Distributed Matrix Multiply

Ned Nedialkov

McMaster University

7-9 February 2023

- Cannon's algorithm 1969 Fox's algorithm 1988
 - $\circ~$ Assume square process grid $\sqrt{p} imes \sqrt{p}$
 - Nontrivial for non-square grids.
 - Don't work well when one of the matrix dimensions becomes relatively small.
- SUMMA: Scalable Universal Matrix Multiply Algorithm 1997
 - avoids the above shortcomings
 - used in practice e.g. ScaLAPACK

See also Martin D. Schatz, Robert A. van de Geijn, and Jack Poulson. Matrix Multiplication: A Systematic Journey

Fox's algorithm SUMMA Fox's algorithm

Let A and B be $n \times n$ matrices.

Compute C = AB in parallel.

Let $q=\sqrt{p}$ be an integer such that it divides n, where p is the number of processes.

Create a Cartesian topology with processes (i, j), $i, j = 0, \ldots, q - 1$.

Denote m = n/q.

Distribute A and B by blocks such that A_{ij} and B_{ij} are $m \times m$, m = n/q, blocks stored on process (i, j).

On process (i, j), we want to compute

$$C_{i,j} = \sum_{k=0}^{q-1} A_{i,k} B_{k,j} = A_{i,0} B_{0,j} + A_{i,1} B_{1,j} + \dots + A_{i,i-1} B_{i-1,j} + A_{i,i} B_{i,j} + A_{i,i+1} B_{i+1,j} + \dots + A_{i,q-1} B_{q-1,j}$$

Rewrite this as

$$\begin{array}{c|cccc} \text{stage} & \text{compute} \\ \hline 0 & C_{i,j} = A_{i,i}B_{i,j} \\ 1 & C_{i,j} += A_{i,i+1}B_{i+1,j} \\ \vdots & \vdots \\ & C_{i,j} += A_{i,q-1}B_{q-1,j} \\ & C_{i,j} += A_{i,0}B_{0,j} \\ & C_{i,j} += A_{i,1}B_{1,j} \\ \vdots & \vdots \\ & q-1 & C_{i,j} += A_{i,i-1}B_{i-1,j} \end{array}$$

Each process computes in stages stage 0

- process (i, j) has $A_{i,j}$, $B_{i,j}$ but needs $A_{i,i}$
- process (i,i) broadcasts $A_{i,i}$ across processor row i
- process (i, j) computes $C_{i,j} = A_{i,i}B_{i,j}$

stage 1

- process (i, j) has $A_{i,j}$, $B_{i,j}$, but needs $A_{i,i+1}$, $B_{i+1,j}$
 - shift the *j*th block column of *B* by one block up (block 0 goes to block q 1)
 - $\circ~\mbox{process}~(i,i+1)$ broadcasts $A_{i,i+1}$ across processor row i
- process (i, j) computes $C_{i,j} += A_{i,i+1}B_{i+1,j}$

Similarly on next stages

Fox's algorithm SUMMA Example

Consider multiplying two 3×3 block matrices:

$$\begin{bmatrix} C_{00} & C_{01} & C_{02} \\ C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{00} & B_{01} & B_{02} \\ B_{10} & B_{11} & B_{12} \\ B_{20} & B_{21} & B_{22} \end{bmatrix}$$

Process (i, j) stores A_{ij} , B_{ij}

A_{00}, B_{00}	A_{01}, B_{01}	A_{02}, B_{02}
A_{10}, B_{10}	A_{11}, B_{11}	A_{12}, B_{12}
A_{20}, B_{20}	A_{21}, B_{21}	A_{22}, B_{22}

and computes C_{ij} .

stage 0

process	broadcasts
(i,i mod 3)	along row i
(0,0)	A_{00}
(1, 1)	A_{11}
(2, 2)	A_{22}

A_{00}, B_{00}	A_{00}, B_{01}	A_{00}, B_{02}
A_{00}	A_{01}	A_{02}
A_{11}, B_{10}	A_{11}, B_{11}	A_{11}, B_{12}
A_{10}	A_{11}	A_{12}
A_{22}, B_{20}	A_{22}, B_{21}	A_{22}, B_{22}
A_{20}	A_{21}	A_{22}

 $\mathsf{Process}\ (i,j)\ \mathsf{computes}$

Shift-rotate on the columns of B:

A_{00}, B_{10}	A_{00}, B_{11}	A_{00}, B_{12}
A_{00}	A_{01}	A_{02}
A_{11}, B_{20}	A_{11}, B_{21}	A_{11}, B_{22}
A_{10}	A_{11}	A_{12}
A_{22}, B_{00}	A_{22}, B_{01}	A_{22}, B_{02}
A_{20}	A_{21}	A_{22}

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7-9 February 2023

stage 1

process	broadcasts	A_{01}, B_{10}	$\frac{A_{01}}{A_{01}}, B_{11}$	A_{01}, B_{12}
(i,(i+1)mod 3)	along row <i>i</i>	A_{00}		A_{02}
$\frac{(1,(1+1))(1,0,1,0)}{(0,1)}$	A_{01}	A_{12}, B_{20} A_{10}	A_{12}, B_{21} A_{11}	A_{12}, B_{22} A_{12}
(1,2)	$\begin{array}{c} A_{12} \\ A_{20} \end{array}$	A_{20}, B_{00}	A_{20}, B_{01}	A_{20}, B_{02}
(2,0)		A_{20}	A_{21}	A_{22}

Process (i, j) computes

Shit-rotate on columns of B:

A_{01}, B_{20}	A_{01}, B_{21}	A_{01}, B_{22}
A_{00}	A_{01}	A_{02}
A_{12}, B_{00}	A_{12}, B_{01}	A_{12}, B_{02}
A_{10}	A_{11}	A_{12}
A_{20}, B_{10}	A_{20}, B_{11}	A_{10}, B_{02}
A_{20}	A_{21}	A_{22}

stage 2

process (i,(i+2)mod 3)	broadcasts along row <i>i</i>	A_{02}, B_{20} A_{00}	A_{02}, B_{21} A_{01}	$\begin{bmatrix} A_{02}, B_{22} \\ A_{02} \end{bmatrix}$
(0,2)	A ₀₂	A_{10}, B_{00} A_{10}	A_{10}, B_{01} A_{11}	A_{10}, B_{02} A_{12}
$(1,0) \\ (2,1)$	$\begin{array}{c} A_{10} \\ A_{21} \end{array}$	A_{21}, B_{10} A_{20}	$\frac{A_{21}}{A_{21}}, B_{11}$ A_{21}	A_{21}, B_{12} A_{22}

Process (i, j) computes

$$\begin{array}{ll} C_{00} \mathrel{+}= A_{02}B_{20} & C_{01} \mathrel{+}= A_{02}B_{21} & C_{02} \mathrel{+}= A_{02}B_{22} \\ C_{10} \mathrel{+}= A_{10}B_{00} & C_{11} \mathrel{+}= A_{10}B_{01} & C_{12} \mathrel{+}= A_{10}B_{02} \\ C_{20} \mathrel{+}= A_{21}B_{10} & C_{21} \mathrel{+}= A_{21}B_{11} & C_{22} \mathrel{+}= A_{21}B_{12} \end{array}$$

Fox's algorithm SUMMA Parallel time

For mesh architecture:

$$T_{p} = \frac{n^{3}}{p} + 2t_{w}\frac{n^{2}}{\sqrt{p}} + t_{s}p$$
(1)

On a hypercube, the parallel execution time can be improved to

$$T_{p} = \frac{n^{3}}{p} + 2t_{w}\frac{n^{2}}{\sqrt{p}} + t_{s}\sqrt{p}\log p + 2n\sqrt{t_{s}t_{w}\log p}$$
(2)

See A. Gupta and V. Kumar. Scalability of Parallel Algorithms for Matrix Multiplication

The speedup in (1) is

$$S = \frac{n^3}{\frac{n^3}{p} + 2t_w \frac{n^2}{\sqrt{p}} + t_s p} = \frac{1}{\frac{1}{p} + 2t_w \frac{1}{n\sqrt{p}} + t_s \frac{p}{n^3}}$$

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7-9 February 2023

Fox's algorithm SUMMA Example

Consider a 2×2 process grid. Process (i, j) stores A_{ij} and B_{ij} :

A_{00}, B_{00}	A_{01}, B_{01}
A_{10}, B_{10}	A_{11}, B_{11}

process	broadcasts	across		
(0,0)	A_{00}	row 0	A_{00}, B_{00}	A_{01}, B_{01}
(1, 0)	A_{10}	row 1	A_{00}, B_{00}	A_{00}, B_{01}
(0,0)	B_{00}	column 0	A_{10}, B_{10}	A_{11}, B_{11}
(0, 1)	B_{01}	column 1	A_{10}, B_{00}	A_{10}, B_{01}

Process (i, j) does:

$$\begin{array}{c|c} C_{00} = A_{00}B_{00} & C_{01} = A_{00}B_{01} \\ \hline C_{10} = A_{00}B_{00} & C_{11} = A_{10}B_{01} \end{array}$$

Process (i, j) stores A_{ij} and B_{ij} :

A_{00}, B_{00}	A_{01}, B_{01}
A_{10}, B_{10}	A_{11}, B_{11}

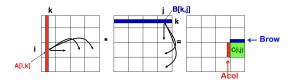
process	broadcasts	across		
(0,1)	A_{01}	row 0	A_{00}, B_{00}	A_{01}, B_{01}
(1, 1)	A_{11}	row 1	A_{01}, B_{10}	A_{01}, B_{11}
(1, 0)	B_{10}	column 0	A_{10}, B_{10}	A_{11}, B_{11}
(1, 1)	B_{11}	column 1	A_{11}, B_{10}	A_{11}, B_{11}

Process (i, j) does:

This computes

$$\begin{bmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} \begin{bmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{bmatrix}$$
$$= \begin{bmatrix} A_{00}B_{00} & A_{00}B_{01} \\ A_{10}B_{00} & A_{10}B_{01} \end{bmatrix} + \begin{bmatrix} A_{01}B_{10} & A_{01}B_{10} \\ A_{11}B_{10} & A_{11}B_{11} \end{bmatrix}$$

Fox's algorithm SUMMA SUMMA



A[i,k] is a block matrix, similarly B[k,j]. $p_r \times p_c$ process grid.

For k = 0: n/b - 1 % *b* is block size for all $i = 1: p_r$ in parallel owner of A[i, k] broadcasts it to whole processor row for all $j = 1: p_c$ in parallel owner of B[k, j] broadcasts it to whole processor column receive A[i, k] into Acol receive B[k, j] into Brow C_myproc = C_myproc +Acol*Brow

See also > J. Demmel. Dense Linear Algebra: History and Structure, Parallel Matrix Multiplication

N. Nedialkov, CAS781 High-Performance Scientific Computing, 7–9 February 2023