Sparse Gauss Elimination

Ned Nedialkov

McMaster University

16, 21 March 2023

Outline

Problem Graphs Elimination Chordal graphs Minimum-degree ordering Markowitz rule

- A square matrix A is symmetric positive definite (SPD) if A is symmetric, $A = A^T$, and for any nonzero vector x, $x^T A x > 0$.
- Cholesky factorization decomposes a SPD A as $A = L^T L$, where L is lower trianglular with positive diagonal.
- Cholesky decomposition does not need pivoting.

3/23

Problem Graphs Elimination Chordal graphs MDO Markowitz rule Problem

fill: number of nonzeros fill-in: number of nonzeros introduced during factorization We want to keep the fill-in small. Problem Graphs Elimination Chordal graphs MDO Markowitz rule Problem cont.

Assume A is SPD.

Let P be a permutation matrix and write Ax = b as

$$(PAP^T)(Px) = Pb.$$

- 1. Find P
- 2. Factorize $PAP^T = LL^T$
- 3. Solve $(LL^T)(Px) = Pb$

Find P such that fill-in in L is as small as possible.

For an $n \times n$ symmetric matrix A, define graph G = (V, E) with

$$V = \{v_1, \dots, v_n\}, \quad E = \{(v_i, v_j) \mid a_{ij} \neq 0\}.$$

G represents any matrix PAP^{T} with appropriate relabeling of vertices.

Example 1.

Problem Graphs Elimination Chordal graphs MDO Markowitz rule Graphs cont.

Example 1. cont. Consider eliminating with a_{11} .

Remove v_1 and its incident edges.

Pairwise connect the vertices adjacent to v_1 , i.e. $\{adj(v_1)\}$

N. Nedialkov, CAS781 High-Performance Scientific Computing, 16, 21 March 2023

Example 1. cont. Consider eliminating with a_{ii} in

 $a_{ii} \cdots a_{ij} \cdots a_{ik}$ \vdots $a_{ji} \cdots a_{jj} \cdots a_{jk}$ \vdots $a_{ki} \cdots a_{kj}$

If $a_{ji} = 0$ (or a_{ki}) nothing to do. Assume $a_{ij} = a_{ji} \neq 0$, $a_{ik} = a_{ki} \neq 0$. (*j*, *k*) and (*k*, *j*) entries become structural nonzeros.

If $(v_j, v_k) \notin E$ then becomes an edge in the new graph.

 v_i

 v_k

N. Nedialkov, CAS781 High-Performance Scientific Computing, 16, 21 March 2023

Problem Graphs Elimination Chordal graphs MDO Markowitz rule Elimination

Definition 2. Ordering of the vertices of G = (V, E) is $\alpha : V \to \{1, \dots, n\}$

Denote G with ordering α by $G_{\alpha} = (V, E, \alpha)$.

Theorem 3. When x_i is eliminated from subsequent equations, the graph of the remaining system is contained in \overline{G} , which is obtained from G by

- 1. removing v_i
- 2. pair-wise connection of all vertices previously connected to v_i

Denote G_i the graph obtained by eliminating x_i and denote

$$G_1 = G_{x_1}$$

 $G_i = (G_{i-1})_{x_i}, \quad i = 2, \dots, n-1.$

Definition 4. Elimination process on $G = (V, E, \alpha)$ is the sequence

$$G = G_0, G_1, G_2, \dots, G_{n-1}.$$

N. Nedialkov, CAS781 High-Performance Scientific Computing, 16, 21 March 2023

Problem Graphs Elimination Chordal graphs MDO Markowitz rule Elimination cont.

For a $V' \subseteq V$, G(V') is the subgraph of G with vertices V' and edges $\in E$ with endpoints in V'. Definition 5. Elimination process is perfect if

$$G_i = G(V - \bigcup_{j=1}^i \{v_i\}).$$

That is, no new edges, resp. nonzeros are introduced.

Problem Graphs Elimination Chordal graphs MDO Markowitz rule Elimination cont.

Definition 6. Vertex v is simplificial if the subgraph induced by adj(v) is complete.

Definition 7. An ordering α is perfect elimination ordering, if for all $1 \le i \le n$, v_i is simplificial in $G(L_i)$ where

 $L_i = \{v_j \mid \alpha(v_j) > \alpha(v_i)\}$

Example 8.

Vertex 1 is simplificial as the graph induced by $L_1 = \{2, 3, 4\}$ is complete.

 $\label{eq:constraint} \begin{array}{c} {\sf Problem \ Graphs \ Elimination \ Chordal \ graphs \ MDO \ Markowitz \ rule \ Chordal \ graphs \end{array}$

Definition 9. Chord is an edge connecting two non-consecutive vertices in a cycle.

- Example 10.
- Edge (2,3) is chord.

Definition 11. G = (V, E) is chordal if every cycle of length > 3 has a chord.

Any subgraph of a chordal graph is chordal.

Theorem 12. A graph is chordal iff it has a perfect elimination ordering.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 16, 21 March 2023 12/23

Problem Graphs Elimination Chordal graphs MDO Markowitz rule Chordal graphs cont.

Definition 13. Let G = (V, E) be any graph. $G^* = (V, E^*)$, where $E \subseteq E^*$ is a chordal extension of G if G^* is chordal.

The problem is:

Given a sparse SPD A find a chordal extension $G^* = (V, E^*)$ of G = (V, E) obtained form A such that $|E - E^*|$ is minimized. This is an NP complete problem.

13/23

Given graph G of a SPD matrix \boldsymbol{A}

while |V| > 1select a vertex of minimum degree in and order v next eliminate v and connect pairwise the adjacent vertices $V = V \setminus \{v\}$

Resolving ties: when several vertices are of the same degree.

Example 14. Select v_2 .

Example 14. cont.

Select v_1

Example 14. cont.

Select v_3

Eliminate in the order x_2 , x_4 , x_1 , x_3

Example 15.

Example 15. cont.

Eliminate in order x_9 , x_2 , x_5 , x_3 , x_6 , x_8 , x_7 , x_4

N. Nedialkov, CAS781 High-Performance Scientific Computing, 16, 21 March 2023

19/23

20/23

Problem Graphs Elimination Chordal graphs MDO Markowitz rule Markowitz rule

For general sparse matrices.

Denote

- r_i number of nonzeros in row i
- c_j number of nonzeros in row j

Chose (i, j) to minimize $(r_i - 1)(c_j - 1)$. $(r_i - 1)(c_j - 1)$ is Markowitz count. Problem Graphs Elimination Chordal graphs MDO Markowitz rule Markowitz rule cont.

Example 16.

Consider (3,3): $r_3 = 6$, $c_i = 5$. Markowitz count is 20: at most 20 nonzeros are introduced.

Consider (1,1): $r_1 = 4$, $c_i = 3$. Markowitz count is 6: at most 6 nonzeros are introduced.

Problem Graphs Elimination Chordal graphs MDO Markowitz rule Markowitz rule cont. Numerical stability

If we chose a pivot only using the Markowitz count we may encounter a very small (compared to the other entries in a column) or a zero pivot.

Consider a pivot as acceptable if

$$|a_{ij}| \ge u \max_k |a_{kj}|, \quad 0 < u \le 1.$$

If u = 1, we have partial pivoting.