII concludes with
a brief description of future work planned.

II. Dependence Graphs

Dependence graphs have applications in a wide range of
activities, including parallelization [4], optimization [13],
reverse engineering, program testing [2], and software ass-
urance [17].
Figure 1 shows the dependence graph representation for

a simple program with two procedures.
A Program Dependence Graph (PDG) [13] is a direct-

ed graph for a single procedure in a program. The ver-
tices of the graph represent constructs such as expressions,
call sites, parameters, and predicates. The edges between
the vertices indicate either a data dependence or a con-
trol dependence. The data dependence edges are essen-
tially data flow edges. For example, in Figure 1, there is
a data dependence between the point i=1 and the point
while (i < 11) indicating that the value of i flows be-
tween those two points.
A control dependence edge between a source vertex and

a destination vertex indicates that the result of executing
the source vertex controls whether or not the destination
vertex is reached. For example, in Figure 1, there is a
control-dependence edge between the vertex representing
the point while (i < 11) and the call site to the function
add.
A System Dependence Graph (SDG) is a directed graph

consisting of interconnected PDGs [18], one per procedure
in the program. Interprocedural control-dependence edges
connect procedure call sites to the entry points of the called
procedure. Interprocedural data-dependence edges repre-
sent the flow of data between actual parameters and formal
parameters (and return values).
Non-local variables such as globals, file statics, and vari-

ables accessed indirectly through pointers are handled by
modelling the program as if it used only local variables.
Each non-local variable used in a function, either directly
or indirectly, is treated as a “hidden” input parameter, and
thus gives rise to additional program points. These serve as
the function’s local working copy of the non-local variable.
The PDG/SDG-based representation subsumes the no-

tion of call graphs and data flow graphs. Numerous addi-
tional intermediate program representations are generated
in the course of constructing a high-precision SDG for a
program. These include the following:
• The program’s Abstract Syntax Tree (AST), with symbol
table and full type information.



void main()
{

int sum, i;
sum = 0;
i = 1;
while (i<11) {
sum = add(sum, i);
i = add(i, 1);

}
print(sum);
print(i);

}

int add(int a, int
b)
{

return(a+b);
}

Fig. 1. The System Dependence Graph for the small program shown on the right. Each function is represented as a collection of program
points (shown in ovals) connected by edges (shown as arrows). There are different kinds of program points, e.g., entry, call-site, etc.

• The Control-Flow Graphs (CFG) and post-dominance
graph.
• The Points-to Graph. This is a directed graph with ver-
tices corresponding to variables (and structure fields, array
elements and procedures), and edges indicating what val-
ues can point to which locations [22]. The pointer analysis
algorithms used are those of Andersen [1], Steensgaard [35]
and Das [8].
• Variable def/use information. The set of all variables
whose values are taken or modified at all points in the
program.
• The Call Multi-Graph. This includes calls made indi-
rectly through function pointers variables.
• PDGs in which references to non-local variables of a pro-
cedure are modeled by turning such variables into extra
(hidden) parameters.

A. Dependence Graph Queries

A number of queries on the dependence graphs are de-
fined. The backward slice from a program point P includes
all points that may influence whether control reaches P ,
and all points that may influence the values of the vari-
ables used at P when control gets there. The forward slice
from P includes all program points affected by the compu-
tation or conditional test at P [37].
A program chop between a set of source program points

S and a set of target program points T reveals how S can
affect the state of the program at T [30].
These query algorithms can not be implemented using

simple graph reachability — they must only return results
that correspond to feasible executions of the program. A
path that enters a procedure through a call site can on-
ly exit the procedure by going back to the call site from
whence it came. We refer to queries on the dependence
graph as being precise interprocedural if they follow this
regime.

Precise interprocedural queries are implemented in
CodeSurfer using context-free language reachability [29].
In order to do context-free language reachability on a

graph, the edges in the graph are labelled with symbols. A
valid path is one where the labels on the edges spell out a
sentence in a context-free grammar.
It is a simple matter to construct a context-free grammar

that models the call-return paths that correspond to the
valid execution of a program. Let each call site in the
program be given a unique index ranging from 1 through
N .
Let each interprocedural edge leaving from call site i be

labelled (i, and each interprocedural edge returning to call
site i be labelled )i. Let all other edges be labelled x.
The grammar that gives rise to a precise interprocedural

path in the SDG is one where the parentheses are matched.
The following grammar specifies paths that are completely
balanced by calls and returns:

matched → matched matched
| (i matched )i 1 <= i <= N
| x
| ε

A grammar that can be used to compute a slice can be
written as follows:

realizable → matched realizable
| (i realizable 1 <= i <= N
| ε

Note that the starting point for a slice can be in a proce-
dure F called by a procedure G. The grammar given above
allows the path to proceed into F without having to return
back to G.



Context-free language reachability is O(n3) in the num-
ber of edges in the graph. However, a preprocessing step
computes summary edges that summarize the transitive de-
pendence at call sites. This step, although also O(n3) in
the number of edges allows precise interprocedural queries
to be computed later in linear time [19].
Note that unstructured inter-procedural control flow

(such as that induced by throwing exceptions) can be mod-
eled this way as described in [34].

III. CodeSurfer

CodeSurfer is a static analysis tool designed to
support advanced program understanding based on
the dependence-graph representation of a program.
CodeSurfer is thus named because it allows surfing of pro-
grams akin to surfing the world-wide web.
CodeSurfer computes all of the above intermediate form-

s, and the entire system dependence graph for a program
in advance. The dependence-graph queries discussed above
are all implemented as primitive operations on the graph.
All CodeSurfer operations operate by accessing these data
structures directly, or by invoking the built-in dependence
graph queries.
A number of viewers allow the user to access this in-

formation in a user-friendly manner. These viewers are
connected by hypertext links. Some of the viewers are de-
scribed below.

Fig. 2. A Project Viewer for a small program. This shows how
CodeSurfer organizes the target code in terms of its program points.

• The Project Viewer shows the program organized hierar-
chically by file, then by function. Figure 2 shows a screen
shot of the CodeSurfer project viewer.
• The File Viewer displays the source file. Tokens that
give rise to vertices in the dependence graph are hypertext
links in the file viewer. Figure 4 shows a file viewer for a
small program.
• The Call Graph Viewer shows the call graph for the pro-
gram. In this view, the edges are hyperlinks to all the call
sites.

• Property Sheets are available for most program elements.
For example, the property sheet for a variable will show
where the variable occurs, where its value is used, where
its value is assigned, where it may point to, and what other
variables may point to it. Figure 3 shows a property sheet
for a variable.

Fig. 3. A Property Sheet for a variable in the program. Most items
shown are themselves hypertext links to other viewers. For example,
selecting one of the Uses entries will navigate to a File Viewer and
position it at that point.

• The Finder allows searching through the program for oc-
currences of strings, or for particular functions or variables.
For variables, the user can request declarations, occur-
rences, uses, and assignments. Attention can be restricted
to globals, file statics, function statics, formal parameter-
s, and/or locals. All variables that point to, or that are
pointed to by, a given variable can be shown.
• The Set Calculator allows direct manipulation of the sets
of points in the program. It provides a palette of logical set
operations including as union, intersection and difference.
CodeSurfer provides a number of queries on the system
dependence graphs that can be used for program under-
standing, or for finding flaws in the program. The next
two sections describe these queries.

IV. Queries for Software Inspection

Many of the features of CodeSurfer have been designed
for program understanding, and as such are useful for de-
tailed software inspection. This section describes some of
the queries and their application to software inspection.

A. Variable Usage Information

Each point in the program may access some variables or
modify some variables, each possibly through pointers. In
order to compute the data dependence graph, the set of
variables used and defined at each program point are first



Fig. 4. A File Viewer for a small program. In this example, the
user has selected the first parameter to the first call to the procedure
say, and has invoked a forward slice query. All points that depend
on this parameter are shown in red

computed and associated with the vertex that represents
that program point.
This information is easily accessed by the user. For ex-

ample, in Figure 3 shows the property sheet for the variable
named english. The Defs: section of the property sheet
indicates that the variable is only assigned to in one place—
the expression english = 0. The Uses: part shows that
the value of the variable has its value taken at two points,
and that both of them are through a pointer.
Furthermore, the set of variables that can be used and/or

modified for each procedure, either directly or transitively
through a callee, is also computed. This can be used to
answer questions of the form “Can global variable G be
modified if function F is called”. The user can view this
information directly through the Project Viewer.

B. Predecessors/Successors

It is natural for a user attempting to understand a pro-
gram to ask “How could variable x have gotten its value
here?”, or alternatively “Where is the value generated at
this point used?”. The predecessor and successor opera-
tions provide the answer to these questions. These queries
can be posed for the control dependences, the data depen-
dences, or both. A program point’s data predecessors are
the points where the variables used at that point may have
gotten their values. The data successors are the points
where the variables that were modified at that point are
used.

The predecessors and successors queries are implemented
using the context-free language reachability algorithm on
the dependence graph as described above in Section II-A.
The fact that the query is done directly on the depen-

dence graph guarantees that the result will be correct with
respect to the data flow properties of the program. For ex-
ample consider the example in figure 5. If the predecessors
query is invoked from line 5, lines 3 and 4 will be in the
result. Line 1 will not be in the result because the value
of x assigned on line 1 can never reach the use of x on line
5, because there is an assignment that kills it on line 3.
Similarly the assignment to w on line 2 can never reach line
5 because of the kill on line 4.

1: x = 100;
2: w = x;
3: x = 1;
4: w = 10;
5: z = x + w;

Fig. 5. A simple program fragment used to illustrate the built-in
queries. The underlining indicates the starting point for the queries
discussed in the text.

The fact that the the query is done using context-free
language reachability guarantees that paths that do not
correspond to valid paths through the program are not con-
sidered.
There are variants on these queries to narrow down the

set of starting points for a query. Point mode is the default
mode. As described above, a point mode query from line
5 yields lines 3 and 4.

Point-and-variable mode allows the user to restrict the
set of starting points to those involving a set of variables.
When invoked the user is prompted for the set of variables
to be considered. For example, a point-and- variable mod-
e predecessors query starting at line 5 in Figure 5 with
respect to variable x yields line 3.
In variable mode the input is a set of variables and is

independent of a starting point. In the example in Figure 5,
a variable mode predecessors query with respect to variable
x yields lines 1 and 2.

C. Slicing

A backward slice with respect to a set of starting points
S answers the question “What points in the program does
S depend on?”. The control dependence edges are used
to determine how control could have reached S, and the
data edges are used to determine how the variables used
at S were computed. A forward slice with respect to a set
of starting points S answers the question “What points in
the program depend on S”.
Like the predecessor and successor operations, the slice

operations have point and variable modes.
Slices are best used with care. Our experience is that the

slicing operations are generally not used much for program
understanding as they often to deliver too much informa-
tion to be easily comprehended.
Figure 4 shows a CodeSurfer File Viewer where a forward

slice has been invoked.



Fig. 6. The result of doing a chop shows how information can flow
from one set of points to another. In this example, several points
light up as being places where a security policy is being violated.

D. Chopping

A chop is a point-to-point reachability query in the
graph. It answers the question “How does execution of
the program points at A affect the execution of B?”. This
query can be used to determine the information flow be-
tween points in the program, or to show that two parts of
the program are independent.
As mentioned previously, some regulatory agencies have

software requirements that specify independence of com-
ponents. In cases where the components are in the same
program, a chop can be used to determine whether the
software satisfies these requirements.
For example, the NRL network pump is a device that

connects a high security network to a low security net-
work [20]. The security requirement is that data can be
transferred from the low side to the high side, but that no
information can be allowed to flow from high to low. The
exception is that communication acknowledgements are al-
lowed to flow from high to low.
This property can be tested using the chop operation.

The sources of the chop operation will be program points
where data is read from the port connected to the high-
security network. The targets of the chop operation will be
the points where the data is written to the low channel. If
the chop query returns the empty set, then this shows that
the security property holds. If not, then the result is the
set of points through which the property is violated.
Figure 6 shows the result of doing a chop on a mockup

of the NRL pump. The points in red show those places
involved in a violation of the security policy. There is no
flow in the first example. The second example is a blatant
violation. It is useful to point out that the third example is
more subtle. Fresh high data, which is read into hi, is used

to change lo conditionally. The value of lo is then written
to the low security port. Information is communicated from
high to low via control dependence; low receives a 1 if and
only if the high input was non-zero. Therefore a single bit
of information has leaked. If high were 0-1 valued, this
would be perfect information.

D.1 Red/Black separation

One form of independence property common in securi-
ty applications is known as red/black separation. Values
stored in a set of private variables (the red set) must not
be allowed to flow to any of the set of public variables (the
black set). This is a subtly different requirement than that
expressed for the NRL pump. Here, the requirement is ex-
pressed in terms of the program’s variables as opposed to
program points.
CodeSurfer’s variable mode can be used to help explore

red/black separation properties. A variable-mode chop be-
tween a source set of variables VS and a target set of vari-
ables VT shows all ways in which information can flow be-
tween variables. This can be used to determine if a program
conforms to the desired red/black separation policies.

V. Model Checking

Model checking is a technique widely used in digital
hardware design to check properties of digital circuits [6].
We are adapting these techniques for doing model check-
ing on programs with the goal of discovering programming
flaws in systems. A full technical description of the model
checker is beyond the scope of this paper. For a descrip-
tion, see [11]. Here we give a brief outline of the approach
and describe how it can be used to answer questions that
may be raised in detailed software inspections.
In model checking of digital circuits, model checkers op-

erate on a graph where the vertices are the states of the
circuit and edges represent state transitions. In contrast,
the model-checking approach operates on the program’s
control-flow graph. Thus it can be thought of as checking
the program in terms of all the possible paths through the
program.
Unlike digital circuits, where the state space is “flat”,

the state space for a program’s control-flow graph is con-
strained by the fact that when a call to a function finish-
es, control can only pass back to the point of call. This
is the precisely the same issue that prevents straightfor-
ward graph reachability from being used to perform slicing
queries, as described in Section II-A. In this case we use a
space-efficient version of an algorithm due to Burkart and
Steffen [3].
The model checking algorithm is capable of checking for-

mulae in the full modal mu-calculus [21]. Translators can
be written to convert formulae in higher-level logics such
as Fair CTL into the mu-calculus.
The user interface to the model checker is neither of these

logics, but instead a set of prepackaged or “canned” asser-
tions about the behavior of the program in terms of valid
execution paths, each of which is parameterisable. When
invoked, the model checker evaluates the formula with its



parameters, and if the assertion fails, the user is allowed to
browse a counter-example in terms of a path through the
code.
The parameters to the assertions are atomic propositions

that can be specified in terms of the vertex being visited.
For example, one query is “There exists a path where X
holds until Y ”. When invoked, the user is prompted to
specify the propositions X and Y . These can be specified
in terms of a set of predefined functions, or in terms of an
arbitrary Scheme function. This function of course has ac-
cess to the full system dependence graph, so sophisticated
queries can be specified.
This mechanism can be put to use for posing queries

useful in software inspection. One question that might
be asked about a security-sensitive program is whether it
contains a backdoor security vulnerability. If the applica-
tion is a login program, then no user should be allowed
access without having first gone through an authentication
process. First the user would identify the points where
the user is given access. These will typically be calls to
a function. In the login program they might be calls to
exec(). Let this set of points be named X . The user
would then identify the points at which the authentication
of the user is confirmed. Let these points be called Y .
The canned query “No path goes through X without going
through Y ”. The resulting query will thus be “No path
goes through (all calls to exec()) without going through
(a call to authenticate())”.
Figure 7 shows a screen shot of CodeSurfer with the mod-

el checking interface being used to find possible sources of
errors in a program.

VI. Openness and Extensibility

CodeSurfer has been designed to be open and extensible
where possible in order to foster users who wish to integrate
with other tools, and to encourage users to build tools as
add-ons to the system. The following sections describe the
various ways in which CodeSurfer can be enhanced or ex-
tended.

A. Language.

The language-specific front-end to CodeSurfer produces
an intermediate form that consists of a control-flow graph
annotated with variable usage information. As the fron-
t end is a separate executable, users can replace it with
a front end for another language as long as programs in
that language can be expressed in terms of the control-
flow graph intermediate form. This has been done by
CodeSurfer users for Jovial, Verilog, a subset of VHDL, and
Promela—the language for the SPIN model checker [25].

B. Pointer Analysis.

CodeSurfer provides a choice of several pointer analysis
algorithms, each of which offers different choices for preci-
sion and scalability. The pre-packaged algorithms include
those of Andersen [1], Steensgaard [35] and Das [8]. As new
pointer analysis algorithms are constantly being develope-
d, the tool was designed so that new algorithms could be

easily incorporated. As with the language-specific front
end, the pointer analysis algorithms are packaged as sepa-
rate executables, so they can be easily replaced by a user
if necessary.

C. Scripting Language.

The CodeSurfer executable itself is written as a Scheme
interpreter extended with the ability to create and manip-
ulate system dependence graphs. The scheme interpreter
is based on the STk implementation from Erick Gallesio
at the University of Nice [15]. STk is fully integrated with
the Tk widget set—the entire CodeSurfer GUI is written
in Scheme using these widgets.

D. API to the Dependence Graph

The extensions to the Scheme interpreter introduce sev-
eral new primitive types and provide a range of opera-
tions on them. These correspond to the underlying de-
pendence graph data structures. For example, one type is
the PDG; the operation (pdg-vertices G) returns the set
of vertices associated with the program dependence graph
G. Thus users can extend the system with new kinds of
queries, or even new GUI elements. The model-checking
application described in section V above is just such an
extension.

E. Import/Export formats

CodeSurfer provides the ability to export arbitrary sets
of program points to files in a range of different file format-
s. Additionally, some facilities are available for import-
ing file formats and converting them to sets of program
points. This mechanism facilitates integration with oth-
er tools. The set of standard formats is currently small,
but growing. It currently includes grep format and Pure-
Coverage format. A GXL filter [16] is planned for the fu-
ture. This feature is also open and extensible. The user
can define (in Scheme) new functions for converting sets of
program points to external file formats and back again.

F. Set Calculator Operations

The set calculator provides the ability to manipulate sets
of program points. The operations in the set calculator can
be extended, again using Scheme, by an end user.

VII. Relationship with other work

Many Software Inspection Tools focus on groupware for
the management of the software inspection process. These
tools include ICICLE [33], ASSIST [23], Suite [9] A com-
parison of such tools can be found in [24]. Few tools have
been for detailed fine-grain inspection of software, although
ICICLE does allow users to run lint on the C source files
during the inspection.
Dunsmore [10] argues for a greater role of comprehension

in the software inspection. There are many tools solely for
program understanding [31], [36], [28], but we believe there
are none that bring so much static analysis information to
the user.



Fig. 7. The model checker has been used to make an assertion about the program which has failed. The GUI provides a means for browsing
a path in the program counter-example. The interface for browsing the path is similar to a debugging tool being used to step through the
execution of a program

CodeSurfer has some commonality with tools for reverse
engineering. These include the DMS Software Reengi-
neering Toolkit [32], Datrix at Bell Canada [5], and the
Portable Bookshelf [14]. However, unlike these system-
s, CodeSurfer makes no attempt to recover architectural
information—its analysis is limited to creating a fine-grain
system dependence graph. CodeSurfer does not have a
general purpose meta-query system in the sense of DMS.
Instead it makes do with basic context-free language graph
reachability queries that are customizable programmatical-
ly. CodeSurfer does not have the ability to transform the
program in the style of DMS, or TXL [7].
Other tools that provide a similar level of static analysis

as CodeSurfer include other software re-engineering tools
such as Refine [27] and Discover [26].

VIII. Conclusion and Future Work

We have described a tool for inspecting and manipulat-
ing the dependence-graph representation of a program for
the purposes of program understanding. We propose that
such a tool will be of use for doing formal software inspec-
tions. We have described the means by which the system
answers queries about the data flow properties of the pro-
gram using context-free language graph reachability. We
have described using a model checker to answer questions
about possible paths through the program.
Work on CodeSurfer is continuing under several research

contracts. There are two main thrusts in the development

of CodeSurfer. The first is to improve the scalability of the
system. This will be achieved partly by improving the effi-
ciency of the pointer analysis algorithms without sacrificing
precision, and partly by using demand-driven techniques to
reduce the up-front cost of building the dependence graph.
The other thrust is to extend the domain of applications
for the system. We are currently studying applying the
technology to software assurance, and to program testing
problems.

References

[1] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, Univ. of Copen-
hagen, May 1994. (DIKU report 94/19).

[2] S. Bates and S. Horwitz. Incremental program testing using
program dependence graphs. In Symp. on Princ. of Prog. Lang.,
pages 384–396, 1993.

[3] Olaf Burkart and Bernhard Steffen. Model checking for context-
free processes. In International Conference on Concurrency
Theory, pages 123–137, 1992.

[4] M. Burke and R. Cytron. Interprocedural dependence analysis
and parallelization. In SIGPLAN ’86 Symposium on Compiler
Construction, pages 162–175, 1986.

[5] Bell Canada. http://www.iro.umontreal.ca/labs/gelo/datrix.
[6] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking.

MIT Press, Cambridge, MA, 1999.
[7] J. Cordy, I. Carmichael, and R. Halliday. The txl programming

language, 1995 1995.
[8] Manuvir Das. Unification-based pointer analysis with directional

assignments. In PDLI’00, Vancouver, BC, 2000.
[9] J. Drake, V. Mashayekhi, J. Riedl, and W. Tsai. A distributed

collaborative software inspection tool: Design, prototype, and
early trial. Technical Report TR-91-30, University of Minnesota,
August 1991.



[10] A. Dunsmore. Comprehension and visualisation of object-
oriented code for inspections. Technical Report EFoCS-33-98,
Computer Science Department, University of Strathclyde, 1998.

[11] James Ezick, David W. Richardson, and Tim Teitelbaum. Prac-
tical model checking and example generation for context-free
processes. Submitted to the Workshop on Software Model
Checking, Paris, France, July 23 2001.

[12] M. Fagan. Design and code inspections to reduce errors in pro-
gram development. IBM Systems Journal, 15(3):182–211, 1976.

[13] J. Ferrante, K. Ottenstein, and J. Warren. The program depen-
dence graph and its use in optimization. Trans. on Prog. Lang.
and Syst., 3(9):319–349, 1987.

[14] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Mueller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564–593, November 1997.

[15] Erick Gallesio. STk Home Page. http://kaolin.unice.fr/STk/.
[16] Richard C. Holt and Andreas Winter. A Short Introduction to

the GXL Software Exchange Format. In WCRE 2000: Working
Conference on Reverse Engineering, Brisbane, Australia, Nov 6
2000.

[17] S. Horwitz and T. Reps. The use of program dependence graphs
in software engineering. In Proceedings of the Fourteenth Inter-
national Conference on Software Engineering, pages 392–411.
ACM, New York, May 1992.

[18] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. Trans. on Prog. Lang. and Syst.,
12(1):26–60, January 1990.

[19] S. Horwitz, T. Reps, M. Sagiv, and G. Rosay. Speeding up
slicing. In Proceedings of the Third ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, pages 11–
20, New York, NY, December 1994. ACM Press. Available at
“http://www.cs.wisc.edu/wpis/papers/fse94.ps”.

[20] M.H. Kang, I.S. Moskowitz, and D.C. Lee. A net-
work pump. Technical report, Naval Research Lab-
oratory, 1997. http://www.itd.nrl.navy.mil/ITD/5540/-
publications/CHACS/1997/1997kang-ACSAC97.ps.

[21] Dexter Kozen. Results on the propositional mu-calculus. Theo-
retical Computer Science, 27:333–354, 1983.

[22] W. Landi, B. Ryder, P. Stocks, S. Zhang, and R. Altucher. A
schema for interprocedural modification side-effect analysis with
pointer aliasing. Technical Report DCS-TR-336, Rutgers Uni-
versity, May 1998.

[23] F. Macdonald. Computer-Supported Software Inspection. PhD
thesis, Dept. Computer Science. University of Strathclyde, 1998.

[24] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Wood. A
review of tool support for software inspection. In Proceedings of
the Seventh International Workshop on Computer-Aided Soft-
ware Engineering (CASE-95), Toronto, Canada, July 1995.

[25] Lynn Millett and Tim Teitelbaum. Slicing promela and its appli-
cations to model checking, simulation, and protocol understand-
ing. In SPIN workshop., 1998.

[26] MKS. MKS Home Page. http://www.mks.com.
[27] Reasoning, Inc. Reasoning home page.

http://www.reasoning.com.
[28] Red Hat Software. The Source-Navigator IDE.

http://sources.redhat.com/sourcenav/.
[29] T. Reps. Program analysis via graph reachability. Information

and Software Technology, 40(11-12):701–726, November 1998.
Special issue on program slicing.

[30] T. Reps and G. Rosay. Precise interprocedural chopping. SIG-
SOFT 95: Proceedings of the Third ACM SIGSOFT Symposium
on the Foundations of Software Engineering, (Washington, D-
C, October 10-13, 1995), ACM SIGSOFT Software Engineering
Notes, 20(4), 1995.

[31] Scientific Toolworks, Inc. Understand.
http://www.scitools.com/cpp.html.

[32] Inc. Semantic Designs. http://www.semdesigns.com/Products/-
DMS/DMSToolkit.html.

[33] V. Sembugamoorthy and L. Brothers. ICICLE: Intelligent code
inspection in a c language environment. In The 14th Annu-
al Computer Software and Applications Conference, pages 146–
154, October 1990.

[34] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel.
System-dependence-graph-based slicing of programs with arbi-
trary interprocedural control flow. In International Conference
on Software Engineering, pages 432–441, 1999.

[35] B. Steensgaard. Points-to analysis in almost-linear time. In
Symp. on Princ. of Prog. Lang., pages 32–41, 1996.

[36] Upspring Software. CodeRover Browser for
C/C++. http://www.upspringsoftware.com/products/-
coderover/browser cpp.html.

[37] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352–357, July 1984.


