OpenACC

Ned Nedialkov
McMaster University

21 March 2023

Outline

Introduction
Execution model
Memory model
Compiling
Example
Speedups
Profiling

CUDA

Why accelerators

e If a program execution cannot fit on a single machine and/or
many processors are needed: go distributed
Message-Passing Interface (MPI)

e |f shared memory would do: OpenMP or Pthreads

e Cheaper alternative: accelerators

o GPUs (NVIDIA, AMD ...)
o Intel Xeon Phi

e GPUs are not easy to program
o CUDA supports NVIDIA only
o OpenCL is portable, harder than CUDA
o OpenACC

» Portable, do not need to know much about the hardware

> Much easier than CUDA and OpenCL

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 3/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

OpenACC overview

e Set of compiler directives, library routines, and environment
variables

e Fortran, C, C4++

e Initially developed by PGI, Cray, NVIDIA, CAPS
OpenACC 1.0 in 2011
Latest standard 3.3

e Done through pragmas

e We can annotate a serial program with OpenACC directives
Non-OpenACC compilers can simply ignore the pragmas

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 4/19

Introduction

References

e OpenACC web site http://www.openacc.org/

e Kirk & Hwu. Programming Massively Parallel Processors: A
Hands-on Approach

e PGl Accelerator Compilers. OpenACC Getting Started Guide
https://www.pgroup.com/doc/openacc_gs.pdf

e PGI compiler and tools
https://www.pgroup.com/resources/articles.htm

e OpenACC quick reference
http://www.nvidia.com/docs/I0/116711/0penACC-API.pdf

e 11 Tips for Maximizing Performance with OpenACC Directives in
Fortran https:
//www.pgroup.com/resources/openacc_tips_fortran.htm

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 5/19

http://www.openacc.org/
https://www.pgroup.com/doc/openacc_gs.pdf
https://www.pgroup.com/resources/articles.htm
http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf
https://www.pgroup.com/resources/openacc_tips_fortran.htm
https://www.pgroup.com/resources/openacc_tips_fortran.htm

Introduction Execution model Memory model Compiling Example Speedups Profiling

OpenACC example: matrix-matrix multiplication

o 0o~ W N

o ~

10
11
12
13
14
15
16
17
18

#ifdef OPENACC
#include <openacc.h>
#endif

/*Ais mxn, Bis nxp, C=AxBismxp x/
void matmul _acc(float * restrict C, float s restrict A, float * restrict B, int m,
int n, int p) {
int i, j, k;
#pragma acc kernels copyin(A[0:m * n], B[0:n % p]) copyout(C[0:m * p])

for (i =0; i < m;it++)
for (j =0;j <pij++){
float sum = 0;
for (k =0; k < n; k++)
sum += Afi * n 4+ k] * Blk x p + j];
Cli *p+j] =sum;

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 6/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

Execution model

An OpenACC program starts as a single thread on the host

e parallel or kernels construct identify parallel or kernels region

e when the program encounters a parallel construct, gangs of
workers are created to execute it on the accelerator

e one worker, the gang leader, starts executing the parallel region

e work is distributed when a work-sharing loop is reached

Three levels of parallelism: gang, worker, vector

e a group of gangs execute a kernel

e a group of workers can execute a work-sharing loop from a
gang

e a thread can execute vector operations

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 7/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

Memory model

e Main memory and device memory are separate

e Typically
o transfer memory from host to device

o execute on device

o transfer result to host

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 8/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

Compiling
e The compilers support OpenACC
° . support OpenACC 2.6

e To compile with nvc,

nvc -fast -acc -Minfo -gpu=cc60 \
-c -0 matmul_acc.o matmul_acc.c

o -fast create generally an optimal set of flags
o -acc generate accelerator code

o -Minfo output compiler info

o -gpu=... GPU type

To find out the GPU type, run pgaccelinfo. Here it gives
Default Target: cc60

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 9/19

https://docs.nvidia.com/hpc-sdk/index.html
https://gcc.gnu.org/wiki/OpenACC

Introduction Execution model Memory model Compiling Example Speedups Profiling

Compiling with -Minfo outputs

matmul_acc:
9, Generating copyin(A[:nxm]) [if not already present]

Generating copyout(C[:mxp]) [if not already present]
Generating copyin(B[:nxp]) [if not already present]
Loop carried dependence of C-> prevents parallelization
Loop carried backward dependence of C-> prevents vectorization
Loop not fused: no successor loop
11, Loop is parallelizable

Generating NVIDIA GPU code

10, #pragma acc loop seq

11, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x x*/

13, #pragma acc loop seq
13, Loop is parallelizable

Generated vector simd code for the loop containing reductions
14, FMA (fused multiply-add) instruction(s) generated

10

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 10/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

OpenMP example

#ifdef OPENMP
#include <omp.h>
#endif

void matmul_mp(float srestrict C, float * restrict A, float = restrict B, int m,
int n, int p) {
int i, j, k;

#pragma omp parallel shared(A, B, C) private (i, j, k)

#pragma omp for schedule(static)
for (i =0; i < m;it++)
for (j =0;j <pij++){
float sum = 0;
for (k =0; k < n; k++)
sum += Afi * n + k] * B[k x p + j];
Cli * p+j] = sum;

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 11/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

Speedups

Speedup results on Sharcnet's graham 852

32 cores

2 sockets x 16 cores per socket

Intel E5-2683 v4 (Broadwell) @ 2.1 GHz
2 x NVIDIA Pascal P100 GPUs (12GB HBM2)
Memory: 128.0 GB

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 12/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

Speedups
threads secs/speedup compared to 1 core
N
P 1000 2000 4000
OpenMP 1 2.0e+00/1.0 1.8e+01/1.0 3.7e+02/1.0
2 1.1e+00/1.8 8.6e+00/2.1 1.9e+02/1.9
4 6.1e-01/3.3 5.4e+00/3.3 9.3e+01/4.0
8 3.2e-01/6.2 2.3e+00/7.8 4.6e+01/8.0
16 3.9e-01/5.1 1.6e+00/11.2 2.3e+01/16.1
GPU 2.1e-01/9.5 3.9e-01/46.2 1.2e+00/308.3

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 13/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

Speedup and efficiency of OpenMP code

Speedup

16 11

14+ 1 1

12 1 09

10] 0.8

8r 1 07

67 1 06

4r 1 05
——N=1000

2f ——N=2000| 1 0.4
—<—N=4000

0 03

12 4 8 16

Efficiency

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 14/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

PGl ACC_ TIME

To output profiling information, set in Bash
export PGI_ACC_TIME=1

Executing ./matmul_acc 1000 gives

Accelerator Kernel Timing data
/home/ned/gpu/matmul_acc.c
matmul_acc NVIDIA devicenum=0
time(us): 1,050
11: compute region reached 1 time
14: kernel launched 1 time
grid: [8] block: [128]

elapsed time(us): total=50,370 max=50,370 min=50,370

avg=50,370
11: data region reached 2 times
11: data copyin transfers: 2

device time(us): total=725 max=376 min=349 avg=362

22: data copyout transfers: 1

device time(us): total=325 max=325 min=325 avg=325

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023

15/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

e block: a a group of threads that are scheduled to execute
together
e grid: collection of blocks that are scheduled to execute

o Here 8 blocks x 128 threads each = 1024 threads

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 16/19

CUDA

CUDA: Compute Unified Device Architecture

Kernel

e function running on the GPU
e executed by a (1D or 2D) grid of thread blocks
e thread blocks can be 1D, 2D or 3D

o execute independently of each other
o threads within a single thread block can synchronize

e grid size and thread block size are defined when a kernel is
launched

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 17/19

Programming

e NVIDIA GPUs are programmed as a sequence of kernels

typically, a kernel completes execution before the next kernel
begins

threads are grouped into blocks, and blocks are grouped into a
grid

a kernel is executed as a grid of blocks of threads

a thread has a unique local index in its block

a block has a unique index in the grid

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 18/19

Introduction Execution model Memory model Compiling Example Speedups Profiling

e number of gangs and number of workers in each gang remain
constant in a parallel region

e num_gangs clause specifies number of gangs

e num_workers clause specifies number of workers within each
gang

e vector_length clause specifies vector length for SIMD
operations within each worker of the gang

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 19/19

	Introduction
	Execution model
	Memory model
	Compiling
	Example
	Speedups
	Profiling
	CUDA

