
High-Performance Scientific Computing
Introduction

Ned Nedialkov

McMaster University

10 January 2023

Outline

Introduction

Computer architecture basics
von Neuman machine
Modern processors
Caches
Multicore

Locality

Programming examples
Matrix multiplication
Loop unrolling
Loop tiling

Compiler optimization reports

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Introduction

Scientific computing is about

• development of efficient numerical algorithms for solving
mathematical problems that arise in science and engineering
• efficient implementation of numerical algorithms in software

Typical scenario

1. Mathematical model
2. Algorithms
3. Implementation
4. Simulation
5. Verification & Validation

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 3/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

High-performance computing

• is about solving (typically large) problems efficiently
• encompasses algorithms, software, and hardware

This course is about how to produce efficient implementations of
numerical algorithms.

Main text: Victor Eijkhout. Introduction to High-Performance Scientific Computing

Language: C/C++

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 4/18

https://theartofhpc.com/

Introduction Comp. architecture basics Locality Programming examples Opt. reports

von Neuman machine

• Program and data are stored in memory.
• The processor executes each instruction in sequence

◦ decode instruction
◦ obtain operands from memory
◦ execute the instruction
◦ write the result back to memory

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 5/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Modern processors

Out-of-order execution

• Processors can execute instructions
◦ in a different order than specified
◦ instructions are reordered if the result is not changed.

Floating-point units (FPUs)

• Can have separate addition and multiplication units.
• Fused Multiply-Add (FMA) unit

◦ Can execute a = a*x+b as fast as addition or multiplication.
◦ The (true) result is rounded only once.

• Instructions are pipelined.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 6/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Superscalar processors, Instruction-Level Parallelism (ILP)

• Analyze several instructions to find data dependencies.
• Execute instructions that do not depend on each other in

parallel.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 7/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Pipelining

This loop can be pipelined

for (int i = 0; i < N; i++)
x[i] = a[i] + b[i];

but not this one

for (int i = 0; i < N - 1; i++)
x[i + 1] = a[i] * x[i] + b[i];

Why?

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 8/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Caches

• Cache levels
◦ Level 1, 2, 3 caches, L1, L2, L3.
◦ L1 and L2 are part of the chip, L3 is off-chip
◦ L1 is faster than L2 faster than L3

E.g. Apple M1 Pro (2022)

sysctl -a | grep cache | grep size

gives

hw.cachesize: 3624370176 65536 4194304 0 0 0 0 0 0 0
hw.cachelinesize: 128
hw.l1icachesize: 131072
hw.l1dcachesize: 65536

hw.l2cachesize: 4194304

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 9/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

• Cache lines
◦ Cache line (cache block): how much data is moved between

main memory and cache (or between caches).
◦ Typically 64 or 128 bytes for L1, larger for L2.

• Data reuse
◦ First time a data item is referenced it is copied from main

memory into cache.
◦ When referenced second time, it might be in cache.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 10/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Multicore

Figure: Cache hierarchy in a single-core (left) and dual-core (right) chip.
Figure 1.13 from V. E. Introduction to High-Performance Scientific Computing.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 11/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Locality

Temporal locality

A data item is accessed shortly after its last access.

Spatial locality

The data items that are accessed are close to each other in memory.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 12/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Matrix multiplication

Consider multiplying two N ×N matrices A and B, C = AB.

// Version 1
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
{
double t = 0;
for (int k = 0; k < N; k++)
t += A[i][k] * B[k][j];
C[i][j] = t;

}

Assume C contains 0’s initially.

• C[i][j] temporal locality, can be stored in register, N2

accesses
• A[i][k] accessed by rows, spatial locality, N3 accesses
• B[k][j] accessed by columns, no locality, N3 accesses

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 13/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Consider

// Version 2
for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
C[i][j] += A[i][k] * B[k][j];

• C[i][j] spatial locality, N3 accesses
• A[i][k] temporal locality, can be stored in register, N2

accesses
• B[k][j] accessed by rows, spatial locality, N3 accesses

Which version is faster?

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 14/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Loop unrolling

// Version 1
for (int i = 0; i < N; i++)
d += a[i] * b[i];

versus (assume N is multiple of 2)

// Version 2
for (int i = 0; i < N / 2 - 1; i++) {
d1 += a[2 * i] * b[2 * i];
d2 += a[2 * i + 1] * b[2 * i + 1];

}
d1 += d2;

What are the advantages of loop unrolling?

Read about Duff’s device

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 15/18

https://en.wikipedia.org/wiki/Duff%27s_device

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Loop tiling
• Break a loop into two nested loops
• Outer loop goes over blocks of memory
• Inner loop (tile) goes through a block

Example: A← A+BT .

Figure: Regular and blocked traversal of a matrix.
Figure 1.25 from V. E. Introduction to High-Performance Scientific Computing.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 16/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

A← A+BT

// Version 1
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
A[i][j] += B[j][i];

// Version 2
// bsize is block size
for (int bi = 0; bi < N; bi += bsize)
for (int bj = 0; bj < N; bj += bsize)
for (int i = bi * bsize; i < MIN(N, (bi + 1) * bsize); i++)
for (int j = bj * bsize; j < MIN(N, (bj + 1) * bsize); j++)
A[i][j] += B[j][i];

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 17/18

Introduction Comp. architecture basics Locality Programming examples Opt. reports

Compiler optimization reports

The clang compiler can produce optimization reports from the
optimization passes:

-Rpass-analysis reports transformation analysis

-Rpass-missed reports missed transformations

-Rpass reports transformations

For example clang -O3 -Rpass dot.c

For more information see

• Clang Compiler User’s Manual
• Compiler optimizations

• Intel’s compiler. Vectorization Essentials, Vectorization and Optimization Reports

N. Nedialkov, CAS781 High-Performance Scientific Computing, 10 January 2023 18/18

https://clang.llvm.org/docs/ClangCommandLineReference.html
https://compileroptimizations.com/category/hoisting.htm
https://www.intel.com/content/www/us/en/developer/articles/technical/vectorization-and-optimization-reports.html

	Introduction
	Computer architecture basics
	von Neuman machine
	Modern processors
	Caches
	Multicore

	Locality
	Programming examples
	Matrix multiplication
	Loop unrolling
	Loop tiling

	Compiler optimization reports

