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Introduction

Scientific computing is about

• development of efficient numerical algorithms for solving
mathematical problems that arise in science and engineering
• efficient implementation of numerical algorithms in software

Typical scenario

1. Mathematical model
2. Algorithms
3. Implementation
4. Simulation
5. Verification & Validation
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High-performance computing

• is about solving (typically large) problems efficiently
• encompasses algorithms, software, and hardware

This course is about how to produce efficient implementations of
numerical algorithms.

Main text: Victor Eijkhout. Introduction to High-Performance Scientific Computing

Language: C/C++
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von Neuman machine

• Program and data are stored in memory.
• The processor executes each instruction in sequence

◦ decode instruction
◦ obtain operands from memory
◦ execute the instruction
◦ write the result back to memory
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Modern processors

Out-of-order execution

• Processors can execute instructions
◦ in a different order than specified
◦ instructions are reordered if the result is not changed.

Floating-point units (FPUs)

• Can have separate addition and multiplication units.
• Fused Multiply-Add (FMA) unit

◦ Can execute a = a*x+b as fast as addition or multiplication.
◦ The (true) result is rounded only once.

• Instructions are pipelined.
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Superscalar processors, Instruction-Level Parallelism (ILP)

• Analyze several instructions to find data dependencies.
• Execute instructions that do not depend on each other in

parallel.
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Pipelining

This loop can be pipelined

for (int i = 0; i < N; i++)
x[i] = a[i] + b[i];

but not this one

for (int i = 0; i < N - 1; i++)
x[i + 1] = a[i] * x[i] + b[i];

Why?
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Caches

• Cache levels
◦ Level 1, 2, 3 caches, L1, L2, L3.
◦ L1 and L2 are part of the chip, L3 is off-chip
◦ L1 is faster than L2 faster than L3

E.g. Apple M1 Pro (2022)

sysctl -a | grep cache | grep size

gives

hw.cachesize: 3624370176 65536 4194304 0 0 0 0 0 0 0
hw.cachelinesize: 128
hw.l1icachesize: 131072
hw.l1dcachesize: 65536

hw.l2cachesize: 4194304

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 9/18



Introduction Comp. architecture basics Locality Programming examples Opt. reports

• Cache lines
◦ Cache line (cache block): how much data is moved between

main memory and cache (or between caches).
◦ Typically 64 or 128 bytes for L1, larger for L2.

• Data reuse
◦ First time a data item is referenced it is copied from main

memory into cache.
◦ When referenced second time, it might be in cache.
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Multicore

Figure: Cache hierarchy in a single-core (left) and dual-core (right) chip.
Figure 1.13 from V. E. Introduction to High-Performance Scientific Computing.
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Locality

Temporal locality

A data item is accessed shortly after its last access.

Spatial locality

The data items that are accessed are close to each other in memory.
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Matrix multiplication

Consider multiplying two N ×N matrices A and B, C = AB.

// Version 1
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
{
double t = 0;
for (int k = 0; k < N; k++)
t += A[i][k] * B[k][j];
C[i][j] = t;

}

Assume C contains 0’s initially.

• C[i][j] temporal locality, can be stored in register, N2

accesses
• A[i][k] accessed by rows, spatial locality, N3 accesses
• B[k][j] accessed by columns, no locality, N3 accesses
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Consider

// Version 2
for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
C[i][j] += A[i][k] * B[k][j];

• C[i][j] spatial locality, N3 accesses
• A[i][k] temporal locality, can be stored in register, N2

accesses
• B[k][j] accessed by rows, spatial locality, N3 accesses

Which version is faster?
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Loop unrolling

// Version 1
for (int i = 0; i < N; i++)
d += a[i] * b[i];

versus (assume N is multiple of 2)

// Version 2
for (int i = 0; i < N / 2 - 1; i++) {
d1 += a[2 * i] * b[2 * i];
d2 += a[2 * i + 1] * b[2 * i + 1];

}
d1 += d2;

What are the advantages of loop unrolling?

Read about Duff’s device
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Loop tiling
• Break a loop into two nested loops
• Outer loop goes over blocks of memory
• Inner loop (tile) goes through a block

Example: A← A+BT .

Figure: Regular and blocked traversal of a matrix.
Figure 1.25 from V. E. Introduction to High-Performance Scientific Computing.
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A← A+BT

// Version 1
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
A[i][j] += B[j][i];

// Version 2
// bsize is block size
for (int bi = 0; bi < N; bi += bsize)
for (int bj = 0; bj < N; bj += bsize)
for (int i = bi * bsize; i < MIN(N, (bi + 1) * bsize); i++)
for (int j = bj * bsize; j < MIN(N, (bj + 1) * bsize); j++)
A[i][j] += B[j][i];
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Compiler optimization reports

The clang compiler can produce optimization reports from the
optimization passes:

-Rpass-analysis reports transformation analysis

-Rpass-missed reports missed transformations

-Rpass reports transformations

For example clang -O3 -Rpass dot.c

For more information see

• Clang Compiler User’s Manual
• Compiler optimizations

• Intel’s compiler. Vectorization Essentials, Vectorization and Optimization Reports
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