
Distributed Matrix Multiply

Ned Nedialkov

McMaster University

7–9 February 2023



Outline

Fox’s algorithm

SUMMA



Fox’s algorithm SUMMA

• Cannon’s algorithm 1969
Fox’s algorithm 1988

◦ Assume square process grid
√
p×√

p
◦ Nontrivial for non-square grids.
◦ Don’t work well when one of the matrix dimensions becomes

relatively small.
• SUMMA: Scalable Universal Matrix Multiply Algorithm , 1997

◦ avoids the above shortcomings
◦ used in practice e.g. ScaLAPACK

See also Martin D. Schatz, Robert A. van de Geijn, and Jack Poulson. Matrix
Multiplication: A Systematic Journey

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 3/15

https://netlib.org/lapack/lawnspdf/lawn96.pdf
https://epubs.siam.org/doi/10.1137/140993478
https://epubs.siam.org/doi/10.1137/140993478


Fox’s algorithm SUMMA

Fox’s algorithm

Let A and B be n× n matrices.

Compute C = AB in parallel.

Let q =
√
p be an integer such that it divides n, where p is the

number of processes.

Create a Cartesian topology with processes (i, j),
i, j = 0, . . . , q − 1.

Denote m = n/q.

Distribute A and B by blocks such that Aij and Bij are m×m,
m = n/q, blocks stored on process (i, j).

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 4/15



Fox’s algorithm SUMMA

On process (i, j), we want to compute

Ci,j =

q−1∑
k=0

Ai,kBk,j = Ai,0B0,j +Ai,1B1,j + · · ·Ai,i−1Bi−1,j

+Ai,iBi,j +Ai,i+1Bi+1,j + · · ·Ai,q−1Bq−1,j

Rewrite this as
stage compute
0 Ci,j = Ai,iBi,j

1 Ci,j += Ai,i+1Bi+1,j

...
...

Ci,j += Ai,q−1Bq−1,j

Ci,j += Ai,0B0,j

Ci,j += Ai,1B1,j

...
...

q − 1 Ci,j += Ai,i−1Bi−1,j

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 5/15



Fox’s algorithm SUMMA

Each process computes in stages

stage 0

• process (i, j) has Ai,j , Bi,j but needs Ai,i

• process (i, i) broadcasts Ai,i across processor row i

• process (i, j) computes Ci,j = Ai,iBi,j

stage 1

• process (i, j) has Ai,j , Bi,j , but needs Ai,i+1, Bi+1,j

◦ shift the jth block column of B by one block up
(block 0 goes to block q − 1)

◦ process (i, i+ 1) broadcasts Ai,i+1 across processor row i

• process (i, j) computes Ci,j += Ai,i+1Bi+1,j

Similarly on next stages

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 6/15



Fox’s algorithm SUMMA

Example

Consider multiplying two 3× 3 block matrices:C00 C01 C02

C10 C11 C12

C20 C21 C22

 =

A00 A01 A02

A10 A11 A12

A20 A21 A22

B00 B01 B02

B10 B11 B12

B20 B21 B22


Process (i, j) stores Aij , Bij

A00, B00 A01, B01 A02, B02

A10, B10 A11, B11 A12, B12

A20, B20 A21, B21 A22, B22

and computes Cij .

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 7/15



Fox’s algorithm SUMMA

stage 0

process broadcasts
(i,i mod 3) along row i

(0, 0) A00

(1, 1) A11

(2, 2) A22

A00, B00 A00, B01 A00, B02

A00 A01 A02

A11, B10 A11, B11 A11, B12

A10 A11 A12

A22, B20 A22, B21 A22, B22

A20 A21 A22

Process (i, j) computes

C00 = A00B00 C01 = A00B01 C02 = A00B02

C10 = A11B10 C11 = A11B11 C12 = A11B12

C20 = A22B20 C22 = A22B21 C12 = A22B22

Shift-rotate on the columns of B:

A00, B10 A00, B11 A00, B12

A00 A01 A02

A11, B20 A11, B21 A11, B22

A10 A11 A12

A22, B00 A22, B01 A22, B02

A20 A21 A22

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 8/15



Fox’s algorithm SUMMA

stage 1

process broadcasts
(i,(i+1)mod 3) along row i

(0, 1) A01

(1, 2) A12

(2, 0) A20

A01, B10 A01, B11 A01, B12

A00 A01 A02

A12, B20 A12, B21 A12, B22

A10 A11 A12

A20, B00 A20, B01 A20, B02

A20 A21 A22

Process (i, j) computes

C00 += A01B10 C01 += A01B11 C02 += A01B12

C10 += A12B20 C11 += A12B21 C12 += A12B22

C20 += A20B00 C21 += A20B01 C22 += A20B02

Shit-rotate on columns of B:

A01, B20 A01, B21 A01, B22

A00 A01 A02

A12, B00 A12, B01 A12, B02

A10 A11 A12

A20, B10 A20, B11 A10, B02

A20 A21 A22

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 9/15



Fox’s algorithm SUMMA

stage 2

process broadcasts
(i,(i+2)mod 3) along row i

(0, 2) A02

(1, 0) A10

(2, 1) A21

A02, B20 A02, B21 A02, B22

A00 A01 A02

A10, B00 A10, B01 A10, B02

A10 A11 A12

A21, B10 A21, B11 A21, B12

A20 A21 A22

Process (i, j) computes

C00 += A02B20 C01 += A02B21 C02 += A02B22

C10 += A10B00 C11 += A10B01 C12 += A10B02

C20 += A21B10 C21 += A21B11 C22 += A21B12

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 10/15



Fox’s algorithm SUMMA

Parallel time

For mesh architecture:

Tp =
n3

p
+ 2tw

n2

√
p
+ tsp (1)

On a hypercube, the parallel execution time can be improved to

Tp =
n3

p
+ 2tw

n2

√
p
+ ts

√
p log p+ 2n

√
tstw log p (2)

See A. Gupta and V. Kumar. Scalability of Parallel Algorithms for Matrix Multiplication

The speedup in (1) is

S =
n3

n3

p + 2tw
n2√
p + tsp

=
1

1
p + 2tw

1
n
√
p + ts

p
n3

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 11/15

https://www3.nd.edu/~zxu2/acms60212-40212-S12/scalability-of-parallel-alg-for-matrix-multiplication.pdf


Fox’s algorithm SUMMA

Example

Consider a 2× 2 process grid. Process (i, j) stores Aij and Bij :

A00, B00 A01, B01

A10, B10 A11, B11

process broadcasts across
(0, 0) A00 row 0
(1, 0) A10 row 1
(0, 0) B00 column 0
(0, 1) B01 column 1

A00, B00 A01, B01

A00, B00 A00, B01

A10, B10 A11, B11

A10, B00 A10, B01

Process (i, j) does:

C00 = A00B00 C01 = A00B01

C10 = A00B00 C11 = A10B01

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 12/15



Fox’s algorithm SUMMA

Process (i, j) stores Aij and Bij :

A00, B00 A01, B01

A10, B10 A11, B11

process broadcasts across
(0, 1) A01 row 0
(1, 1) A11 row 1
(1, 0) B10 column 0
(1, 1) B11 column 1

A00, B00 A01, B01

A01, B10 A01, B11

A10, B10 A11, B11

A11, B10 A11, B11

Process (i, j) does:

C00+= A01B10 C01+= A01B11

C10+= A11B10 C11+= A11B11

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 13/15



Fox’s algorithm SUMMA

This computes[
C00 C01

C10 C11

]
=

[
A00 A01

A10 A11

] [
B00 B01

B10 B11

]
=

[
A00B00 A00B01

A10B00 A10B01

]
+

[
A01B10 A01B10

A11B10 A11B11

]

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 14/15



Fox’s algorithm SUMMA

SUMMA

A[i, k] is a block matrix, similarly B[k, j]. pr × pc process grid.

For k = 0 : n/b− 1 % b is block size
for all i = 1 : pr in parallel

owner of A[i, k] broadcasts it to whole processor row
for all j = 1 : pc in parallel

owner of B[k, j] broadcasts it to whole processor column
receive A[i, k] into Acol
receive B[k, j] into Brow
C_myproc = C_myproc +Acol*Brow

See also J. Demmel. Dense Linear Algebra: History and Structure, Parallel Matrix Multiplication

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023 15/15

https://people.eecs.berkeley.edu/~demmel/cs267_Spr15/Lectures/lecture12_densela_1_jwd15_4pp.pdf

	Fox's algorithm
	SUMMA

