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Why accelerators

• If a program execution cannot fit on a single machine and/or
many processors are needed: go distributed
Message-Passing Interface (MPI)

• If shared memory would do: OpenMP or Pthreads

• Cheaper alternative: accelerators
◦ GPUs (NVIDIA, AMD ... )
◦ Intel Xeon Phi

• GPUs are not easy to program
◦ CUDA supports NVIDIA only

◦ OpenCL is portable, harder than CUDA

◦ OpenACC
▶ Portable, do not need to know much about the hardware

▶ Much easier than CUDA and OpenCL
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OpenACC overview

• Set of compiler directives, library routines, and environment
variables

• Fortran, C, C++

• Initially developed by PGI, Cray, NVIDIA, CAPS
OpenACC 1.0 in 2011
Latest standard 3.3

• Done through pragmas

• We can annotate a serial program with OpenACC directives
Non-OpenACC compilers can simply ignore the pragmas
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References

• OpenACC web site http://www.openacc.org/

• Kirk & Hwu. Programming Massively Parallel Processors: A
Hands-on Approach

• PGI Accelerator Compilers. OpenACC Getting Started Guide
https://www.pgroup.com/doc/openacc_gs.pdf

• PGI compiler and tools
https://www.pgroup.com/resources/articles.htm

• OpenACC quick reference
http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf

• 11 Tips for Maximizing Performance with OpenACC Directives in
Fortran https:
//www.pgroup.com/resources/openacc_tips_fortran.htm
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OpenACC example: matrix-matrix multiplication

1 #ifdef _OPENACC
2 #include <openacc.h>
3 #endif
4
5 /∗ A is m x n, B is n x p, C = A∗B is m x p ∗/
6 void matmul_acc(float ∗ restrict C, float ∗ restrict A, float ∗ restrict B, int m,

int n, int p) {
7 int i , j , k;
8 #pragma acc kernels copyin(A[0:m ∗ n], B[0:n ∗ p]) copyout(C[0:m ∗ p])
9 {

10 for ( i = 0; i < m; i++)
11 for ( j = 0; j < p; j++) {
12 float sum = 0;
13 for (k = 0; k < n; k++)
14 sum += A[i ∗ n + k] ∗ B[k ∗ p + j];
15 C[i ∗ p + j] = sum;
16 }
17 }
18 }

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 6/19



Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Execution model

An OpenACC program starts as a single thread on the host

• parallel or kernels construct identify parallel or kernels region

• when the program encounters a parallel construct, gangs of
workers are created to execute it on the accelerator

• one worker, the gang leader, starts executing the parallel region

• work is distributed when a work-sharing loop is reached

Three levels of parallelism: gang, worker, vector

• a group of gangs execute a kernel

• a group of workers can execute a work-sharing loop from a
gang

• a thread can execute vector operations
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Memory model

• Main memory and device memory are separate

• Typically
◦ transfer memory from host to device

◦ execute on device

◦ transfer result to host
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Compiling

• The Nvidia compilers support OpenACC
• GCC 12, 11, 10 : support OpenACC 2.6
• To compile with nvc,

nvc -fast -acc -Minfo -gpu=cc60 \
-c -o matmul_acc.o matmul_acc.c

◦ -fast create generally an optimal set of flags
◦ -acc generate accelerator code
◦ -Minfo output compiler info
◦ -gpu=... GPU type

To find out the GPU type, run pgaccelinfo. Here it gives
Default Target: cc60
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Compiling with -Minfo outputs

matmul_acc:
9, Generating copyin(A[:n*m]) [if not already present]

Generating copyout(C[:m*p]) [if not already present]
Generating copyin(B[:n*p]) [if not already present]

10, Loop carried dependence of C-> prevents parallelization
Loop carried backward dependence of C-> prevents vectorization
Loop not fused: no successor loop

11, Loop is parallelizable
Generating NVIDIA GPU code
10, #pragma acc loop seq
11, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
13, #pragma acc loop seq

13, Loop is parallelizable
Generated vector simd code for the loop containing reductions

14, FMA (fused multiply-add) instruction(s) generated
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OpenMP example

#ifdef _OPENMP
#include <omp.h>
#endif

void matmul_mp(float ∗restrict C, float ∗ restrict A, float ∗ restrict B, int m,
int n, int p) {

int i , j , k;

#pragma omp parallel shared(A, B, C) private ( i , j , k)
{

#pragma omp for schedule(static)
for ( i = 0; i < m; i++)

for ( j = 0; j < p; j++) {
float sum = 0;
for (k = 0; k < n; k++)

sum += A[i ∗ n + k] ∗ B[k ∗ p + j];
C[i ∗ p + j] = sum;

}
}

}
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Speedups

Speedup results on Sharcnet’s graham 852

32 cores

2 sockets x 16 cores per socket

Intel E5-2683 v4 (Broadwell) @ 2.1 GHz

2 × NVIDIA Pascal P100 GPUs (12GB HBM2)

Memory: 128.0 GB
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Speedups

# threads secs/speedup compared to 1 core

OpenMP

N

p 1000 2000 4000
1 2.0e+00/1.0 1.8e+01/1.0 3.7e+02/1.0
2 1.1e+00/1.8 8.6e+00/2.1 1.9e+02/1.9
4 6.1e-01/3.3 5.4e+00/3.3 9.3e+01/4.0
8 3.2e-01/6.2 2.3e+00/7.8 4.6e+01/8.0
16 3.9e-01/5.1 1.6e+00/11.2 2.3e+01/16.1

GPU 2.1e-01/9.5 3.9e-01/46.2 1.2e+00/308.3
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Speedup and efficiency of OpenMP code
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PGI_ACC_TIME
To output profiling information, set in Bash

export PGI_ACC_TIME=1

Executing ./matmul_acc 1000 gives

Accelerator Kernel Timing data
/home/ned/gpu/matmul_acc.c

matmul_acc NVIDIA devicenum=0
time(us): 1,050
11: compute region reached 1 time

14: kernel launched 1 time
grid: [8] block: [128]
elapsed time(us): total=50,370 max=50,370 min=50,370

avg=50,370
11: data region reached 2 times

11: data copyin transfers: 2
device time(us): total=725 max=376 min=349 avg=362

22: data copyout transfers: 1
device time(us): total=325 max=325 min=325 avg=325
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• block: a a group of threads that are scheduled to execute
together

• grid: collection of blocks that are scheduled to execute
• Here 8 blocks × 128 threads each = 1024 threads
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CUDA

CUDA: Compute Unified Device Architecture

Kernel

• function running on the GPU
• executed by a (1D or 2D) grid of thread blocks
• thread blocks can be 1D, 2D or 3D

◦ execute independently of each other
◦ threads within a single thread block can synchronize

• grid size and thread block size are defined when a kernel is
launched

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 17/19



Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Programming

• NVIDIA GPUs are programmed as a sequence of kernels

• typically, a kernel completes execution before the next kernel
begins

• threads are grouped into blocks, and blocks are grouped into a
grid

• a kernel is executed as a grid of blocks of threads

• a thread has a unique local index in its block

• a block has a unique index in the grid
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• number of gangs and number of workers in each gang remain
constant in a parallel region

• num_gangs clause specifies number of gangs

• num_workers clause specifies number of workers within each
gang

• vector_length clause specifies vector length for SIMD
operations within each worker of the gang
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