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Message passing cost

A message consists of a header and the actual data.

The time for passing a message includes

• startup time, ts
◦ prepare message: header, trailer, error correction information
◦ set up communication

• pre-hop time, th
◦ time for a header to travel between two directly connected

nodes (one link); also called node latency

• pre-word time, tw: time for a word to traverse a link
If bandwidth is r words/second tw = 1

r .

Simplified model. Cost for sending a message of m words is

tcomm = ts + twm
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Parallel matrix-vector product

• Consider parallel matrix-vector multiplication.
• Let A ∈ Rn×n and x ∈ Rn.
• We wish to compute y = Ax in parallel and analyze scalability.
• We consider 1D and 2D distribution schemes.
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1D distribution

• Assume that process i stores ni consecutive rows of A and ni

consecutive elements of x:
y0
y1
...

yp−1

 =


A0

A1
...

Ap−1




x0
x1
...

xp−1


• Algorithm

1. Process i gathers x
2. Process i computes yi = Aix
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Analysis

Step 1 can be done using all-to-all broadcast.

• Assume that all-to-all broadcast of m words takes time

ts log2 p+ twm(p− 1) (1)

ts is start-up time, tw is pre-word transfer time
(This is on hypercube. See e.g. V. Kumar, A. Grama, A. Gupta, G.
Karypis. Introduction to parallel computing).

• Assume ni = n/p. Then m = n/p, and (1) becomes

ts log2 p+ twm(p− 1) = ts log2 p+ tw
n

p
(p− 1)

≈ ts log2 p+ twn (2)

Step 2 is done in ≈ (n/p)n = n2/p operations.
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Assuming ts log2 p+ twn ≪ twn, the parallel time is

Tp ≈
n2

p
+ ts log2 p+ twn ≈ n2

p
+ twn.

Since the serial time is T1 ≈ n2, the speed up is

S =
T1

Tp
≈ n2

n2

p + twn
=

1
1
p + tw

1
n

The efficiency is

E1D =
S

p
≈ 1

1 + tw
p
n

(3)
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Scalability

• For fixed n, E1D decreases as p increases. Not strongly
scalable.

• If n → 2n, the work ≈ quadruples.
• Increase p to 4p. Then

E′
1D ≈ 1

1 + tw
4p
2n

=
1

1 + tw
2p
n

=
1

1 + tw
p

n︸ ︷︷ ︸
same as in E

+tw
p
n

• Obviously E′
1D < E1D.
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• Let M be the number of words that can be stored per node.
• On p nodes, we can store pM words.
• Let N be the size of the largest problem we can store on p

nodes.
• To store A, we store N2 = pM items; N =

√
pM

We ignore the storage for the xi.
• Using n = N in (3), we obtain

E′′
1D ≈ 1

1 + tw
√
p√
M

(4)

• This algorithm does not scale well.
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2D distribution

• Consider a 2D grid of processes.
• For simplicity, assume q × q = p process grid.
• Process (i, j) stores submatrix Aij ∈ Rni×ni .
• Process (j, j) stores subvector xj ∈ Rni .
• This distribution can be visualized as

A0,0, x0 A0,1 . . . A0,q−1

A1,0 A1,1, x1 . . . A1,q−1

...
... . . .

...
Aq−1,0 Aq−1,1 . . . Aq−1,q−1, xq−1.
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Algorithm

1. Process (j, j) broadcasts xj along column j

A0,0, x0 A0,1, x1 . . . A0,q−1, xq−1

A1,0, x0 A1,1, x1 . . . A1,q−1, xq−1
...

...
Aq−1,0, x0 Aq−1,1, x1 . . . Aq−1,q−1, xq−1

2. Process (i, j) computes Aijxj .
3. Process (i, i) does sum reduction across row i. Then (i, i)

contains yi:

yi = Ai,0x0 +Ai,1x1 + · · ·+Ai,q−1xq−1
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Analysis

Let ni = n/q

• Assume one-to-all broadcast of m words takes

(ts + twm) log2 p ≈ twm log2 p (5)

(See e.g. V. Kumar, A. Grama, A. Gupta, G. Karypis. Introduction to
parallel computing).

• Here m = n/q = n/
√
p and we broadcast along q =

√
p nodes

Then (5) becomes

tw
n

q
log2 q =

1

2
tw

n
√
p
log2 p (6)
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• The number of operation for Aijxj is

≈
(
n

q

)2

=
n2

p
(7)

• All-to-one reduction is like one-to-all broadcast:

≈ 1

2
tw

n
√
p
log2 p (8)

We ignore the time for summations.
• The parallel time is (6) + (7) + (8):

Tp ≈
n2

p
+ tw

n
√
p
log2 p
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Speedup is

S =
T1

Tp
≈ n2

n2

p + tw
n√
p log2 p

=
1

1
p + tw

√
p log2 p
pn

Efficiency is

E2D ≈ 1

1 + tw
√
p log2 p
n

(9)

Before
E1D ≈ 1

1 + tw
p
n
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• As before, assume n =
√
pM

Then

E′′
2D ≈ 1

1 + tw
√
p log2 p√
pM

=
1

1 + tw
log2 p√

M

• log2 is a very slowly growing function, and can be considered
≈ constant here.

• As p increases, the efficiency decreases very slowly and much
slower than

E′′
1D =

1

1 + tw
√
p√
M

.

• For practical purposes, this algorithm scales well
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