
OpenACC

Ned Nedialkov

McMaster University

23 March 2023

Outline

parallel construct

gang loop

worker loop

vector loop

kernels construct

Data directives

Summary

parallel gang worker vector kernels Data directives Summary

Some of this presentation follows Chapter 15 of
David B. Kirk and Wen-mei W. Hwu, Programming Mas-
sively Parallel Processors: A Hands-on Approach, Second
Edition

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 3/16

parallel gang worker vector kernels Data directives Summary

parallel construct

• parallel specifies a block to be executed on the accelerator
• Gangs of workers are created to execute the parallel region
• The “gang leader” starts executing the parallel region
• Number of gangs and workers can be specified as e.g.

#pragma acc parallel num_gangs(1024) num_workers(32)

This means 1024× 32 = 32, 768 workers
• # of gangs and # of workers are fixed during execution

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 4/16

parallel gang worker vector kernels Data directives Summary

gang loop

#pragma acc parallel num_gangs(1024)
{
for (i=0; i<2048; i++)
{
...

}
}

• 1024 gang leads will execute this parallel region
• Each gang lead executes 2048 iterations
• Redundant executions!

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 5/16

parallel gang worker vector kernels Data directives Summary

#pragma acc parallel num_gangs(1024)
{
#pragma acc loop gang

for (i=0; i<2048; i++)
{
...
}

}

• loop says share the work, or parallelize the loop that follows
• 2048 iterations are distributed to 1024 gangs
• Each gang lead executes 2 iterations

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 6/16

parallel gang worker vector kernels Data directives Summary

worker loop

#pragma acc parallel num_gangs(1024) num_workers(32)
{
#pragma acc loop gang
for (i=0; i<2048; i++)
{

#pragma acc loop worker
for (j=0; j<512; j++)

foo(i,j);
}

}

• Each gang executes 2 iterations of the outer loop
• 2× 512 = 1024 iterations of the inner/worker loop
• 32 workers per gang
• Each worker executes 1024/32 = 32 instances of foo

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 7/16

parallel gang worker vector kernels Data directives Summary

vector loop

Can express third level of parallelism or SIMD mode loop

#pragma acc parallel num_gangs(1024) num_workers(32) vector_length(32)
{
#pragma acc loop gang
for (i=0; i<2048; i++) {

#pragma acc loop worker
for (j=0; j<512; j++) {

#pragma acc loop vector
for (k=0; k<1024; k++)

foo(i,j,k);
}

}
}

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 8/16

parallel gang worker vector kernels Data directives Summary

kernels construct

#pragma acc kernels
{
#pragma acc loop num_gangs(1024)
for (i=0; i<2048; i++)
a[i] = b[i];

#pragma acc loop num_gangs(512)
for (i=0; i<2048; i++)
c[i] = 2*a[i];

for (i=0; i<2048; i++)
d[i] = c[i];

}

• kernels tells the compiler “do the best you can do”
• may contain multiple kernels regions
• each may have different number of gangs, workers, and vector

length

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 9/16

parallel gang worker vector kernels Data directives Summary

kernels vs. parallel

• kernels: more implicit, gives the compiler more freedom to
parallelize

• parallel: the programmer specifies how to parallelize

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 10/16

parallel gang worker vector kernels Data directives Summary

Example

1 to 4 are identical in behaviour, but 5 is different
// 1
#pragma acc kernels loop
for(i = 0; i < n; ++i)
a[i] = b[i] + c[i];

// 2
#pragma acc kernels
{
for(i = 0; i < n; ++i)
a[i] = b[i] + c[i];

}
// 3
#pragma acc parallel loop
for(i = 0; i < n; ++i)
a[i] = b[i] + c[i];

// 4
#pragma acc parallel
{
#pragma acc loop
for(i = 0; i < n; ++i)
a[i] = b[i] + c[i];

}
// 5
#pragma acc parallel
{
for(i = 0; i < n; ++i)
a[i] = b[i] + c[i];

}

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 11/16

parallel gang worker vector kernels Data directives Summary

Example

1 void foo(int *x, int *y, int n, int m) {
2 int a[2048], b[2048];
3 #pragma acc kernels copy(x [0:2048], y [0:2048], a, b)
4 {
5 #pragma acc loop
6 for (int i = 0; i < 2047; i++)
7 a[i] = b[i + 1];
8 #pragma acc loop
9 for (int j = 0; j < 2047; j++)

10 a[j] = a[j + 1] + 1;
11 #pragma acc loop
12 for (int k = 0; k < 2047; k++)
13 x[k] = y[k + 1] + 1;
14 #pragma acc loop
15 for (int l = 0; l < m; l++)
16 x[l] = x[l + n] + 1;
17 }
18 }

Which loops are parallelizable?
N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 12/16

parallel gang worker vector kernels Data directives Summary

Example cont

1 void foo(int *x, int *y, int n, int m) {
2 int a[2048], b[2048];
3 #pragma acc kernels copy(x [0:2048], y [0:2048], a, b)
4 {
5 #pragma acc loop
6 for (int i = 0; i < 2047; i++)
7 a[i] = b[i + 1]; // no data dependence
8 #pragma acc loop
9 for (int j = 0; j < 2047; j++)

10 a[j] = a[j + 1] + 1; // data dependence
11 #pragma acc loop
12 for (int k = 0; k < 2047; k++)
13 x[k] = y[k + 1] + 1; /* x and y may point to the same

array */
14 #pragma acc loop
15 for (int l = 0; l < m; l++)
16 x[l] = x[l + n] + 1; // no data dependence if n>=m
17 }
18 }

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 13/16

parallel gang worker vector kernels Data directives Summary

1 void foo(int *restrict x, int *restrict y, int n, int m) {
2 int a[2048], b[2048];
3 #pragma acc kernels copy(x [0:2048], y [0:2048], a, b)
4 {
5 #pragma acc loop
6 for (int i = 0; i < 2047; i++)
7 a[i] = b[i + 1]; // no data dependence
8 #pragma acc loop
9 for (int j = 0; j < 2047; j++)

10 a[j] = a[j + 1] + 1; // data dependence
11 #pragma acc loop
12 for (int k = 0; k < 2047; k++)
13 x[k] = y[k + 1] + 1; /* x and y are not aliased because

of the restrict keyword, no dependence */
14 #pragma acc loop independent
15 for (int l = 0; l < m; l++)
16 x[l] = x[l + n] + 1; /* indpendent says the loop has no

dependencies */
17 }
18 }

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 14/16

parallel gang worker vector kernels Data directives Summary

Data directives

• copyin copies from host to device
• copyout copies from device to host
• copy copies from host to device and back to host
• create creates a temporary on device
• ...

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 15/16

parallel gang worker vector kernels Data directives Summary

Summary from experience

• You have to have the right application to accelerate on a GPU
• Think about parallelism from the very beginning of your

program development
• Parallelizing programs that have been written to run serially

can be challenging; nontrivial restructuring is frequently
needed to reveal parallelism

• Try to parallelize your program with OpenMP before moving
to OpenACC

• If you cannot parallelize with OpenMP, practically no chances
to get it working on a GPU

• Start with kernels and after you get your program working,
experiment with parallel

• Let the compiler figure out number of gangs, workers, etc.

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 16/16

	parallel construct
	gang loop
	worker loop
	vector loop
	kernels construct
	Data directives
	Summary

