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SIMD basics

SIMD: Single Instruction Multiple Data

Single instruction is applied to multiple data elements.

• Intel: SSE (Streaming SIMD Extensions), AVX (Advanced Vector
Extensions), AVX2, AVX-512.

• AMD: SSE and AVX.

• ARM: SIMD instruction sets through NEON technology.

• NVIDIA: SIMD through CUDA technology.

• IBM: POWER processors SIMD through Vector Scalar Extension
(VSX) technology.
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SSE, AVX

Streaming SIMD Extensions (SSE)

• SSE, 64-bit registers, single precision (1999)

• SSE2, 128-bit registers, single and double precision (2000)

• SSE3 adds string and integer instructions (2004)

• SSE4 adds instructions for multimedia and gaming (2006)

Advanced Vector Extensions (AVX)

• AVX, 256-bit registers (2011)

• AVX2, 256-bit registers (2013)
Adds integer operations, gather and scatter, fused multiply-add
(FMA) ...

• AVX-512, 512-bit registers (2013)
Adds instructions for cryptography and compression/decompression,
for improving performance in machine learning ...
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Example

for (i = 0; i < n; i++)
c[i] = a[i] + b[i]

Loop unrolling:

for (i = 0; i < n; i+=4)
{
c[i] = a[i] + b[i];
c[i+1] = a[i+1] + b[i+1];
c[i+2] = a[i+2] + b[i+2];
c[i+3] = a[i+3] + b[i+3];
}

// handle remainder of the loop

Vectorization: execute the 4 statements in parallel.
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Aliasing

Consider

// add.c
void add(int n, double *a, double *b, double *c) {
for (int i = 0; i < n; i++)
c[i] = a[i] + b[i];

}

If we call for example

add(n, a, b, a+1);

inside the loop we have a[i+1] = a[i]+b[i]

Aliasing and data dependence. Not really vectorizable.
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Data dependency

This loop can’t be vectorized as b[i] depends on b[i-1]

for (int i = 1; i < n; i++)
b[i] += a[i] + b[i - 1];
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Utilizing SIMD

In increasing programming effort:

• Vectorized libraries
• Compiler auto vectorization

◦ GCC: -O2 -ftree-vectorize or just -O3
To disable vectorization -fno-vectorize

◦ Intel compilers: -O2 or -O3
To enable extra levels of optimizations
-x<host architecture>, e.g. -xskylake-avx512
-xhost enables all optimizations and advanced vectorization
for the processor
To disable vectorization -no-vec.

• Pragmas
• Intrinsics (C/C++), see Intel Intrinsics Guide

• Assembly
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Compiler reports
GCC

Consider

1 // add.c
2 void add(int n, double *a, double *b, double *c) {
3 for (int i = 0; i < n; i++)
4 c[i] = a[i] + b[i];
5 }

gcc -c -O3 -fopt-info-vec add.c

produces (all reports on Intel Core i9-10850K)

add.c:3:16: optimized: loop vectorized using 16 byte vectors
add.c:3:16: optimized: loop versioned for vectorization because
of possible aliasing

• 16 byte vectors = 128 bit vectors, 2 doubles
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“Loop versioned for vectorization because of possible aliasing”
means that (from ChatGPT)

• a loop-based algorithm has been modified or rewritten to take
advantage of vectorization while also addressing the issue of
aliasing

• the compiler has modified the code of a loop to make it
amenable to vectorization
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Compiler reports
GCC

-march=native produce instructions for the machine on which the
code is compiled

gcc -c -march=native -O3 -fopt-info-vec add.c

produces

add.c:3:16: optimized: loop vectorized using 32 byte vectors
add.c:3:16: optimized: loop versioned for vectorization because
of possible aliasing
add.c:3:16: optimized: loop vectorized using 16 byte vectors

• 32 byte vectors = 256 bit vectors
Without -march=native: 16 byte vectors

• 16 byte vectors = 128 bit vectors
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Intel compilers
icx -O3 -qopt-report=2 -qopt-report-file=stderr -c add.c

produces

LOOP BEGIN at add.c (3, 1)
<Multiversioned v2>

remark #15319: Loop was not vectorized: novector directive used
LOOP END

LOOP BEGIN at add.c (3, 1)
<Multiversioned v1>

remark #25228: Loop multiversioned for Data Dependence
remark #15436: loop was not vectorized:
remark #25439: Loop unrolled with remainder by 8

LOOP END

LOOP BEGIN at add.c (3, 1)
<Remainder loop>

remark #25585: Loop converted to switch
LOOP END
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Versioning

• Modern compilers can produce multiversioned code containing
vectorized and unvectorized versions.

• The correct version may be chosen at runtime.
• If there are too many manipulations of addresses or/and

indexing, the vectorized version may not be chosen when it is
safe.
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Pragmas
GCC

#pragma GCC ivdep

• Ignore Vector DEPendencies
• Tells the compiler data dependencies are safe to ignore.

Consider

1 // add2.c
2 void add2(int n, double *a, double *b, double *c) {
3 #pragma GCC ivdep
4 for (int i = 0; i < n; i++)
5 c[i] = a[i] + b[i];
6 }

gcc -c -O3 -fopt-info-vec add2.c

produces

add2.c:3:3: optimized: loop vectorized using 16 byte vectors
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Intel compilers

#pragma vector always

is like

#pragma GCC ivdep

Consider

1 // add3.c
2 void add3(int n, double *a, double *b, double *c){
3 #pragma vector always
4 for (int i = 0; i < n; i++)
5 c[i] = a[i] + b[i];
6 }

icx -O3 -qopt-report=2 -qopt-report-file=stderr -c add3.c

produces
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LOOP BEGIN at add3.c (4, 5)
<Multiversioned v2>

remark #15319: Loop was not vectorized: novector directive used
LOOP END

LOOP BEGIN at add3.c (4, 5)
<Multiversioned v1>

remark #25228: Loop multiversioned for Data Dependence
remark #15300: LOOP WAS VECTORIZED
remark #15305: vectorization support: vector length 2

LOOP END

LOOP BEGIN at add3.c (4, 5)
<Remainder loop for vectorization>
LOOP END
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#pragma omp simd

• indicates a loop can be vectorized, from OpenMP 4.0

Consider

1 // vecdep.c
2 void vec_dep1(int n, double *a, double alpha, int k) {
3 for (int i = 0; i < n; i++)
4 a[i] = a[i + k] * alpha;
5 }
6 void vec_dep2(int n, double *a, double alpha, int k) {
7 #pragma omp simd
8 for (int i = 0; i < n; i++)
9 a[i] = a[i + k] * alpha;

10 }

gcc -c -O3 -fopt-info-vec -fopenmp vecdep.c

vecdep.c:3:23: optimized: loop vectorized using 16 byte vectors
vecdep.c:3:23: optimized: loop versioned for vectorization because
of possible aliasing

vecdep.c:9:20: optimized: loop vectorized using 16 byte vectors
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restrict keyword
restrict (C99) tells the compiler no aliasing.

1 // add4.c
2 void add4(int n, double *restrict a, double *restrict b, double *restrict

c)
3 {
4 for (int i = 0; i < n; i++)
5 c[i] = a[i] + b[i];
6 }

icx -O3 -mavx -qopt-report=2 -qopt-report-file=stderr -c add4.c

produces

LOOP BEGIN at add4.c (3, 5)
remark #15300: LOOP WAS VECTORIZED
remark #15305: vectorization support: vector length 4

LOOP END

LOOP BEGIN at add4.c (3, 5)
<Remainder loop for vectorization>
LOOP END
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Some guidelines
Loops

• Number of iteration must be known at runtime.
◦ Single control flow within the loop.
◦ No break statements.
◦ No if and switch statements.

In some cases the compiler can get around them and vectorize.

• No function calls.
◦ Unless functions are inlined.
◦ Except vectorized functions sin, sqrt,... e.g. from Intel

Vector Math Library

• No indirect indexing.
◦ e.g. a[b[i]]
◦ data needs to be aligned and sequential in memory
◦ In nested loops, the compiler will normally try to vectorize only

the innermost loop.
The compiler may be able to rearrange the order of the loops.
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Some guidelines
Intel’s recommendations

From Avoid Manual Loop Unrolling :

• "The Intel Compiler can typically generate efficient vectorized
code if a loop structure is not manually unrolled.

• It is better to let the compiler do the unrolls, and you can
control unrolling using #pragma unroll(n).

• Vector-alignment, loop-collapsing, interactions with other loop
optimizations become much more complex if the compiler has
to "undo" the manual unrolling.
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• In all but the simplest of cases, this refactoring has to be done
by the user to get the best performing vector-code.

• ... manual loop unrolling tends to tune a loop for a particular
processor or architecture, making it less optimal for some
future port of the application.

• Generally, it is good advice to write code in the most readable,
straightforward manner. This gives the compiler the best
chance of optimizing a given loop structure."
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