
OpenACC

Ned Nedialkov

McMaster University

21 March 2023

Outline

Introduction

Execution model

Memory model

Compiling

Example

Speedups

Profiling

CUDA

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Why accelerators

• If a program execution cannot fit on a single machine and/or
many processors are needed: go distributed
Message-Passing Interface (MPI)

• If shared memory would do: OpenMP or Pthreads

• Cheaper alternative: accelerators
◦ GPUs (NVIDIA, AMD ...)
◦ Intel Xeon Phi

• GPUs are not easy to program
◦ CUDA supports NVIDIA only

◦ OpenCL is portable, harder than CUDA

◦ OpenACC
▶ Portable, do not need to know much about the hardware

▶ Much easier than CUDA and OpenCL

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 3/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

OpenACC overview

• Set of compiler directives, library routines, and environment
variables

• Fortran, C, C++

• Initially developed by PGI, Cray, NVIDIA, CAPS
OpenACC 1.0 in 2011
Latest standard 3.3

• Done through pragmas

• We can annotate a serial program with OpenACC directives
Non-OpenACC compilers can simply ignore the pragmas

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 4/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

References

• OpenACC web site http://www.openacc.org/

• Kirk & Hwu. Programming Massively Parallel Processors: A
Hands-on Approach

• PGI Accelerator Compilers. OpenACC Getting Started Guide
https://www.pgroup.com/doc/openacc_gs.pdf

• PGI compiler and tools
https://www.pgroup.com/resources/articles.htm

• OpenACC quick reference
http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf

• 11 Tips for Maximizing Performance with OpenACC Directives in
Fortran https:
//www.pgroup.com/resources/openacc_tips_fortran.htm

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 5/19

http://www.openacc.org/
https://www.pgroup.com/doc/openacc_gs.pdf
https://www.pgroup.com/resources/articles.htm
http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf
https://www.pgroup.com/resources/openacc_tips_fortran.htm
https://www.pgroup.com/resources/openacc_tips_fortran.htm

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

OpenACC example: matrix-matrix multiplication

1 #ifdef _OPENACC
2 #include <openacc.h>
3 #endif
4
5 /∗ A is m x n, B is n x p, C = A∗B is m x p ∗/
6 void matmul_acc(float ∗ restrict C, float ∗ restrict A, float ∗ restrict B, int m,

int n, int p) {
7 int i , j , k;
8 #pragma acc kernels copyin(A[0:m ∗ n], B[0:n ∗ p]) copyout(C[0:m ∗ p])
9 {

10 for (i = 0; i < m; i++)
11 for (j = 0; j < p; j++) {
12 float sum = 0;
13 for (k = 0; k < n; k++)
14 sum += A[i ∗ n + k] ∗ B[k ∗ p + j];
15 C[i ∗ p + j] = sum;
16 }
17 }
18 }

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 6/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Execution model

An OpenACC program starts as a single thread on the host

• parallel or kernels construct identify parallel or kernels region

• when the program encounters a parallel construct, gangs of
workers are created to execute it on the accelerator

• one worker, the gang leader, starts executing the parallel region

• work is distributed when a work-sharing loop is reached

Three levels of parallelism: gang, worker, vector

• a group of gangs execute a kernel

• a group of workers can execute a work-sharing loop from a
gang

• a thread can execute vector operations

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 7/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Memory model

• Main memory and device memory are separate

• Typically
◦ transfer memory from host to device

◦ execute on device

◦ transfer result to host

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 8/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Compiling

• The Nvidia compilers support OpenACC
• GCC 12, 11, 10 : support OpenACC 2.6
• To compile with nvc,

nvc -fast -acc -Minfo -gpu=cc60 \
-c -o matmul_acc.o matmul_acc.c

◦ -fast create generally an optimal set of flags
◦ -acc generate accelerator code
◦ -Minfo output compiler info
◦ -gpu=... GPU type

To find out the GPU type, run pgaccelinfo. Here it gives
Default Target: cc60

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 9/19

https://docs.nvidia.com/hpc-sdk/index.html
https://gcc.gnu.org/wiki/OpenACC

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Compiling with -Minfo outputs

matmul_acc:
9, Generating copyin(A[:n*m]) [if not already present]

Generating copyout(C[:m*p]) [if not already present]
Generating copyin(B[:n*p]) [if not already present]

10, Loop carried dependence of C-> prevents parallelization
Loop carried backward dependence of C-> prevents vectorization
Loop not fused: no successor loop

11, Loop is parallelizable
Generating NVIDIA GPU code
10, #pragma acc loop seq
11, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
13, #pragma acc loop seq

13, Loop is parallelizable
Generated vector simd code for the loop containing reductions

14, FMA (fused multiply-add) instruction(s) generated

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 10/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

OpenMP example

#ifdef _OPENMP
#include <omp.h>
#endif

void matmul_mp(float ∗restrict C, float ∗ restrict A, float ∗ restrict B, int m,
int n, int p) {

int i , j , k;

#pragma omp parallel shared(A, B, C) private (i , j , k)
{

#pragma omp for schedule(static)
for (i = 0; i < m; i++)

for (j = 0; j < p; j++) {
float sum = 0;
for (k = 0; k < n; k++)

sum += A[i ∗ n + k] ∗ B[k ∗ p + j];
C[i ∗ p + j] = sum;

}
}

}

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 11/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Speedups

Speedup results on Sharcnet’s graham 852

32 cores

2 sockets x 16 cores per socket

Intel E5-2683 v4 (Broadwell) @ 2.1 GHz

2 × NVIDIA Pascal P100 GPUs (12GB HBM2)

Memory: 128.0 GB

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 12/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Speedups

threads secs/speedup compared to 1 core

OpenMP

N

p 1000 2000 4000
1 2.0e+00/1.0 1.8e+01/1.0 3.7e+02/1.0
2 1.1e+00/1.8 8.6e+00/2.1 1.9e+02/1.9
4 6.1e-01/3.3 5.4e+00/3.3 9.3e+01/4.0
8 3.2e-01/6.2 2.3e+00/7.8 4.6e+01/8.0
16 3.9e-01/5.1 1.6e+00/11.2 2.3e+01/16.1

GPU 2.1e-01/9.5 3.9e-01/46.2 1.2e+00/308.3

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 13/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Speedup and efficiency of OpenMP code

1 2 4 8 16
0

2

4

6

8

10

12

14

16
Speedup

N=1000

N=2000

N=4000

1 2 4 8 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Efficiency

N=1000

N=2000

N=4000

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 14/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

PGI_ACC_TIME
To output profiling information, set in Bash

export PGI_ACC_TIME=1

Executing ./matmul_acc 1000 gives

Accelerator Kernel Timing data
/home/ned/gpu/matmul_acc.c

matmul_acc NVIDIA devicenum=0
time(us): 1,050
11: compute region reached 1 time

14: kernel launched 1 time
grid: [8] block: [128]
elapsed time(us): total=50,370 max=50,370 min=50,370

avg=50,370
11: data region reached 2 times

11: data copyin transfers: 2
device time(us): total=725 max=376 min=349 avg=362

22: data copyout transfers: 1
device time(us): total=325 max=325 min=325 avg=325

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 15/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

• block: a a group of threads that are scheduled to execute
together

• grid: collection of blocks that are scheduled to execute
• Here 8 blocks × 128 threads each = 1024 threads

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 16/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

CUDA

CUDA: Compute Unified Device Architecture

Kernel

• function running on the GPU
• executed by a (1D or 2D) grid of thread blocks
• thread blocks can be 1D, 2D or 3D

◦ execute independently of each other
◦ threads within a single thread block can synchronize

• grid size and thread block size are defined when a kernel is
launched

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 17/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

Programming

• NVIDIA GPUs are programmed as a sequence of kernels

• typically, a kernel completes execution before the next kernel
begins

• threads are grouped into blocks, and blocks are grouped into a
grid

• a kernel is executed as a grid of blocks of threads

• a thread has a unique local index in its block

• a block has a unique index in the grid

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 18/19

Introduction Execution model Memory model Compiling Example Speedups Profiling CUDA

• number of gangs and number of workers in each gang remain
constant in a parallel region

• num_gangs clause specifies number of gangs

• num_workers clause specifies number of workers within each
gang

• vector_length clause specifies vector length for SIMD
operations within each worker of the gang

N. Nedialkov, CAS781 High-Performance Scientific Computing, 21 March 2023 19/19

	Introduction
	Execution model
	Memory model
	Compiling
	Example
	Speedups
	Profiling
	CUDA

