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parallel gang worker vector kernels Data directives Summary

Some of this presentation follows Chapter 15 of
David B. Kirk and Wen-mei W. Hwu, Programming Mas-
sively Parallel Processors: A Hands-on Approach, Second
Edition
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parallel construct

• parallel specifies a block to be executed on the accelerator
• Gangs of workers are created to execute the parallel region
• The “gang leader” starts executing the parallel region
• Number of gangs and workers can be specified as e.g.

#pragma acc parallel num_gangs(1024) num_workers(32)

This means 1024× 32 = 32, 768 workers
• # of gangs and # of workers are fixed during execution
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gang loop

#pragma acc parallel num_gangs(1024)
{
for (i=0; i<2048; i++)
{
...

}
}

• 1024 gang leads will execute this parallel region
• Each gang lead executes 2048 iterations
• Redundant executions!
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#pragma acc parallel num_gangs(1024)
{
#pragma acc loop gang

for (i=0; i<2048; i++)
{
...
}

}

• loop says share the work, or parallelize the loop that follows
• 2048 iterations are distributed to 1024 gangs
• Each gang lead executes 2 iterations
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worker loop

#pragma acc parallel num_gangs(1024) num_workers(32)
{
#pragma acc loop gang
for (i=0; i<2048; i++)
{

#pragma acc loop worker
for (j=0; j<512; j++)

foo(i,j);
}

}

• Each gang executes 2 iterations of the outer loop
• 2× 512 = 1024 iterations of the inner/worker loop
• 32 workers per gang
• Each worker executes 1024/32 = 32 instances of foo
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vector loop

Can express third level of parallelism or SIMD mode loop

#pragma acc parallel num_gangs(1024) num_workers(32) vector_length(32)
{
#pragma acc loop gang
for (i=0; i<2048; i++) {

#pragma acc loop worker
for (j=0; j<512; j++) {

#pragma acc loop vector
for (k=0; k<1024; k++)

foo(i,j,k);
}

}
}

N. Nedialkov, CAS781 High-Performance Scientific Computing, 23 March 2023 8/16



parallel gang worker vector kernels Data directives Summary

kernels construct

#pragma acc kernels
{
#pragma acc loop num_gangs(1024)
for (i=0; i<2048; i++)
a[i] = b[i];

#pragma acc loop num_gangs(512)
for (i=0; i<2048; i++)
c[i] = 2*a[i];

for (i=0; i<2048; i++)
d[i] = c[i];

}

• kernels tells the compiler “do the best you can do”
• may contain multiple kernels regions
• each may have different number of gangs, workers, and vector

length
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kernels vs. parallel

• kernels: more implicit, gives the compiler more freedom to
parallelize

• parallel: the programmer specifies how to parallelize
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Example

1 to 4 are identical in behaviour, but 5 is different
// 1
#pragma acc kernels loop
for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

// 2
#pragma acc kernels
{
for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

}
// 3
#pragma acc parallel loop
for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

// 4
#pragma acc parallel
{
#pragma acc loop
for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

}
// 5
#pragma acc parallel
{
for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

}
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Example

1 void foo(int *x, int *y, int n, int m) {
2 int a[2048], b[2048];
3 #pragma acc kernels copy(x [0:2048], y [0:2048], a, b)
4 {
5 #pragma acc loop
6 for (int i = 0; i < 2047; i++)
7 a[i] = b[i + 1];
8 #pragma acc loop
9 for (int j = 0; j < 2047; j++)

10 a[j] = a[j + 1] + 1;
11 #pragma acc loop
12 for (int k = 0; k < 2047; k++)
13 x[k] = y[k + 1] + 1;
14 #pragma acc loop
15 for (int l = 0; l < m; l++)
16 x[l] = x[l + n] + 1;
17 }
18 }

Which loops are parallelizable?
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Example cont

1 void foo(int *x, int *y, int n, int m) {
2 int a[2048], b[2048];
3 #pragma acc kernels copy(x [0:2048], y [0:2048], a, b)
4 {
5 #pragma acc loop
6 for (int i = 0; i < 2047; i++)
7 a[i] = b[i + 1]; // no data dependence
8 #pragma acc loop
9 for (int j = 0; j < 2047; j++)

10 a[j] = a[j + 1] + 1; // data dependence
11 #pragma acc loop
12 for (int k = 0; k < 2047; k++)
13 x[k] = y[k + 1] + 1; /* x and y may point to the same

array */
14 #pragma acc loop
15 for (int l = 0; l < m; l++)
16 x[l] = x[l + n] + 1; // no data dependence if n>=m
17 }
18 }
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1 void foo(int *restrict x, int *restrict y, int n, int m) {
2 int a[2048], b[2048];
3 #pragma acc kernels copy(x [0:2048], y [0:2048], a, b)
4 {
5 #pragma acc loop
6 for (int i = 0; i < 2047; i++)
7 a[i] = b[i + 1]; // no data dependence
8 #pragma acc loop
9 for (int j = 0; j < 2047; j++)

10 a[j] = a[j + 1] + 1; // data dependence
11 #pragma acc loop
12 for (int k = 0; k < 2047; k++)
13 x[k] = y[k + 1] + 1; /* x and y are not aliased because

of the restrict keyword, no dependence */
14 #pragma acc loop independent
15 for (int l = 0; l < m; l++)
16 x[l] = x[l + n] + 1; /* indpendent says the loop has no

dependencies */
17 }
18 }
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Data directives

• copyin copies from host to device
• copyout copies from device to host
• copy copies from host to device and back to host
• create creates a temporary on device
• ...
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Summary from experience

• You have to have the right application to accelerate on a GPU
• Think about parallelism from the very beginning of your

program development
• Parallelizing programs that have been written to run serially

can be challenging; nontrivial restructuring is frequently
needed to reveal parallelism

• Try to parallelize your program with OpenMP before moving
to OpenACC

• If you cannot parallelize with OpenMP, practically no chances
to get it working on a GPU

• Start with kernels and after you get your program working,
experiment with parallel

• Let the compiler figure out number of gangs, workers, etc.
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