
Vectorization

Ned Nedialkov

McMaster University

17 January 2023



Outline

SIMD basics
SSE, AVX
Aliasing
Data dependency

Compiler reports
GCC
Intel compilers
Versioning

Pragmas
GCC
Intel compilers

restrict keyword

Some guidelines



SIMD Compiler reports Pragmas restrict Guidelines

SIMD basics

SIMD: Single Instruction Multiple Data

Single instruction is applied to multiple data elements.

• Intel: SSE (Streaming SIMD Extensions), AVX (Advanced Vector
Extensions), AVX2, AVX-512.

• AMD: SSE and AVX.

• ARM: SIMD instruction sets through NEON technology.

• NVIDIA: SIMD through CUDA technology.

• IBM: POWER processors SIMD through Vector Scalar Extension
(VSX) technology.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 3/21



SIMD Compiler reports Pragmas restrict Guidelines

SSE, AVX

Streaming SIMD Extensions (SSE)

• SSE, 64-bit registers, single precision (1999)

• SSE2, 128-bit registers, single and double precision (2000)

• SSE3 adds string and integer instructions (2004)

• SSE4 adds instructions for multimedia and gaming (2006)

Advanced Vector Extensions (AVX)

• AVX, 256-bit registers (2011)

• AVX2, 256-bit registers (2013)
Adds integer operations, gather and scatter, fused multiply-add
(FMA) ...

• AVX-512, 512-bit registers (2013)
Adds instructions for cryptography and compression/decompression,
for improving performance in machine learning ...

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 4/21



SIMD Compiler reports Pragmas restrict Guidelines

Example

for (i = 0; i < n; i++)
c[i] = a[i] + b[i]

Loop unrolling:

for (i = 0; i < n; i+=4)
{
c[i] = a[i] + b[i];
c[i+1] = a[i+1] + b[i+1];
c[i+2] = a[i+2] + b[i+2];
c[i+3] = a[i+3] + b[i+3];
}

// handle remainder of the loop

Vectorization: execute the 4 statements in parallel.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 5/21



SIMD Compiler reports Pragmas restrict Guidelines

Aliasing

Consider

// add.c
void add(int n, double *a, double *b, double *c) {
for (int i = 0; i < n; i++)
c[i] = a[i] + b[i];

}

If we call for example

add(n, a, b, a+1);

inside the loop we have a[i+1] = a[i]+b[i]

Aliasing and data dependence. Not really vectorizable.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 6/21



SIMD Compiler reports Pragmas restrict Guidelines

Data dependency

This loop can’t be vectorized as b[i] depends on b[i-1]

for (int i = 1; i < n; i++)
b[i] += a[i] + b[i - 1];

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 7/21



SIMD Compiler reports Pragmas restrict Guidelines

Utilizing SIMD

In increasing programming effort:

• Vectorized libraries
• Compiler auto vectorization

◦ GCC: -O2 -ftree-vectorize or just -O3
To disable vectorization -fno-vectorize

◦ Intel compilers: -O2 or -O3
To enable extra levels of optimizations
-x<host architecture>, e.g. -xskylake-avx512
-xhost enables all optimizations and advanced vectorization
for the processor
To disable vectorization -no-vec.

• Pragmas
• Intrinsics (C/C++), see Intel Intrinsics Guide

• Assembly

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 8/21

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html


SIMD Compiler reports Pragmas restrict Guidelines

Compiler reports
GCC

Consider

1 // add.c
2 void add(int n, double *a, double *b, double *c) {
3 for (int i = 0; i < n; i++)
4 c[i] = a[i] + b[i];
5 }

gcc -c -O3 -fopt-info-vec add.c

produces (all reports on Intel Core i9-10850K)

add.c:3:16: optimized: loop vectorized using 16 byte vectors
add.c:3:16: optimized: loop versioned for vectorization because
of possible aliasing

• 16 byte vectors = 128 bit vectors, 2 doubles

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 9/21



SIMD Compiler reports Pragmas restrict Guidelines

“Loop versioned for vectorization because of possible aliasing”
means that (from ChatGPT)

• a loop-based algorithm has been modified or rewritten to take
advantage of vectorization while also addressing the issue of
aliasing

• the compiler has modified the code of a loop to make it
amenable to vectorization

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 10/21



SIMD Compiler reports Pragmas restrict Guidelines

Compiler reports
GCC

-march=native produce instructions for the machine on which the
code is compiled

gcc -c -march=native -O3 -fopt-info-vec add.c

produces

add.c:3:16: optimized: loop vectorized using 32 byte vectors
add.c:3:16: optimized: loop versioned for vectorization because
of possible aliasing
add.c:3:16: optimized: loop vectorized using 16 byte vectors

• 32 byte vectors = 256 bit vectors
Without -march=native: 16 byte vectors

• 16 byte vectors = 128 bit vectors

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 11/21



SIMD Compiler reports Pragmas restrict Guidelines

Intel compilers
icx -O3 -qopt-report=2 -qopt-report-file=stderr -c add.c

produces

LOOP BEGIN at add.c (3, 1)
<Multiversioned v2>

remark #15319: Loop was not vectorized: novector directive used
LOOP END

LOOP BEGIN at add.c (3, 1)
<Multiversioned v1>

remark #25228: Loop multiversioned for Data Dependence
remark #15436: loop was not vectorized:
remark #25439: Loop unrolled with remainder by 8

LOOP END

LOOP BEGIN at add.c (3, 1)
<Remainder loop>

remark #25585: Loop converted to switch
LOOP END

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 12/21



SIMD Compiler reports Pragmas restrict Guidelines

Versioning

• Modern compilers can produce multiversioned code containing
vectorized and unvectorized versions.

• The correct version may be chosen at runtime.
• If there are too many manipulations of addresses or/and

indexing, the vectorized version may not be chosen when it is
safe.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 13/21



SIMD Compiler reports Pragmas restrict Guidelines

Pragmas
GCC

#pragma GCC ivdep

• Ignore Vector DEPendencies
• Tells the compiler data dependencies are safe to ignore.

Consider

1 // add2.c
2 void add2(int n, double *a, double *b, double *c) {
3 #pragma GCC ivdep
4 for (int i = 0; i < n; i++)
5 c[i] = a[i] + b[i];
6 }

gcc -c -O3 -fopt-info-vec add2.c

produces

add2.c:3:3: optimized: loop vectorized using 16 byte vectors

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 14/21



SIMD Compiler reports Pragmas restrict Guidelines

Intel compilers

#pragma vector always

is like

#pragma GCC ivdep

Consider

1 // add3.c
2 void add3(int n, double *a, double *b, double *c){
3 #pragma vector always
4 for (int i = 0; i < n; i++)
5 c[i] = a[i] + b[i];
6 }

icx -O3 -qopt-report=2 -qopt-report-file=stderr -c add3.c

produces

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 15/21



SIMD Compiler reports Pragmas restrict Guidelines

LOOP BEGIN at add3.c (4, 5)
<Multiversioned v2>

remark #15319: Loop was not vectorized: novector directive used
LOOP END

LOOP BEGIN at add3.c (4, 5)
<Multiversioned v1>

remark #25228: Loop multiversioned for Data Dependence
remark #15300: LOOP WAS VECTORIZED
remark #15305: vectorization support: vector length 2

LOOP END

LOOP BEGIN at add3.c (4, 5)
<Remainder loop for vectorization>
LOOP END

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 16/21



SIMD Compiler reports Pragmas restrict Guidelines

#pragma omp simd

• indicates a loop can be vectorized, from OpenMP 4.0

Consider

1 // vecdep.c
2 void vec_dep1(int n, double *a, double alpha, int k) {
3 for (int i = 0; i < n; i++)
4 a[i] = a[i + k] * alpha;
5 }
6 void vec_dep2(int n, double *a, double alpha, int k) {
7 #pragma omp simd
8 for (int i = 0; i < n; i++)
9 a[i] = a[i + k] * alpha;

10 }

gcc -c -O3 -fopt-info-vec -fopenmp vecdep.c

vecdep.c:3:23: optimized: loop vectorized using 16 byte vectors
vecdep.c:3:23: optimized: loop versioned for vectorization because
of possible aliasing

vecdep.c:9:20: optimized: loop vectorized using 16 byte vectors

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 17/21



SIMD Compiler reports Pragmas restrict Guidelines

restrict keyword
restrict (C99) tells the compiler no aliasing.

1 // add4.c
2 void add4(int n, double *restrict a, double *restrict b, double *restrict

c)
3 {
4 for (int i = 0; i < n; i++)
5 c[i] = a[i] + b[i];
6 }

icx -O3 -mavx -qopt-report=2 -qopt-report-file=stderr -c add4.c

produces

LOOP BEGIN at add4.c (3, 5)
remark #15300: LOOP WAS VECTORIZED
remark #15305: vectorization support: vector length 4

LOOP END

LOOP BEGIN at add4.c (3, 5)
<Remainder loop for vectorization>
LOOP END

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 18/21



SIMD Compiler reports Pragmas restrict Guidelines

Some guidelines
Loops

• Number of iteration must be known at runtime.
◦ Single control flow within the loop.
◦ No break statements.
◦ No if and switch statements.

In some cases the compiler can get around them and vectorize.

• No function calls.
◦ Unless functions are inlined.
◦ Except vectorized functions sin, sqrt,... e.g. from Intel

Vector Math Library

• No indirect indexing.
◦ e.g. a[b[i]]
◦ data needs to be aligned and sequential in memory
◦ In nested loops, the compiler will normally try to vectorize only

the innermost loop.
The compiler may be able to rearrange the order of the loops.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 19/21



SIMD Compiler reports Pragmas restrict Guidelines

Some guidelines
Intel’s recommendations

From Avoid Manual Loop Unrolling :

• "The Intel Compiler can typically generate efficient vectorized
code if a loop structure is not manually unrolled.

• It is better to let the compiler do the unrolls, and you can
control unrolling using #pragma unroll(n).

• Vector-alignment, loop-collapsing, interactions with other loop
optimizations become much more complex if the compiler has
to "undo" the manual unrolling.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 20/21

https://www.intel.com/content/www/us/en/developer/articles/technical/avoid-manual-loop-unrolling.html


SIMD Compiler reports Pragmas restrict Guidelines

• In all but the simplest of cases, this refactoring has to be done
by the user to get the best performing vector-code.

• ... manual loop unrolling tends to tune a loop for a particular
processor or architecture, making it less optimal for some
future port of the application.

• Generally, it is good advice to write code in the most readable,
straightforward manner. This gives the compiler the best
chance of optimizing a given loop structure."

N. Nedialkov, CAS781 High-Performance Scientific Computing, 17 January 2023 21/21


	SIMD basics
	SSE, AVX
	Aliasing
	Data dependency

	Compiler reports
	GCC
	Intel compilers
	Versioning

	Pragmas
	GCC
	Intel compilers

	[basicstyle=black]restrict keyword
	Some guidelines

