Parallel Program Design Tasks, Critical Path

Ned Nedialkov

McMaster University

31 January 2023

## Outline

Foster's Methodology

Tasks

Degrees of concurrency

Critical path

Examples

Foster's Methodology Tasks Degrees of concurrency Critical path Examples Foster's Methodology

- 1. *Partitioning*. Divide the computation into small tasks that can be done in parallel
- 2. *Communication*. Determine the communications between the tasks
- 3. Aggregation (or agglomeration). Combine tasks and communications into larger tasks
- 4. Mapping. Assign the combined tasks to processes (or threads)

From Ian Foster, Designing and Building Parallel Programs

Foster's Methodology Tasks Degrees of concurrency Critical path Examples Tasks

- We can decompose a computation into smaller parts or tasks.
- The goal is to determine which can be executed in parallel.
- Fine-grained decomposition: many small tasks.
- Coarse-grained decomposition: small number of larger tasks.
- Task-dependency graph
  - directed acyclic graph
  - nodes are tasks
  - $\circ\;$  there is an edge between task A and task B if  $B\;$  must be executed after  $A\;$

Foster's Methodology Tasks Degrees of concurrency Critical path Examples Degrees of concurrency

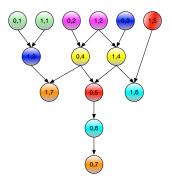
- Maximum degree of concurrency: the maximum number of tasks that can be executed in parallel.
- Average degree of concurrency: the average number of tasks that can be executed in parallel.
- The average degree of concurrency is a more useful measure.

Foster's Methodology Tasks Degrees of concurrency  $\mbox{Critical path}$  Examples  $\mbox{Critical path}$ 

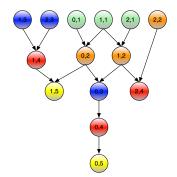
- Start nodes: nodes with no incoming edges.
- Finish nodes: nodes with no outgoing edges.
- Critical path: the longest directed path between any pair of start and finish nodes.
- Critical path length: sum of the weights of the nodes on a critical path
- Average degree of concurency

ave degree of concurrency =  $\frac{\text{total amount of work}}{\text{critical path length}}$ 

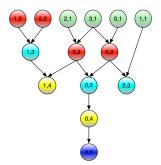
Foster's Methodology Tasks Degrees of concurrency Critical path  $\ensuremath{\mathsf{Examples}}$   $\ensuremath{\mathsf{Example}}$ 


Task-dependency graph




- maximum degree of concurrency is 6
- critical path length is 5
- total amount of work is 14 (assuming each task takes one unit of time)
- average degree of concurrency is 14/5 = 2.8

N. Nedialkov, CAS781 High-Performance Scientific Computing, 31 January 2023


- An assignment to 2 processes and the order in which the tasks are executed
- First number is the process number
- The speedup is 14/7 = 2



- An assignment to 3 processes
- The speedup is 14/5 = 2.8



- An assignment to 4 processes
- The speedup is 14/5 = 2.8



• What is the speedup on 8 processes?

Foster's Methodology Tasks Degrees of concurrency Critical path Examples Example: LU decomposition

- $\bullet\,$  We want to compute the LU decomposition of a matrix A
- Assume A consists of  $3\times 3$  blocks
- We want

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \rightarrow \underbrace{\begin{bmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}}_{U}$$

- We need to determine the  $L_{ij}$  and  $U_{ij}$ .
- Consider L times the first column of U. We have

$$A_{11} = L_{11}U_{11} \qquad \text{compute } L_{11} \text{ and } U_{11} \qquad (1)$$

$$A_{21} = L_{21}U_{11} \qquad L_{21} = A_{21}U_{11}^{-1} \qquad (2)$$

$$A_{31} = L_{31}U_{11} \qquad L_{31} = A_{31}U_{11}^{-1} \qquad (3)$$

• From multiplying the first row of L times U, we obtain

$$A_{12} = L_{11}U_{12} \qquad \qquad U_{12} = L_{11}^{-1}A_{21} \qquad (4)$$

$$A_{13} = L_{11}U_{13} \qquad \qquad U_{13} = L_{11}^{-1}A_{13} \tag{5}$$

• Then we write

Foster's Methodology Tasks Degrees of concurrency Critical path Examples

• Using the right column in (1–14), we can decompose the computation in the following tasks

1. 
$$A_{11} = L_{11}U_{11}$$
 (compute LU factorization)

 2.  $L_{21} = A_{21}U_{11}^{-1}$ 
 (and the compute LU factorization)

 3.  $L_{31} = A_{31}U_{11}^{-1}$ 
 (b)

 4.  $U_{12} = L_{11}^{-1}A_{21}$ 
 (c)

 5.  $U_{13} = L_{11}^{-1}A_{13}$ 
 (c)

 6.  $A'_{22} = A_{22} - L_{21}U_{12}$ 
 (c)

 7.  $A'_{32} = A_{32} - L_{31}U_{12}$ 
 (c)

 8.  $A'_{23} = A_{33} - L_{31}U_{13}$ 
 (c)

 9.  $A'_{33} = A_{33} - L_{31}U_{13}$ 
 (c)

 10.  $A'_{22} = L_{22}U_{22}$ 
 (c)

 11.  $L_{32} = A'_{32}U_{21}^{-1}$ 
 (c)

 12.  $U_{23} = L_{22}^{-1}A'_{23}$ 
 (c)

 13.  $A''_{33} = A'_{33} - L_{32}U_{23}$ 
 (c)

 14.  $A''_{33} = L_{33}U_{33}$ 
 (c)

N. Nedialkov, CAS781 High-Performance Scientific Computing, 31 January 2023

14/16

Foster's Methodology Tasks Degrees of concurrency Critical path Examples

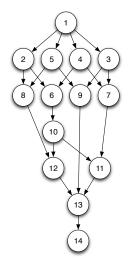



Figure: Task-dependency graph

Foster's Methodology Tasks Degrees of concurrency Critical path Examples

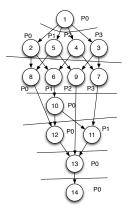



Figure: Task distribution on 4 processes. Maximum speedup is 2