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Abstract: This work represents a natural extension of our work on optimal probabilistic
supervisory control of probabilistic discrete event systems (PDESs). In that work, a pseudo-
metric on the initial states of two probabilistic automata that represent probabilistic systems
is used to measure the distance between two systems. The pseudometric is given a fixed point
characterization. This paper gives a logical characterization of the same pseudometric that
justifies the intuition that two systems are close if they satisfy similar properties. A trace
characterization of the pseudometric is then derived from the logical characterization. Further,
the solution of the problem of approximation of a given probabilistic automaton with another
automaton is suggested such that the new model is as close as possible to the original one in
the pseudometric. The significance of the approximation is then discussed.
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1. INTRODUCTION

A supervisory control framework of PDESs was proposed
in Lawford and Wonham (1993). PDESs are modeled as
probabilistic generators from Garg (1992a,b). Further, de-
terministic supervisors for DES are generalized to proba-
bilistic supervisors: after observing a string s, the prob-
abilistic supervisor enables an event σ with a certain
probability. The supervisory control problem considered
in Lawford and Wonham (1993) is to find, if possible, a
supervisor under whose control the behaviour of a plant
is identical to a given probabilistic specification. Further,
Lawford and Wonham (1993) show that a plant under
probabilistic control can generate a much larger class of
probabilistic languages than deterministic control, and
give the necessary and sufficient conditions for the exis-
tence of a supervisor for a class of PDESs. A formal proof
of the necessity and sufficiency of the conditions and an
algorithm for the calculation of the supervisor, if it exists,
are presented in Postma and Lawford (2004), Pantelic
et al. (2009). Analogous to a problem in classical supervi-
sory control theory, it can happen that, given a plant to
be controlled and a probabilistic specification language, no
probabilistic supervisor exists such that the plant under
control generates the prespecified probabilistic language.
In this case when the exact solution is not achievable,
a designer tries to find a supervisor such that the plant
generates the behavior closest to the desired behaviour
Pantelic and Lawford (2009). Therefore, the supervisor
is synthesized by minimizing the distance between the
achievable probabilistic behavior of the plant under control
and the probabilistic behaviour of the requirement. The
distance is measured by a pseudometric on the states
of probabilistic transition systems which was introduced
in Deng et al. (2006). The pseudometric is characterized
as the greatest fixed point of a function. For reactive

systems, the work of Deng et al. (2006) is closely related
to Desharnais et al. (2002), Desharnais et al. (2004), van
Breugel and Worrell (2001a). The pseudometric of Deshar-
nais et al. (2004) is given a fixed point characterization,
while the pseudometric of Desharnais et al. (2002) is given
both logical and fixed point characterization. Further, van
Breugel and Worrell (2001b, 2005) give a coalgebraic char-
acterization of a pseudometric and show that it coincides
with Desharnais et al. (2004).

The pseudometric of Deng et al. (2006) is slightly modified
in Pantelic and Lawford (2009) and intuitively matches a
notion of the distance between PDESs, accounting for all
differences between corresponding transition probabilities.
Furthermore, as the pseudometric is suggested for a large
class of systems, it allows for an extension of the work
to e.g., nondeterministic systems. Also, there is a simple
algorithm to compute distances in this pseudometric for
our generative, deterministic model (Pantelic and Lawford
(2009)).

This paper further motivates the choice of the pseudo-
metric in the solution of control problem of Pantelic and
Lawford (2009) by characterizing the pseudometric using
a logic along the lines of Desharnais et al. (2002). However,
the logic itself is different than that of Desharnais et al.
(2002) as our models are generative. Also, the main part of
the characterization proof is, to the best of our knowledge,
novel. The idea of logical characterization is that the
distance between two systems is measured by a logical
formula that distinguishes between the systems the most.
Further, in this paper, this logical characterization is used
as useful information on how the probabilistic traces of the
systems (whose distance is measured by the pseudometric)
are related.



In control theory of PDESs, Chattopadhyay and Ray
(2008) introduce a metric (in a symbolic pattern recog-
nition application) to measure the distance between the
original model and the one with prespecified structure,
where the latter has the same long term distribution
over the states as the original one. In this paper, the
problem of a similar probabilistic model transformation
(probabilistic model fitting) is discussed in our setting.
A probabilistic generator is approximated with another
one with a prespecified structure such that the distance
between the two is as small as possible in the metric
of Pantelic and Lawford (2009). The significance of the
fitting, especially with respect to the control algorithm of
Pantelic and Lawford (2009) is then discussed.

In Section 2, PDESs as generators of probabilistic lan-
guages are presented, and the problem of optimal proba-
bilistic control of PDESs and its solution are introduced.
Section 3 presents the logical characterization of the pseu-
dometric. The trace characterization that stems from the
logical one is presented in Section 4. The probabilistic
model fitting problem, its solution, and its applications
in control theory are introduced in Section 5. Section 6
concludes with avenues for future work.

All the proofs can be found in Appendix A.

2. PRELIMINARIES

In this section, PDESs modeled as generators of probabilis-
tic languages are presented. Then, the problem of optimal
supervisory control of PDESs, and the pseudometric used
in the solution of the problem are introduced (for more
details, see Pantelic and Lawford (2009)).

2.1 Modeling PDES

The probabilistic DES (PDES) can be modeled as a
probabilistic generator G = (Q,Σ, δ, q0, p) (Lawford and
Wonham (1993)), where Q is the nonempty finite set of
states, Σ is a finite alphabet whose elements we will refer
to as event labels, δ : Q×Σ → Q is the (partial) transition
function, q0 ∈ Q is the initial state, and p : Q × Σ →
[0, 1] is the statewise event probability distribution. The
results to be presented are for prefix closed probabilistic
specification languages; hence the lack of marking states in
the definition of a probabilistic generator. The transition
function is traditionally extended by induction on the
length of strings to δ : Q × Σ∗ → Q in a natural way.
For a state q, and a string s, the expression δ(q, s)! will
denote that δ is defined for the string s in the state q.

The probability that the event σ ∈ Σ is going to occur at
the state q ∈ Q is p(q, σ). For the generator G to be well-
defined, (i) p(q, σ) = 0 should hold if and only if δ(q, σ) is
undefined, and (ii) ∀q

∑

σ∈Σ p(q, σ) ≤ 1. The probabilistic
generator G is nonterminating if, for every reachable state
q ∈ Q,

∑

σ∈Σ p(q, σ) = 1. Conversely, G is terminating
if there is at least one reachable state q ∈ Q such
that

∑

σ∈Σ p(q, σ) < 1. The probability that the system
terminates at state q is 1−

∑

σ∈Σ p(q, σ). Throughout the
sequel, we will mostly consider nonterminating generators
(if a plant is terminating, it can easily be transformed
into a nonterminating one using the technique described
in Lawford and Wonham (1993)).

The language L(G) generated by a probabilistic DES au-
tomaton G = (Q,Σ, δ, q0, p) is L(G) = {s ∈ Σ∗ | δ(q0, s)!}.
The probabilistic language generated by G is defined as:

Lp(G)(ǫ) = 1

Lp(G)(sσ) =

{

Lp(G)(s) · p(δ(q0, s), σ) if δ(q0, s)!
0 otherwise

Informally, Lp(G)(s) is the probability that the string s is
executed in G. Also, Lp(G)(s) > 0 iff s ∈ L(G).

For each state q ∈ Q, function ρq : Σ × Q → [0, 1]
is defined such that for any q′ ∈ Q, σ ∈ Σ, we have
ρq(σ, q

′) = p(q, σ) if q′ = δ(q, σ), and 0 otherwise. The
function ρq is a probability distribution on the set Σ×Q.
Also, for a state q, the set of possible events is defined to
be Pos(q) := {σ ∈ Σ|δ(q, σ)!}.

2.2 Control Problem

As usually, the set Σ is partitioned into disjoint sets Σc

and Σu, the sets of controllable and uncontrollable events,
respectively. Deterministic supervisors for DES are gener-
alized to probabilistic supervisors. Instead of deterministi-
cally enabling or disabling controllable events, probabilis-
tic supervisors enable them with certain probabilities.

Optimal Probabilistic Supervisory Control Problem (OP-
SCP): Let G1 = (Q,Σ, δ1, q0, p1) be a plant PDES, and
let G2 = (R,Σ, δ2, r0, p2) be a requirements specification
PDES. If there is no probabilistic supervisor Vp such that
Lp(Vp/G1) = Lp(G2) (i.e., the conditions of Lawford and
Wonham (1993) fail), find Vp such that

(1) L(Vp/G1) ⊆ L(G2) and supervisor Vp is maxi-
mally permissive in the nonprobabilistic sense (i.e.,
L(Vp/G1) is the supremal controllable sublanguage
of L(G1) ∩ L(G2) with the respect to G1).

(2) The probabilistic behaviour of the controlled plant is
“as close as possible” to the probabilistic behaviour
of the requirements specification, now restricted to
supremal controllable sublanguage of L(G1) ∩ L(G2)
with the respect to G1.

The solution to the problem is given in Pantelic and
Lawford (2009). The pseudometric used as a measure of
proximity of the controlled plant and probabilistic require-
ments specification will be described in Section 2.3. Also,
in Pantelic and Lawford (2009), an iterative algorithm is
suggested to approximate the probabilities of controlled
plant. The algorithm minimizes the distance between the
controlled plant and the modified requirements specifica-
tion such that the probabilistic controllability conditions
of Lawford and Wonham (1993) are satisfied.

2.3 The pseudometric

Probabilistic bisimulation as commonly used to define an
equivalence relation between probabilistic systems is not
a robust relation: two states of probabilistic systems are
bisimilar if and only if they have the same transitions with
exactly the same probabilities to states in the same equiv-
alence classes. As a more flexible way to compare proba-
bilistic systems, a notion of pseudometric is introduced. A
pseudometric on a set of states Q is a function d : Q×Q→
R that defines a distance between two elements of Q, and



satisfies the following conditions: d(x, y) ≥ 0, d(x, x) = 0,
d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z), for any
x, y, z ∈ Q. If all distances are not greater than 1, the
pseudometric is 1-bounded. In the sequel, the terms metric
and pseudometric will be used interchangeably.

The work of Deng et al. (2006) introduces a pseudometric
on states for a large class of probabilistic automata,
including reactive and generative probabilistic automata.
The pseudometric is based on the Kantorovich metric on
distributions. Two states are at distance 0 in this metric
if and only if they are probabilistic bisimilar. Here, the
metric is presented only for probabilistic generators.

Let G = (Q,Σ, δ, q0, p) be a nonterminating PDES, where
Q = {q0, q1, . . . qN−1}. First, in Desharnais et al. (2002)
and Deng et al. (2006), the class M of 1-bounded pseudo-
metrics on states is defined with the ordering

d1 � d2 if ∀s, t d1(s, t) ≥ d2(s, t). (1)

Further, it is proved that (M,�) is a complete lattice.

Next, let d ∈ M, and let the constant e ∈ (0, 1] be
a discount factor that determines the degree to which
the difference in the probabilities of farther transitions
is discounted: the smaller the value of e, the greater the
discount on future transitions. Let qq, qr ∈ Q, and let ρqq

and ρqr
be the distributions on Σ×Q induced by the states

qq and qr, respectively. Next, let i(qq, σ) = i such that qi =
δ(qq, σ) if δ(qq, σ)!, and i(qq, σ) = 0, otherwise. Similarly,
j(qr, σ) = j such that qj = δ(qr, σ) if δ(qr, σ)!, and
j(qr, σ) = 0, otherwise. For readability purposes, we will
write i instead of i(qq, σ), and j instead of j(qr, σ). Further,
we will write ρσ,i instead of ρqq

(σ, qi), and, similarly, ρ′σ,j

instead of ρqr
(σ, qj). Then, the pseudometric on states dfp

is given as the greatest fixed-point of the function D on
M, that, in the special case of probabilistic generators,
can be shown to be (see Pantelic and Lawford (2009)):

D(d)(qq, qr)

=
∑

σ∈Σ

max(ρσ,i − ρ′σ,j + eρ′σ,jd(qi, qj), eρσ,id(qi, qj))

=
∑

σ∈{σ∈Σ|ρσ,i≥ρ′

σ,j
}

(

ρσ,i − ρ′σ,j + eρ′σ,jd(qi, qj)
)

+
∑

σ∈{σ∈Σ|ρσ,i<ρ′

σ,j
}

eρσ,id(qi, qj) (2)

We arbitrarily choose i(qq, σ) to be 0 (similarly for j(qr, σ))
when δ(qq, σ) is not defined although we could have chosen
any other i ∈ {1, . . . , N−1}. This is because when δ(qq, σ)!
does not hold, then ρσ,i(qq,σ) = 0 for any i(qq, σ) ∈
{0, . . . , N − 1}.

The proofs that the function defined by (2) is monotone
on M, and that it has the greatest fixed point follow
straightforwardly from Desharnais et al. (2002). Also, the
metric dfp is 1-bounded, and the distances between the
states in dfp are larger by the factor 1/e than the distances
in metric defined in Deng et al. (2006).

The pseudometric dfp is defined on the states of a single
PDES. The distance between two PDESs (with disjoint
sets of states) is the distance between their initial states
in a new PDES that represents the union of the PDESs
defined in a natural way (Pantelic and Lawford (2009)).

In the sequel, the union will not be formalized as it does
not change the distance between the states.

3. LOGICAL CHARACTERIZATION

The aforementioned metric has been given a fixed point
characterization. This section presents a logical charac-
terization of the same metric. The idea is as follows.
Intuitively, when two systems are metrically similar, they
should satisfy similar properties. If the systems are proba-
bilistic bisimilar, they should satisfy the same properties.
Further, the distance between the states in the metric is
achieved through a formula that distinguishes between the
systems the most.

As before, let G = (Q,Σ, δ, q0, p) be a nonterminating
generator, where Q = {q0, q1, . . . qN−1}.

Definition 1. Given an alphabet Σ, the logic L is defined
as follows:

φ ::= 1 | 〈σ〉φ |
∨

σ∈Θ

〈σ〉φ | 1 − φ | φ⊖ p,

where p is a rational number in [0, 1], σ ∈ Σ, and Θ ⊆ Σ.

The formula φ evaluated at a state q ∈ Q, φ(q), is a
measure of how much φ is satisfied at the state. The
semantics of the logic L is given next.

Definition 2. Let q ∈ Q, and ρq be the probability dis-
tribution on Σ × Q induced by state q. Let φ ∈ L, and
ψ : Σ → L. The notation ψσ will be used for ψ(σ), σ ∈ Σ.
Then:

1(q) = 1

〈σ〉φ(q) = eρq(σ, qi(q,σ))φ(qi(q,σ))
∨

σ∈Θ

〈σ〉ψσ(q) =
∑

σ∈Θ

eρq(σ, qi(q,σ))ψσ(qi(q,σ))

(1 − φ)(q) = 1 − φ(q)

(φ⊖ p)(q) = max(φ(q) − p, 0)

where σ ∈ Σ, and, as before, i(q, σ) = i such that
qi = δ(q, σ) if δ(q, σ)!, and i(q, σ) = 0, otherwise.

The presented logic represents a probabilistic modification
of Hennessy-Milner logic (Hennessy and Milner (1985)).
The formula 1 corresponds to the constant true, 〈σ〉φ
is the next operator, 1 − φ corresponds to negation, and
φ⊖p provides for the testing of the value of φ (Desharnais
et al. (2002)). The logic supports only a specific disjunction
of form

∨

〈σ〉φ; extending it to
∨

φ would require a
more complicated formalization not necessary for the main
result to be presented.

The metric dL is next defined. Two states are measured by
a formula that differentiates them the most in the following
manner.

Definition 3. For every qq, qr ∈ Q, the metric dL is defined
as:

dL(qq, qr) = sup
φ∈L

{|φ(qq) − φ(qr)|}.

In this logical setting, the smaller the factor e is, the more
discounted the difference is for complex formulae.

An example is given in Figure 1. The states q0 and r0 are
at the distance 0.25e+ 0.75e2 in the metric dL, witnessed
by the formula φ =

∨

σ∈{α,β}〈σ〉φσ, where φα = 1 − 〈γ〉1,
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Fig. 1. Example

and φβ = 〈τ〉1. Further, states q1 and r1 (also, q1 and r2)
are at the distance e as witnessed by the formula φ = 〈τ〉1.

The goal is to show that the metric dfp is equal to the
metric dL up to constant e.

Lemma 1. Let qq, qr ∈ Q. For a function φ : Σ → L, the
shorthand notation φσ will be used for φ(σ). Then:

dL(qq, qr) = sup
φσ∈L

{∣

∣

∣

∣

∣

∨

σ∈Σ

〈σ〉φσ(qq) −
∨

σ∈Σ

〈σ〉φσ(qr)

∣

∣

∣

∣

∣

}

.

The following two definitions will be used for the proof of
the main result. First, the depth of a formula φ ∈ L is
defined (in a manner similar to that of Desharnais et al.
(2002)). Then, the formula φn

qq,qr
is introduced.

Definition 4. The depth of a formula of logic L is defined
as:

depth(1) = 0,

depth(〈σ〉φ) = depth(φ) + 1,

depth(
∨

σ∈Θ

〈σ〉ψσ(q)) = max{depth(ψσ)|σ ∈ Θ} + 1,

depth(1 − φ) = depth(φ),

depth(φ⊖ p) = depth(φ).

Definition 5. Let qq, qr ∈ Q. The notation adopted for (2)
is used here. Then, formula φ0

qq,qr
is defined as

φ0
qq,qr

= 1,

and, for n ∈ N, formula φn+1
qq,qr

is defined as

φn+1
qq,qr

=
∨

σ∈Σ

〈σ〉ψn
σ,qq,qr

, where

ψn
σ,qq,qr

=

{

1 − ((1 − φn
qi,qj

) ⊖ (1 − φn
qi,qj

(qi))) if ρσ,i ≥ ρ′σ,j

φn
qi,qj

⊖ φn
qi,qj

(qj) otherwise.

Remark 1. Back to the metric dfp, according to Tarski’s
fixed point theorem, the greatest fixed point of function
D can be reached through an iterative process that starts
from the greatest element. As the number of transitions
from a state of a probabilistic generator is finite, the
greatest fixed point of the function D is reached after
at most ω iterations (Deng et al. (2006), Desharnais
et al. (2002)) (equivalently, the closure ordinal of D is
ω). Therefore, the metric dfp can be reached through the
following iterative process.

Definition 6. The distance function d0
fp is defined as:

d0
fp = 0,

and the distance function dn+1
fp , n ∈ N, is given as:

dn+1
fp = D(dn

fp), (3)

where D is given in (2).

The main result relating the two metrics is next presented.
It states that metrics dL and dfp are equal up to constant
e.

Theorem 1. dL = edfp

Remark 2. The logic L can be easily extended such that
dL = edfp still holds. Therefore, it is easy to make the logic
more expressive while preserving the same characterization
of our logic. As logic L is sufficient for the characterization
of the metric, and for the sake of simplicity of formaliza-
tion, the logic was not extended.

4. FROM LOGIC TO TRACES

First, Lp(G)(s) is modified to define discounted probability
of a string s in G, Pd(G)(s).

Definition 7. Let Pd(G) : L(G) → [0, 1] be defined as:

Pd(G)(ǫ) = 1

Pd(G)(sσ) =

{

e · Pd(G)(s) · p(δ(q0, s), σ) if δ(q0, s)!
0 otherwise

where s ∈ L(G), σ ∈ Σ. Then, Pd(G)(s) is the discounted
probability of a string s in G.

Informally, the discounted probability of a string is the
probability of occurrence of a string discounted by factor
e for every event in the string.

Let G1 and G2 be two probabilistic generators. An im-
portant result states that there is not a string whose
discounted probability differs between the two languages
more than the distance dL between corresponding genera-
tors.

Theorem 2.

dL(G1, G2) ≥ sup
s∈Σ∗

{|Pd(G1)(s) − Pd(G2)(s)|} (4)

Further, it can be shown that distance in the metric dL

between the two systems is also greater than the difference
in discounted probabilities of a set of strings such that none
of strings is a substring of another. Let Γ ⊆ Σ∗, such that
no string in Γ is a prefix of another string in Γ. Then:

Theorem 3.

dL(G1, G2) ≥ sup
Γ⊆Σ∗

{∣

∣

∣

∣

∣

∑

s∈Γ

Pd(G1)(s) −
∑

s∈Γ

Pd(G2)(s)

∣

∣

∣

∣

∣

}

Similarly, the correspondence between the discounted
probability of strings and formulae in L can be made
for the remaining formulae of Definition 2. Therefore, the
metric measures not only the difference in probabilities of
strings in two languages (discounted for their length), but
also the difference in discounted probabilities of a certain
set of strings, or some more complicated properties of
strings, e.g., whether the discounted probability of a string
is greater than a prespecified value.

5. PROBABILISTIC MODEL FITTING

First, the problem of probabilistic model fitting is defined,
and a solution for the fitting is suggested. Next, its signifi-
cance in control theory, and especially, with regards to the
algorithm of Pantelic and Lawford (2009), is discussed.



5.1 Probabilistic Model Fitting: Problem and Solution

For a probabilistic generator G = (Q,Σ, δ, q0, p), the (non-
probabilistic) discrete event system (DES) that underlies
G will be denoted G′ = (Q,Σ, δ, q0). The synchronous
product of two (nonprobabilistic) discrete event systems
(DESs) that underlie two PDESs is defined as follows. Let
G1 = (Q1,Σ, δ1, q01, p1) and G2 = (Q2,Σ, δ2, r0, p2) be
probabilistic generators.

Definition 8. The synchronous product of G′
1 = (Q1,Σ,

δ1, q01) and G′
2 = (Q2,Σ, δ2, r0), denoted G′

1 ‖ G′
2, is

the reachable sub-DES of DES Ga = (Qa,Σ, δ, q0), where
Qa = Q1 ×Q2, q0 = (q01, r0), and, for any σ ∈ Σ, qi ∈ Qi,
i = 1, 2, it holds that δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ))
whenever δ1(q1, σ)!, and δ2(q2, σ)!.

Note that no minimization is done in the construction of
the synchronous product as defined above.

Probabilistic Model Fitting Problem: Let G1 = (Q1,Σ, δ1,
q01, p1) be a probabilistic generator. Given a nonproba-
bilistic generator G′

2 = (Q2,Σ, δ2, r0) such that G′
1 ‖ G′

2
is isomorphic to G′

2, find the statewise event probability
distribution p2 such that probabilistic generator G2 =
(Q2,Σ, δ2, r0, p2) is as close as possible to G1 in the metric
dfp.

The idea of solving the problem is as follows. The generator
G1 is to be modified to make G′

2 isomorphic (identical up
to renaming of states) to a subautomaton of G′

1, while
the probabilistic language of G1 is preserved. Then, the
distance between G1 and G2 is minimized by minimizing
the distance between the modified G1, and G2. This is
allowed as the two distances are the same, since G1 and
its modified version are probabilistic bisimilar:

Theorem 4. Let G1 and G2 be two probabilistic genera-
tors. Then, if Lp(G1) = Lp(G2), then dfp(G1, G2) = 0.

Next, as previously stated, we seek to represent Lp(G1)
with an automaton G1a such that G′

2 is isomorphic to
a subautomaton of G′

1a. Figure 2 illustrates an example.
The part of G1a drawn by a solid line corresponds to the
subautomaton of G′

1a isomorphic to G′
2. In general, the

automaton G1a will represent a non-minimal realization
of Lp(G1) (in the sense that it might have more states
than G1, but Lp(G1) = Lp(G1a)). Generator G1a can be
constructed in the following manner.

(1) Self-loop each state of G′
2 with events not possible

from that state. Formally, G′
2a = (Q2,Σ, δ2a, r0),

where, for q ∈ Q2, σ ∈ Σ:

δ2a(q, σ) =

{

δ2(q, σ) if δ2(q, σ)!
q otherwise

(2) Next, let G′
1a = (Q1a,Σ, δ1a, q0) = G′

1 ‖ G′
2a.

(3) The probabilistic version of G′
1a is G1a = (Q1a,Σ, δ1a,

q0, p1a), such that, for all q ∈ Q1a, σ ∈ Σ:

p1a(q, σ) = p1(r, σ),

where r = δ1(q01, s) for any s ∈ L(G1a) such that
q = δ1a(q0, s).

Theorem 5. Lp(G1) = Lp(G1a).

Now, let f : Q2 → Q1a be an embedding (a monomor-
phism) of G′

2 into G′
1a, i.e.:

(1) f(r0) = q0,
(2) ∀q ∈ Q2∀σ ∈ Pos(q)f(δ2(q, σ)) = δ1a(f(q), σ).

The function f always exists and is unique. This fact
follows from construction of G1a and determinism of
generators.

Without loss of generality, it is assumed that, Q1a =
{q0, . . . , qM−1}, Q2 = {r0, . . . , rN−1}, and N,M > 0,
d ∈ M, q ∈ Q2. Next, i(f(q), σ) = i such that qi =
δ1a(f(q), σ) if δ1a(f(q), σ)!, and i(f(q), σ) = 0, otherwise.
Let j(q, σ) = j such that rj = δ2(q, σ) if δ2(q, σ)!, and
j(q, σ) = 0, otherwise. For readability purposes, we will
write i instead of i(f(q), σ), and j instead of j(q, σ).
The distance between G1a and G2 is dfp(q0, r0). Also,
f(r0) = q0, and

D(d)(f(q), q)

=
∑

σ∈Σ

max(ρσ,i − ρ′σ,j + eρ′σ,jd(qi, rj), eρσ,id(qi, rj))

=
∑

σ∈Pos(f(q))\Pos(q)

ρσ,i

+
∑

σ∈Pos(q)

max(ρσ,i − ρ′σ,j + eρ′σ,jd(f(rj), rj),

eρσ,id(f(qj), qj)) (5)

(sincef(rj) = qi, by the definition of f)

where ρf(q) and ρq are the distributions on Σ×Q induced
by the states f(q) and q, respectively, and ρσ,i is writ-
ten instead of ρf(q)(σ, qi), and, similarly, ρ′σ,j instead of
ρq(σ, rj).

Based on (5), it can be concluded that, for q ∈ Q2, the
distance between a state f(q) ∈ Q1a and a state q ∈ Q2,
depends only on distances between f(t) and t, t ∈ Q2. In
Figure 2, the distance between G2 and G1a depends only
on distances between states of pairs (q0, r0), (q1, r1), and
(q2, r2); states q3, q4, q5 are irrelevant.

Therefore, in order to calculate the distance between G1a

and G2, only the distances dfp(f(q), q), q ∈ Q2, are of
interest. Therefore, the distance between G1a and G2, for
a fixed p2, can be found by at most ω iterations given
in Definition 6, where the domain of dn

fp is restricted to

Q1a × Q2 and only distances between f(q) ∈ Q1a and
q ∈ Q2 are defined.

The solution of the probabilistic model fitting problem is
presented next.

Theorem 6. Let G1 = (Q1,Σ, δ1, q01, p1) be a probabilistic
generator. For given G′

2 = (Q2,Σ, δ2, r0) (such that G′
1 ‖

G′
2 is isomorphic to G′

2), the statewise event probability
distribution p2 such that G2 = (Q2,Σ, δ2, r0, p2) is as close
as possible to G1 in the metric dfp should satisfy, for all
r ∈ Q2, σ ∈ Σ:

p2(r, σ) ≥ p1(q, σ) (6)
where q = δ1(q01, s) for any s ∈ L(G2) such that r =
δ2(r0, s).

Therefore, the new model is not unique: as long as the
probabilities of the events possible in the new model do
not decrease, the new model is as close as possible to
the original one. For the example from Figure 2, one
of the possible solutions is represented by the rightmost
generator of the figure. In another possible solution, the



θ : 0.375

θ : 0.3

β : 0.1

q1

τ : 0.4

γ : 0.2

α : 0.1 α : 0.1

β : 0.9

β : 0.3333

γ : 0.6667

r0

r1

r2

β

βγ

q0

α

θ

τ

β

q5G1 G′

2
G1a

G2

β : 0.9

q2

γ : 0.2

β : 0.125

τ : 0.5

β : 0.1

γ : 0.2

τ : 0.4

θ : 0.3

α : 0.1

β : 0.9

qr01 q02 r0
r2

r1

α : 0.1

θ : 0.3
q3

θ : 0.3
γ : 0.2

τ : 0.4

τ : 0.4

α : 0.1

β : 0.1

β : 0.1

β : 0.9

q4β : 0.9

Fig. 2. Model fitting: an example

probabilities of occurrence of β and γ at the state r1
would be 0.2 and 0.8, respectively. Therefore, the fitting
can be performed by any redistribution of the probabilities
of events that are not possible anymore over the possible
ones. Hence, model fitting can accommodate some further
requirements on p2.

5.2 Applications of model fitting

Other than the obvious use of the presented fitting to sim-
plify and reduce the state space of probabilistic systems,
the fitting has much more significant control implications.

As mentioned before, it is possible to choose probabilities
of events in the new system to a certain extent: as
long as they are greater or equal to the original ones.
However, some of the further requirements on p2 cannot be
accommodated by Theorem 6 (e.g., an obvious one would
be that the probability of an event still possible in the
new system should be smaller than in the original system).
If the restrictions are given on probabilities of events,
statewise, a straightforward modification of the algorithm
of Pantelic and Lawford (2009) for e ∈ (0, 1) would suffice.
An example of such an additional requirement would be
that the probability of a certain event from a state is less
than a specified value, that is, in turn, smaller than the
original one.

Further, in the solution of the optimal supervisory prob-
lem of Pantelic and Lawford (2009), in order for the
first, maximal permissiveness requirement as presented
in Section 2.2 to be satisfied, the supremal controllable
sublanguage of L(G1) ∩ L(G2) with the respect to G1

is generated. Then, the distance between the controlled
plant, and the probabilistic requirement now restricted
to the supremal controllable language, with normalized
probabilities, is minimized. Intuitively, after satisfying the
nonprobabilistic requirement, and before the probabilistic
part is handled, it makes sense for a designer to modify the
original requirement so that its nonprobabilistic behaviour
matches the one achievable. Then, the probabilities are
revised accordingly: probabilities of the events inadmis-
sible for not satisfying the nonprobabilistic requirement
are redistributed over the admissible ones. In Pantelic
and Lawford (2009), the redistribution is such that the
probability of an event in the new system is proportional
to its original probability. Theorem 6 proves that this
normalization is justified in a strict mathematical sense,
as the new model that is normalized is as close as possible
to the original one in the metric dfp. However, a revised
specification is going to be at a minimal distance from the
original one as long as the probabilities of remaining events
are greater or equal than the original ones: a designer

has a freedom to choose how to redistribute the original
probabilities of the events that are not possible in the new
model over the ones that are still possible.

Further, the transformation of G1 into G1a presented here
can be used in a modification of the algorithm of Pantelic
and Lawford (2009) to handle the control problem of
Pantelic and Lawford (2009) as presented in Section 2.2,
with the requirement 2) changed so that the distance
between the controlled plant and unmodified requirement
is minimized. More precisely, the probabilistic language
of requirements specification can be exactly represented
using a probabilistic generator such that its underlying
nonprobabilistic subautomaton is isomorphic to the gen-
erator representing supremal controllable language gen-
erated previously as explained in Section 2.2. Then, the
algorithm of Pantelic and Lawford (2009) can be applied
straightforwardly to minimize the distance between the
two generators under probabilistic controllability condi-
tions of Lawford and Wonham (1993).

6. CONCLUSIONS

A metric was used in a control algorithm to measure dis-
tance between two probabilistic generators in Pantelic and
Lawford (2009). This paper gives a logical characterization
of the metric that offers a better insight into the core
of the metric from both logic and language standpoints.
Further, the metric is used in the probabilistic model
fitting problem: a probabilistic language is represented
using a specified automaton structure such that that the
new representation is as close as possible to the original
one. Probabilistic model fitting has significant implications
with respect to the work of Pantelic and Lawford (2009).
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Appendix A. PROOFS

1) Proof of Lemma 1

The idea of the proof is similar to that of Desharnais et al.
(2002), Lemma 4.4. As before, for a function ψ : Σ → L,
the shorthand notation ψσ will be used for ψ(σ). It should
be proven that there exist ψσ ∈ L, σ ∈ Σ, such that

∣

∣

∣

∣

∣

∨

σ∈Σ

〈σ〉ψσ(qq) −
∨

σ∈Σ

〈σ〉ψσ(qr)

∣

∣

∣

∣

∣

≥ |φ(qq) − φ(qr)|,

for any φ ∈ L. Induction on the structure of φ is used.
The base case (φ = 1) is satisfied. Next, the case when
φ = 〈α〉φ′, φ′ ∈ L, is investigated. It should be shown that
∣

∣

∣

∣

∣

∨

σ∈Σ

〈σ〉ψσ(qq) −
∨

σ∈Σ

〈σ〉ψσ(qr)

∣

∣

∣

∣

∣

≥ |〈α〉φ′(qq) − 〈α〉φ′(qr)|.

If, for σ 6= α, ψσ = 1 − 1 = 0, and ψσ = φ′ for
σ = α, the inequality is obviously satisfied. The case for
φ =

∨

σ∈Θ〈σ〉ψσ, for Θ ⊆ Σ, is proven in the same manner.

The functions φ = 1−φ′ and φ = φ′⊖p are non-expansive
(easily shown), so

|φ(qq) − φ(qr)| ≤ |φ′(qq) − φ′(qr)|

≤

∣

∣

∣

∣

∣

∨

σ∈Σ

〈σ〉ψσ(qq) −
∨

σ∈Σ

〈σ〉ψσ(qr)

∣

∣

∣

∣

∣

by induction on the structure of φ.

2) Proof of Theorem 1

The proof consists of two parts. In the first part, it is
proven that, for every qq, qr, there exists φ ∈ L such that
φ(qq) − φ(qr) = edfp(qq, qr). Consequently, dL(qq, qr) ≥
edfp(qq, qr). In the second part, inequality dL(qq, qr) ≤
edfp(qq, qr) is proven.

First, let us prove that for every qq, qr, there exists φ ∈ L
such that φ(qq) − φ(qr) = edfp(qq, qr). Given Remark 1,
it is sufficient to prove that φn

qq,qr
(qq) − φn

qq,qr
(qr) =

edn
fp(qq, qr), for every n ∈ N, where φn

qq,qr
is given as in

Definition 5. The proof is by induction. The base case is
trivial. Let assume that, for every qq, qr ∈ Q, n ∈ N:

φn
qq,qr

(qq) − φn
qq,qr

(qr) = edn
fp(qq, qr).

Also, let ρqq
and ρqr

be the distributions on Σ×Q induced
by the states qq and qr, respectively. Also, for notational
convenience, we will write ρσ,i instead of ρqq

(σ, qi), and,
similarly, ρ′σ,j instead of ρqr

(σ, qj) for any i, j such that
0 ≤ i, j ≤ N − 1. Then, for σ ∈ Σ, let i(qq, σ) = i
such that qi = δ(qq, σ) if δ(qq, σ)!, and i(qq, σ) = 0,
otherwise. Similarly, let j(qr, σ) = j such that qj = δ(qr, σ)
if δ(qr, σ)!, and j(qr, σ) = 0, otherwise. For readability
purposes, we will write i instead of i(qq, σ), and j instead
of j(qr, σ). Then:

φn+1
qq,qr

(qq) − φn+1
qq,qr

(qr)

=





∑

σ∈{σ∈Σ|ρσ,i≥ρ′

σ,j
}

eρσ,i +
∑

σ∈{σ∈Σ|ρσ,i<ρ′

σ,j
}

eρσ,ied
n
fp(qi, qj)





−
∑

σ∈{σ∈Σ|ρσ,i≥ρ′

σ,j
}

eρ′σ,i(1 − edn
fp(qi, qj))

(by the definition of φn+1
qq,qr

and the induction hypothesis)

=
∑

σ∈{σ∈Σ|ρσ,i≥ρ′

σ,j
}

(

e(ρσ,i − ρ′σ,j) + e2ρ′σ,jd
n
fp(qi, qj)

)

+
∑

σ∈{σ∈Σ|ρσ,i<ρ′

σ,j
}

e2ρσ,id
n
fp(qi, qj)

= e
∑

σ∈{σ∈Σ|ρσ,i≥ρ′

σ,j
}

(

ρσ,i − ρσ,j + eρ′σ,jd
n
fp(qi, qj)

)

+ e
∑

σ∈{σ∈Σ|ρσ,i<ρ′

σ,j
}

eρσ,id
n
fp(qi, qj)

= edn+1
fp (qq, qr) (follows from (3))

Next, the induction on the depth of formula is used
to prove that dL(qq, qr) ≤ edfp(qq, qr) by proving that
dn

L(qq, qr) ≤ edn
fp(qq, qr) for any n ∈ N, where



dn
L(qq, qr) = sup

φ∈L
{|φ(qq) − φ(qr)||depth(φ) ≤ n}.

The base case is trivially satisfied. For n ∈ N, assume:

dn
L(qq, qr) ≤ edn

fp(qq, qr).

Then, according to Lemma 1:

dn+1
L (qq, qr)

= sup
φn

σ∈L

{∣

∣

∣

∣

∣

∨

σ∈Σ

〈σ〉φn
σ(qq) −

∨

σ∈Σ

〈σ〉φn
σ(qr)

∣

∣

∣

∣

∣

}

= e · sup
φn

σ∈L
{
∑

σ∈Σ

ρσ,iφ
n
σ(qi) −

∑

σ∈Σ

ρ′σ,jφ
n
σ(qj),

∑

σ∈Σ

ρ′σ,jφ
n
σ(qj) −

∑

σ∈Σ

ρσ,iφ
n
σ(qi)}

= e · sup
φn

σ∈L
{

∑

σ∈Σ
0≤i≤N−1

ρσ,iφ
n
σ(qi) −

∑

σ∈Σ
0≤j≤N−1

ρ′σ,jφ
n
σ(qj),

∑

σ∈Σ
0≤j≤N−1

ρ′σ,jφ
n
σ(qj) −

∑

σ∈Σ
0≤i≤N−1

ρσ,iφ
n
σ(qi)}

(as G is deterministic)

where, for any σ, α ∈ Σ, |φn
σ(qi) − φn

α(qj)| ≤ dn
L(qi, qj) ≤

edn
fp(qi, qj) (by induction hypothesis). In Pantelic and

Lawford (2009), the function in (2) is a pseudometric
(therefore, symmetry holds), and for aσ,i = φn

σ(qi), the

constraints are satisfied, so dn+1
L (qq, qr) ≤ edn+1

fp (qq, qr).

3) Proof of Theorem 2

Let t be the string for which the supremum in (4) is
reached. The formula corresponding to this distance is
easily constructed. Assume that t = σ1σ2 . . . σn. Then, the
formula is given as φ = 〈σ1〉〈σ2〉 . . . 〈σn〉1.

4) Proof of Theorem 3

Similar to Theorem 2, by using the disjunction formula.

5) Proof of Theorem 4

Since Lp(G1) = Lp(G2), G1 and G2 are probabilistic trace-
equivalent in the sense of Jou and Smolka (1990). As G1

and G2 are deterministic, probabilistic trace-equivalence
implies probabilistic bisimulation equivalence. Therefore,
dfp(G1, G2) = 0.

6) Proof of Theorem 5

Follows from the construction of G1a.

7) Proof of Theorem 6

Let G2 = (Q2,Σ, δ2, r0, p2), where p2 is given by (6). Also,
let G∗

2 = (Q2,Σ, δ2, r0, p
′
2) be a probabilistic generator

with an arbitrary probability distribution p′2. We use
induction to show that dfp(G1a, G

∗
2) ≥ dfp(G1a, G2) by

showing that dn
fp(G1a, G

∗
2) ≥ dn

fp(G1a, G2), n ∈ N. For

q ∈ Q2, let dn
fp(f(q), q) be the distance between the

states f(q) of G1a and q of G2, and d∗n
fp(f(q), q) be the

distance between f(q) of G1a and q of G∗
2. The base case

is trivially satisfied. Next, assume that, for each q ∈ Q2,
d∗n

fp(f(q), q) ≥ dn
fp(f(q), q). The functions i and j are

defined as for (5), and, for q ∈ Q2, k(q, σ) = k such that
rk = δ2(q, σ) if δ2(q, σ)!, and k(r, σ) = 0, otherwise. The
short notation k will be used. For q ∈ Q2, let ρf(q), νq and

ν′q be the distributions induced by the states f(q) of G1a,
q of G2 and q of G∗

2, respectively. Also, for q ∈ Q2, let ρσ,i

be used instead of ρf(q)(σ, qi), and, similarly, νσ,j instead
of νq(σ, rj) and ν′σ,k instead of ν′q(σ, rk). Then:

d∗n+1
fp (f(q), q)

=
∑

σ∈{σ∈Σ|ρσ,i≥ν′

σ,k
}

(

ρσ,i − ν′σ,k + eν′σ,kd
∗n
fp(qi, rk)

)

+
∑

σ∈{σ∈Σ|ρσ,qi
<ν′

σ,k
}

eρσ,id
∗n
fp(qi, rk)

=
∑

σ∈Pos(f(q))\Pos(q)

ρσ,i

+
∑

σ∈{σ∈Pos(q)|ρσ,i≥ν′

σ,k
}

(

ρσ,i − ν′σ,k + eν′σ,kd
∗n
fp(qi, rk)

)

+
∑

σ∈{σ∈Pos(q)|ρσ,i<ν′

σ,k
}

eρσ,id
∗n
fp(qi, rk)

≥
∑

σ∈Pos(f(q))\Pos(q)

ρσ,i +
∑

σ∈Pos(q)

eρσ,id
∗n
fp(qi, rk)

≥
∑

σ∈Pos(f(q))\Pos(q)

ρσ,i +
∑

σ∈Pos(q)

eρσ,id
n
fp(qi, rk)

(because of induction hypothesis, since qi = f(rk))

=
∑

σ∈Pos(f(q))\Pos(q)

ρσ,i

+
∑

σ∈Pos(q)

max(ρσ,i − νσ,j + eνσ,jd
n
fp(qi, rj), eρσ,id

n
fp(qi, rj))

(since νσ,j ≥ ρσ,i for every σ ∈ Pos(q))

= dn+1
fp (f(q), q)


