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ABSTRACT

In this paper, based on the theory of adjoint operators and dual
norms, we define condition numbers for a linear solution function
of the weighted linear least squares problem. The explicit expressions
of the normwise and componentwise condition numbers derived in
this paper can be computed at low cost when the dimension of
the linear function is low due to dual operator theory. Moreover,
we use the augmented system to perform a componentwise
perturbation analysis of the solution and residual of the weighted
linear least squares problems.We also propose two efficient condition
number estimators. Our numerical experiments demonstrate that
our condition numbers give accurate perturbation bounds and can
reveal the conditioning of individual components of the solution. Our
condition number estimators are accurate as well as efficient.
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1. Introduction

This paper investigates the condition of the weighted linear least squares problem using
adjoint operators and dual norms.

Given A ∈ R
m×n,m ≥ n, and b ∈ R

m, the weighted least squares problem (WLS)

min
x∈Rn
‖Ax − b‖2W = min

x
(Ax − b)TW(Ax − b), (1)

where W ∈ R
m×m is symmetric and positive definite, is a generalization of the standard

least squares problem (LS)

min
x
‖Ax − b‖22. (2)

When A is of full column rank, the problem (1) has a unique solution that can be obtained
by solving the normal equations

ATWAx = ATWb. (3)
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Alternatively, the solution can be obtained by solving the augmented system:

[
W−1 A
AT 0

] [
d
x

]
=
[
b
0

]
, (4)

where d =W(b−Ax) is the weighted residual. The systems (3) and (4) aremathematically
equivalent for solving x. Methods for solving the weighted least squares problem can be
found in [1].

The weighted least squares problem (1) can be reduced to the standard least squares
problem by the transformations A← W1/2A and b← W1/2b, whereW1/2 is the square
root of the symmetric and positive definite W , that is W1/2W1/2 = W . However, the
weighted least squares problem arises from applications whereW varies. Thus it is efficient
to solve the weighted least squares problem rather than transforming it into the standard
least squares problem for every W . For example, in the interior point method for convex
quadratic programming, a convex quadratic programming problem is transformed into

min
y∈Rm

1
2y

THy + cTy

subject to ATy = b
y ≥ 0,

whereH is symmetric and positive semi-definite andA is of full column rank. Introducing
the dual variable x and applying the Newton’s method to the primal-dual equation, we get

[
M A
AT 0

] [ −�y
�x

]
=
[

z
ATy − b

]
,

where M is the Hessian matrix and �y and �x are, respectively, the updates for y and x
in the Newton iteration. The matrixM changes during the iteration while A is fixed. Thus,
in this problem, we need to solve a sequence of weighted least squares problems (4) with
variableW but fixed A.

Another application where the weighted least squares problem arises is the linear
regression in statistics. As we know, linear least squares model is commonly used for
linear regression assuming the response variables have the same error variance. In practice,
however, observations may not be equally reliable. In that case, the weighted least squares
model is an improvement of the standard least squares model.

Condition number plays an important role in numerical analysis. It is a measurement of
the sensitivity of the solution of a problem to the perturbation of its data. In 1966, Rice [2]
presented a general theory of condition based on the Fréchet derivative defined as follows.

LetV andW be two Banach spaces andU an open subset ofV . Considering an operator
f : U → W , if, for an x ∈ U , there exists a bounded linear operator Ax : V → W such
that

lim
h→0

‖f (x + h)− f (x)− Ax(h)‖W
‖h‖V = 0,

then f is said to be Fréchet differentiable at x and Ax is called the Fréchet derivative of f
at x.



LINEAR ANDMULTILINEAR ALGEBRA 1087

Letψ : R
m→ R

n. Ifψ is continuous and Fréchet differentiable in a neighbourhood of
a ∈ R

m, then, from Rice’s theory, the normwise condition number of ψ at a is defined by

condψ(a) = lim
ε→0

sup
‖δa‖≤ε‖a‖

‖ψ(a+ δa)− ψ(a)‖/‖ψ(a)‖
‖δa‖/‖a‖ = ‖ψ

′(a)‖ ‖a‖
‖ψ(a)‖ , (5)

where ψ ′(a) is the Fréchet derivative of ψ at a. The condition number defined above
can be interpreted as the ratio of the relative error in the solution to the relative error
in the input data. Clearly, the condition number defined above is norm dependent.
Moreover, it is a global measurement, which has some shortcomings. For example, the
distribution of the perturbations in data is not represented. Also, as pointed out in [3], for
poorly scaled (imbalanced) problems, the error can be overly estimated by the normwise
condition number. To alleviate the shortcomings, componentwise perturbation analysis is
introduced.

The componentwise error analysis of linear systems can be found in [4,5]. For the linear
least squares, componentwise perturbation analysis and error bounds are given in [6,7]. In
particular, for the full rank linear least squares problem, [8] and [9] present the condition
number when the perturbations in both the data and solution are measured by norms.
In [10], the perturbation in the data is componentwise, whereas the perturbation in the
solution can be either componentwise or normwise, leading to componentwise or mixed
condition numbers.

Here is a brief review of some perturbation analyses of the linear least squares prob-
lem (LS) and weighted linear least squares problem (weighted LS). For the normwise
perturbation analysis, we refer the classical paper [11] and references therein. Cucker,
Diao and Wei studied the mixed and componentwise condition numbers for LS in [12].
The flexible normwise condition numbers for LS was introduced in [13]. In [14], Cucker
and Diao gave explicit expressions for normwise, mixed and componentwise condition
numbers for LS under structured perturbations. Diao and Wei proposed and derived the
weighted Frobenius normwise condition number for LS [15]. Recently, Diao et al. [16]
studied the normwise, mixed and componentwise condition number for LS involving
Kronecker product. For weighed LS, the perturbation analysis can be found in [17–19]
and references therein. Wei and Wang studied the explicit normwise condition numbers
under range conditions [20]. Wang et al. derived the results of the Frobenius normwise
condition numbers for weighted LS when the coefficient matrix is of full rank [21]. In [22],
Li and Sun derived explicit expressions of mixed and componentwise condition numbers
of the weighted LS problem. Yang and Wang considered the flexible normwise condition
numbers for weighed LS [23].

In this paper, we often use the weighted generalized inverse of A defined as follows for
the weighted least squares problem (1). For A ∈ R

m×n, letM ∈ R
m×m and N ∈ R

n×n be
symmetric and positive definite. If there exists an X ∈ R

n×m satisfying the following four
equations

AXA = A, XAX = X, (MAX)T = MAX, (NXA)T = NXA, (6)

thenX is called the weighted generalized inverse ofA corresponding to the weightmatrices
M and N and denoted by A†

M,N [24].



1088 H.-A. DIAO ET AL.

When A is of full column rank, the unique solution for (1) is x = (ATWA)−1ATWb.
Setting X = (ATWA)−1ATW , M = W and N = In, it can be verified that X satisfies the
four equations in (6), that is, X is the weighted generalized inverse of A corresponding
to the weight matrices W and In. Thus, we have (ATWA)−1ATW = A†

W ,In . The unique
solution for (1) can be given by

x = (ATWA)−1ATWb = A†
W ,Inb.

This paper studies the sensitivity of the solution x to the perturbation in the data A and b
in the problem (1) by applying the condition number defined in (5). So, corresponding to
the function ψ in the definition, we define the following function mapping the data A and
b to the solution x:

g(A, b) = LT(ATWA)−1ATWb = LTA†
W ,Inb, (7)

whereL is ann-by-k, k ≤ n,matrix introduced for the selectionof the solution components.
For example, when L = In (k = n), all the n components of the solution x are equally
selected. When L = e1 (k = 1), the first unit vector in R

n, then only the first component
of the solution is selected.

In this paper, using adjoint operators and dual norms, we derive the condition numbers
of the weighted least square problem, where the perturbation in the data is componentwise
whereas the perturbation in the solution is componentwise or normwise. After a brief
review of adjoint operators and dual norms and their application to condition number in
Section 2, the condition numbers for the weighted least squares problem are presented in
Section 3. An error analysis of the augmented system (4) is performed in Section 5. Finally,
Section 6 shows our numerical experiment results.

2. Dual techniques

Consider a linear operator J : E → G, between two Euclidean spaces E and G with the
scalar products 〈·, ·〉E and 〈·, ·〉G, respectively. Denote the corresponding norms by ‖ · ‖E
and ‖ · ‖G, respectively. We first define adjoint operator and dual norm.
Definition 1: The adjoint operator J∗ : G→ E of J is defined by

〈y, Jx〉G = 〈J∗y, x〉E ,

where x ∈ E and y ∈ G.
Definition 2: The dual norm ‖ · ‖E∗ of the norm ‖ · ‖E is defined by

‖x‖E∗ = max
u �=0
〈x, u〉E
‖u‖E .

The dual norm ‖ · ‖G∗ can be defined similarly.
For commonly used vector norms in R

n, their dual norms are given by

‖ · ‖1∗ = ‖ · ‖∞, ‖ · ‖∞∗ = ‖ · ‖1, ‖ · ‖2∗ = ‖ · ‖2.
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For matrices in R
m×n, we consider the norm corresponding to the scalar product

〈A,B〉 = trace(ATB). Thus, we have ‖A‖2∗ = ‖σ(A)‖1 (see [25]), where σ(A) is the vector
of the singular values of A. Since trace(ATA) = ‖A‖2F , we have ‖A‖F∗ = ‖A‖F .

For linear operators from E toG, ‖ ·‖E,G denotes the operator norm induced from ‖ ·‖E
and ‖ · ‖G. Similarly, for linear operators from G to E, the norm induced from the dual
norms ‖ · ‖E∗ and ‖ · ‖G∗ , is denoted by ‖ · ‖G∗,E∗ .

For the adjoint operators and dual norms, we have the following result [10]:
Lemma 1:

‖J‖E,G = ‖J∗‖G∗,E∗ .
In particular, when G has lower dimension than E, we can use the lower dimensional

‖J∗‖G∗,E∗ instead of the higher dimensional ‖J‖E,G.
Now, we consider the product space E = E1 × . . .Ep, where each Euclidean space Ei is

associated with a scalar product 〈·, ·〉Ei and the corresponding norm ‖ · ‖Ei , 1 ≤ i ≤ p. In
E, we consider the scalar product defined by

〈(u1, . . . , up), (v1, . . . , vp)〉 = 〈u1, v1〉E1 + · · · + 〈up, vp〉Ep
and the corresponding product norm defined by

‖(u1, . . . , up)‖v = v(‖u1‖E1 , . . . , ‖up‖Ep),

where v is an absolute normonR
p, that is, v(|x|) = v(x), for any x ∈ R

p, where |x| = [|xi|],
see [26] for details.

Let v∗ be the dual norm of v and satisfy the usual inner product onR
p, we are interested

in the dual norm ‖ · ‖v∗ of the product norm ‖ · ‖v which satisfies the scalar product in E.
The following result can be found in [10].
Lemma 2: The dual norm of a product norm can be expressed by

‖(u1, . . . , up)‖v∗ = v∗(‖u1‖E∗1 , . . . , ‖up‖E∗p ).

With the necessary background in adjoint operators and dual norms, we apply them
to the condition numbers for the weighted least squares problem. We can think of the
Euclidean space E with norm ‖ · ‖E as the space of the data in the weighted least squares
problem and G with norm ‖ · ‖G as the space of the solution in the weighted least squares
problem. Then the function g in (7) is an operator from E to G and the condition number
is the measurement of the sensitivity of g to the perturbation in its input data.

Following [2], if g is Fréchet differentiable in a neighbourhood of y ∈ E, then the
condition number K of g at y is given by

K = ‖g ′(y)‖E,G = max‖z‖E=1
‖g ′(y) · z‖G,

where ‖·‖E,G is the operator norm induced from the norms ‖·‖E and ‖·‖G. If g is nonzero,
then we define

Krel = K ‖y‖E
‖g(y)‖G



1090 H.-A. DIAO ET AL.

as the relative condition number of g at y ∈ E. The above definition shows that K is
dependent of the norm of the the linear operator g ′(y). Applying Lemma 1, we have the
following expression of K in terms of adjoint operator and dual norm:

K = max‖�y‖E=1
‖g ′(y) ·�y‖G = max‖z‖G∗=1

‖g ′(y)∗ · z‖E∗ . (8)

Now we consider the componentwise measurement on the data space E = R
n. For any

given y ∈ E, EY denotes the set of all the perturbations�y ∈ R
n such that�yi = 0 when

yi = 0, 1 ≤ i ≤ n. Thus in the componentwise perturbation analysis, we use the norm

‖�y‖c = min{ω, |�yi| ≤ ω |yi|, i = 1, . . . , n}

tomeasure the perturbation�y ∈ EY of y. We call ‖·‖c the componentwise relative norm.
Equivalently,

‖�y‖c = max{|�yi|/|yi|} = ‖(|�y1|/|y1|, . . . , |�yn|/|yn|)‖∞, (9)

where�y ∈ EY .
Next we investigate the dual norm ‖ · ‖c∗ of the componentwise norm ‖ · ‖c . Let the

product space E be R
n, each Ei be R, and the absolute norm v be ‖ · ‖∞. Setting the norm

‖�yi‖Ei in Ei to |�yi|/|yi| when yi �= 0, from Definition 2, we have the dual norm

‖�yi‖E∗i = max
z �=0
|�yi · z|
‖z‖Ei

= max
z �=0
|�yi · z|
|z|/|yi| = |�yi| |yi|.

Applying Lemma 2 and (9) and recalling ‖ · ‖∞∗ = ‖ · ‖1, we get the dual norm

‖�y‖c∗ = ‖(‖�y1‖E∗ , . . . , ‖�yn‖E∗)‖∞∗ = ‖(|�y1| |y1|, . . . , |�yn| |yn|)‖1. (10)

Due to the condition ‖�y‖E = 1 in the condition numberK in (8), whether�y is in EY
or not, the expression of the condition number K remains valid. Indeed, if�y �∈ EY , that
is,�yi = 0 for some i, then ‖�y‖c = ∞. Consequently, such perturbation�y is excluded
from the calculation of K. Following (8), we have the following lemma on the condition
number in adjoint operator and dual norm.
Lemma 3: Using the above notations and the componentwise norm defined in (9), the
condition number K can be expressed by

K = max‖u‖G∗=1
‖(g ′(y))∗ · u‖c∗ ,

where ‖ · ‖c∗ is given by (10).
Having discussed the norms on the data space, in the next section,we study the norms on

the solution space, which can be either componentwise or normwise. However, regardless
of the norms chosen in the solution space, we always use the componentwise norm in the
data space.
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3. Condition numbers for the weighted least squares problem

In this section, we present an explicit expression of the condition number for the weighted
least squares problem. First, we derive an explicit expression of the Fréchet derivative of the
mapping g in (7), when A is of full column rank. Let B ∈ R

m×n, c ∈ R
m and J = g ′(A, b)

be the derivative, applying the chain rule, we get

J(B, c) = g ′(A, b) · (B, c)
= LT(ATWA)−1(ATW(c − Bx)+ BTW(b− Ax))
= LT((ATWA)−1BTd − A†

W ,InBx)+ LTA†
W ,Inc, (11)

recalling thatd =W(b−Ax).Note that J(B, c) is amapping from thedata spaceR
m×n×R

m

to R
k.

From the definition of the adjoint operator and the definition of the scalar product in
the data space R

m×n×R
m, the following lemma gives an explicit expression of the adjoint

operator of the above J(B, c).
Lemma 4: The adjoint operator of the Fréchet derivative J(B, c) in (11) is

J∗(u) = (duTLT((ATWA)−1 − (A†
W ,In)

TLuxT, A†
W ,InLu),

for u ∈ R
k. Note that J∗(u) is a mapping from R

k to R
m×n × R

m.

Proof: Let J1(B) and J2(c) be the first and second terms in the sum (11), respectively. By
the definition of the scalar product in the matrix space, for any u ∈ R

k, we have

〈u, J1(B)〉 = trace(LT(ATWA)−1BTduT)− trace(LTA†
W ,InBxu

T)

= trace(duTLT(ATWA)−1BT)− trace(xuTLTA†
W ,InB)

= trace(duTLT(ATWA)−1BT)− trace((A†
W ,In)

TLuxTBT)

= 〈duTLT(ATWA)−1, B〉 − 〈(A†
W ,In)

TLuxT, B〉
= 〈duTLT(ATWA)−1 − (A†

W ,In)
TLuxT, B〉.

For J2(c), we have

〈u, J2(c)〉 = 〈u, LTA†
W ,Inc〉 = 〈(A†

W ,In)
TLu, c〉.

Let
J∗1 (u) = duTLT(ATWA)−1 − (A†

W ,In)
TLuxT

and
J∗2 (u) = (A†

W ,In)
TLu,

then 〈J∗(u), (B, c)〉 = 〈(J∗1 (u), J∗2 (u)), (B, c)〉 = 〈u, J(B, c)〉, which completes the proof.

Having obtained an explicit expression of the adjoint operator of the Fréchet derivative,
next we give an explicit expression of the condition number K (8) in terms of the dual
norm
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in the solution space in the following theorem, where vec(A) denotes the vector obtained
by stacking the columns of a matrix A, DA denotes the diagonal matrix diag(vec(A)), and
⊗ is the Kronecker product operator [27].
Theorem 5: The condition number for the full rank weighted least squares problem can be
expressed by

K = max‖u‖G∗=1
‖[VDA A†

W ,InDb]TLu‖1 = ‖[VDA A†
W ,InDb]TL‖G∗,1,

where
V = (ATWA)−1 ⊗ dT − xT ⊗ A†

W ,In . (12)

Proof: Let�A = [�ai,j] and�b = [�bi], then, from (10), we have

‖(�A �b)‖c∗ =
∑
i,j

|�ai,j| |ai,j| +
∑
i

|�bi| |bi|.

Applying Lemma 4, we get

‖J∗(u)‖c∗

=
n∑

j=1

m∑
i=1
|ai,j|

∣∣∣∣(duTLT(ATWA)−1 − (A†
W ,In)

TLuxT
)
i,j

∣∣∣∣+
m∑
i=1
|bi|

∣∣∣((A†
W ,In)

TLu
)
i

∣∣∣
=

n∑
j=1

m∑
i=1
|ai,j|

∣∣∣(di((ATWA)−1ej)T − xj(A†
W ,Inei)

T
)
Lu
∣∣∣+ m∑

i=1
|bi|

∣∣∣∣(A†
W ,Inei

)T
Lu
∣∣∣∣ .

It can be verified that di(ATWA)−1ej is the (i+ (j−1)m)th column of the n× (mn)matrix
(ATWA)−1 ⊗ dT and xjA†

W ,Inei is the (i + (j − 1)m)th column of the n × (mn) matrix
xT ⊗ A†

W ,In in V (12), implying that the above expression equals

∥∥∥∥
[

DAVTLu
Db(A†

W ,In)
TLu

]∥∥∥∥
1
=
∥∥∥[VDA A†

W ,InDb]TLu
∥∥∥
1
.

The theorem then follows from Lemma 3.

The following case study discusses some commonly used norms for the norm in the
solution space to obtain some specific expressions of the condition number K.
Corollary 6: Using the above notations, when the infinity norm is chosen as the norm in
the solution space G, we get

K∞ =
∥∥∥|LTV |vec(|A|)+ |LTA†

W ,In | |b|
∥∥∥∞ . (13)

Proof: When ‖ · ‖G = ‖ · ‖∞, the dual norm ‖ · ‖G∗ = ‖ · ‖1. Thus

K∞ =
∥∥∥[VDA A†

W ,InDb]TL
∥∥∥
1

= ‖LT[VDA A†
W ,InDb]‖∞
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=
∥∥∥|LTV |vec(|A|)+ |LTA†

W ,In | |b|
∥∥∥∞ .

The following corollary gives an alternative expression of K∞.
Corollary 7: Using the above notations, when the infinity norm is chosen as the norm in
the solution space G, we get

K∞ =
∥∥∥∥∥∥

n∑
j=1
|LT(ATWA)−1(ejdT − xjATW)| |A(:, j)| + |LTA†

W ,In | |b|
∥∥∥∥∥∥∞

. (14)

Proof: Partitioning

V = [V1 . . . Vn],

where each Vj, 1 ≤ j ≤ n, is an n×mmatrix, we get

K∞ =
∥∥∥|LTV |vec(|A|)+ |LTA†

W ,In | |b|
∥∥∥∞ =

∥∥∥∥∥∥
n∑

j=1
|LTVj| |A(:, j)| + |LTA†

W ,In | |b|
∥∥∥∥∥∥∞

.

(15)
Recalling that di(ATWA)−1ej − xjA†

W ,Inei is the (i + (j − 1)n)th column of V , we have

Vj = (ATWA)−1(ejdT − xjATW).

The expression (14) is obtained by substituting Vj in (15) with the above expression for Vj
and noticing that A†

W ,In = (ATWA)−1ATW .

The advantage of the expression (14) over (13) is the absence of the Kronecker product.
Consequently, its computation requires lessmemory. To further reduce the computational
cost, we will propose efficient methods for estimating an upper bound of K∞ in Section 4.

When W = Im, the weighted least squares problem (1) reduces to the standard least
squares problem (2) and the condition number K∞ in (14) reduces to the condition
number

K∞(L,A, b) =
∥∥∥∥∥∥

n∑
j=1
|LT(ATA)−1(ejrT − xjAT)| |A(:, j)| + |LTA†| |b|

∥∥∥∥∥∥∞
for the standard least squares problem given by Baboulin and Gratton [10, (3.4)], noticing
that when W = Im, we have A†

W ,In = A†, ATWA = ATA, and d = W(b − Ax) =
b− AA†b = r.

Next, we consider the 2-norm and derive an upper bound.
Corollary 8: When the 2-norm is used in the solution space, we have

K2 ≤
√
kK∞. (16)
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Proof: When ‖ · ‖G = ‖ · ‖2, then ‖ · ‖G∗ = ‖ · ‖2. From Theorem 5,

K2 = ‖[VDA A†
W ,InDb]TL‖2,1.

It follows from [28] that for any matrix B, ‖B‖2,1 = max‖u‖2=1 ‖Bu‖1 = ‖Bû‖1, where
û ∈ R

k is a unit 2-norm vector. Applying ‖û‖1 ≤
√
k ‖û‖2, we get

‖B‖2,1 = ‖Bû‖1 ≤ ‖B‖1‖û‖1 ≤
√
k ‖B‖1.

Substituting the above B with [VDA A†
W ,InDb]TL, we have

K2 ≤
√
k ‖[VDA A†

W ,InDb]TL‖1,

which implies (16).

The above upper bound for K2 can be obtained by computing (13) or (14).
So far, we have discussed the various mixed condition numbers, that is, componentwise

norm in the data space and the infinite norm or 2-norm in the solution space. In the rest of
the section, we study the case of componentwise condition number, that is, componentwise
norm in the solution space as well.
Corollary 9: Considering the componentwise norm defined by

‖u‖c = min{ω, |ui| ≤ ω |(LTx)i|, i = 1, . . . , k} = max{|ui|/|(LTx)i|, i = 1, . . . , k},
(17)

in the solution space, we have the following three expressions for the componentwise condition
number

Kc = ‖D−1LTxL
T[VDA A†

W ,InDb]‖∞
= ‖|D−1LTx|(|LTV |vec(|A|)+ |LTA†

W ,In | |b|‖∞

=
∥∥∥∥∥∥

n∑
j=1
|D−1LTxL

T(ATWA)−1(ejdT − xjATW)| |A(:, j)| + |D−1LTxL
TA†

W ,In | |b|
∥∥∥∥∥∥∞

.

Proof: The expressions immediately follow from Theorem 5 and Corollaries 6 and 7. �

Similarly toK∞, whenW = Im, the above condition numberKc reduces to the standard
least squares condition number

K∞(L,A, b) =
∥∥∥∥∥∥

n∑
j=1
|D−1LTxL

T(ATA)−1(ejrT − xjAT)| |A(:, j)| + |D−1LTxL
TA†| |b|

∥∥∥∥∥∥∞
presented in [10, p. 15].

4. Condition number estimators

In this section, we propose efficient methods for estimating K∞ and Kc , when integrated
into the Paige’s method [29,30] for solving the weighted least squares problem.
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Firstly, we give upper bounds for K∞ and Kc in the following theorem.
Theorem 10: Using the notations above, we have the upper bounds

K∞ ≤ Ku∞ :=
∥∥∥LT(ATWA)−1D|A|T|d|

∥∥∥∞ +
∥∥∥LTA†

W ,InD|A| |x|
∥∥∥∞ +

∥∥∥LTA†
W ,InD|b|

∥∥∥∞
and

Kc ≤ Ku
c :=

∥∥∥D−1LTxL
T(ATWA)−1D|A|T|d|

∥∥∥∞ +
∥∥∥D−1LTxL

TA†
W ,InD|A| |x|

∥∥∥∞
+
∥∥∥D−1LTxL

TA†
W ,InD|b|

∥∥∥∞ .
Proof: From the monotonicity property of infinity norm and triangle inequality, we get

K∞
≤
∥∥∥∥

n∑
j=1

(
|LT(ATWA)−1|ej |dT| |A(:, j)| + |xjLT(ATWA)−1ATW)| |A(:, j)|

)

+ |LTA†
W ,In | |b|

∥∥∥∥
∞

≤
∥∥∥∥∥∥

n∑
j=1

(
|LT(ATWA)−1| ej |A(:, j)|T|d| + |xjLTA†

W ,In | |A(:, j)|
)∥∥∥∥∥∥∞

+
∥∥∥|LTA†

W ,In | |b|
∥∥∥∞

=
∥∥∥|LT(ATWA)−1| |A|T|d|

∥∥∥∞ +
∥∥∥|LTA†

W ,In | |A| |x|
∥∥∥∞ +

∥∥∥|LTA†
W ,In | |b|

∥∥∥∞
=
∥∥∥LT(ATWA)−1D|A|T|d|

∥∥∥∞ +
∥∥∥LTA†

W ,InD|A| |x|
∥∥∥∞ +

∥∥∥LTA†
W ,InD|b|

∥∥∥∞ ,

where the last equation can be obtained by applying

‖BDv‖∞ = ‖ |BDv| ‖∞ = ‖ |B| |Dv| ‖∞ = ‖ |B| |Dv|1‖∞ = ‖ |B| |v|‖∞
where 1 = [1, . . . , 1]T.

The upper bound of Kc can be derived similarly.

Our experiments show that the above upper bounds are tight.
The above upper bounds can be computed efficiently when the weighted least squares

problem is solved by the fast numerically stable method proposed by Paige [29,30]. To see
this, we briefly describe the Paige’s method.

The weighted least squares problem (1) arises in finding the least squares estimate of the
vector x in the linear model b = Ax+w, whereA is anm×nmatrix andw is an unknown
noise vector of zero mean and m × m covariance Z = W−1. Usually, the factorization
Z = BBT is available. Paige considers the following form equivalent to the weighted least
squares (1):

min
v,x
‖v‖22 subject to b = Ax + Bv. (18)
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By applying the plane rotations, we can get a generalized QR factorization [29, (2.1)] of the
data matrix [b A B] of (18):

QT[b A B]
1 n m⎡

⎣ 1 0 0
0 In 0
0 0 P

⎤
⎦ =

1 n m− n− 1 1 n
m− n− 1

1
n

⎡
⎣ 0 0 L1 0 0
η 0 gT ρ 0
z RT L21 s L2

⎤
⎦ (19)

where Q, P ∈ R
m×m are orthogonal matrices and L1, L2, RT are lower triangular and

nonsingular, and ρ is nonzero, assumingA is of full column rank and B is nonsingular and
lower triangular. It is shown that the weighted least squares solution x can be obtained by
solving the following nonsingular lower triangular system:[

ρ 0
s RT

] [
μ

x

]
=
[
η

z

]
.

The cost of Paige’s algorithm is O(m2n/2+mn2 − 2n3/3) [29, (4.4)].
Letting

S =
⎡
⎣ L1 0 0

gT ρ 0
L21 s L2

⎤
⎦ ,

then

S−1 =
⎡
⎣ L−11 0 0

−ρ−1gTL−11 ρ−1 0
L−12 (ρ−1sgT − L21)L−11 −ρ−1L−12 s L−12

⎤
⎦ .

From (19), we have

A = Q
[

0
RT

]
and B = QSPT.

Consequently, we get the factorizations:

W = Z−1 = QS−TS−1QT,
ATWA = RL−T2 L−12 RT, (ATWA)−1 = R−TL2LT2R−1, (20)

A†
W ,In = (ATWA)−1ATW = R−T

[
ρ−1sgTL−11 − L21L−11 ρ−1s In

]
QT.

Note that L1, L2, R, and S are triangular matrices. Then, using the above factorizations, the
three norms inKu∞ orKu

c can be efficiently estimated by the classical condition estimation
method [31, Chapter 15], as shown in Algorithm 1.
Algorithm 1: Estimating Ku∞.
Initial vectors hi = k−11 ∈ R

k, i = 1, 2, 3;
for p = 1, 2, . . . do

Using (20), calculate

y1 = D|A|T|d|(ATWA)−1L h1; y2 = D|A| |x|(A†
W ,In)

TL h2; y3 = D|b|(A†
W ,In)

TL h3;
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Compute si = sign(yi), i = 1, 2, 3, where sign is the sign function;
Using (20), calculate

z1 = LT(ATWA)−1 D|A|T|d|s1; z2 = LTA†
W ,InD|A| |x|s2; z3 = LTA†

W ,InD|b|s3;

if ‖zi‖∞ ≤ hTi zi then

γi =
∥∥yi∥∥1, i = 1, 2, 3;

break

end if
hi = eki , where ki is the smallest index such that |zki | = ‖zi‖∞;

end for
Return K̂u∞ = γ1 + γ2 + γ3.
Table 1 lists the major costs in Algorithm 1 when integrated into the Paige’s method,

where v is a vector with conformal dimensions. Let pmax be the total number of iterations,
then the total cost of Algorithm 1 isO(pmax(m2+mn+ n2)). Recalling that the cost of the
Paige’smethod for solving the weighted least squares problem isO(m2n/2+mn2−2n3/3).

5. An error analysis of the augmented system

In this sectionweperforma componentwise perturbation analysis of the augmented system
(4) for the weighted least squares problem. Our analysis is a generalization of the analysis
of the standard least square problem by Arioli et al. [32] and Björck [6].

Let the perturbations�A ∈ R
m×n and�b ∈ R

m satisfy |�A| ≤ ε |A| and |�b| ≤ ε |b|
for a small ε. Suppose that the perturbed augmented system is

[
W−1 A+�A

(A+�A)T 0

] [
d +�d
x +�x

]
=
[
b+�b

0

]
.

Denoting

G =
[
W−1 A
AT 0

]
, f =

[
b
0

]
, z =

[
d
x

]
,

Table 1. Major operations and their costs of Algorithm 1.

Operations Flops

|AT||d| (2m− 1)n
|A| |x| (2n− 1)m
Lhi (2k − 1)n
Qv (2m− 1)m
LT21v (2n− 1)(m− n− 1)
sTv 2n− 1
R−1v (R−Tv) O(n2)
L2v (LT2 v) O(n(n+ 1))
L−T1 (ρ−1gsT − LT21)v O(mn+ (m− n− 1)2)
(ρ−1sgT − L21)L

−1
1 v O(mn+ (m− n− 1)2)
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and the perturbations

�G =
[

0 �A
(�A)T 0

]
, �f =

[
�b
0

]
, �z =

[
�d
�x

]
.

When A is of full column rank, G is invertible. It can be verified that

G−1 =
[
W − A†

W ,InA
TW A†

W ,In
(A†

W ,In)
T −(ATWA)−1

]
.

We know that if the spectral radius

ρ
(|G−1| |�G|) < 1 (21)

then Im+n + G−1�G is invertible. Clearly, the condition

ε < ρ−1
([

|A†
W ,In | |A|T |W − A†

W ,InA
TW | |A|

|(ATWA)−1| |A|T |(A†
W ,In)

T| |A|

])
, (22)

implies (21). The following results [33] are necessary for Theorem 12.
Lemma 11: For a linear system Gz = f and its perturbed system

(G +�G)(z +�z) = f +�f ,

where z + �z is the solution to the perturbed system, when the perturbations �G and �f
are sufficiently small such that G +�G is invertible, the perturbation �z in the solution z
satisfies

�z = (I + G−1�G)−1G−1(�f −�Gz),
which implies

|�z| ≤ ∣∣(I + G−1�G)−1
∣∣ |G−1|(|�f | + |�G| |z|).

Furthermore, when the spectral radius ρ(|G−1| |�G|) < 1, we have

|�z| ≤ (I − |G−1| |�G|)−1|G−1|(|�f | + |�G| |z|)
= (I + O(|G−1| |�G|))|G−1|(|�f | + |�G| |z|). (23)

Now we have the bounds for the perturbations in the weighted least squares solution
and residual.
Theorem 12: Using the above notations, for any ε > 0 satisfying the condition (22), when
the componentwise perturbations |�A| ≤ ε |A| and |�b| ≤ ε |b|, the error in the solution
is bounded by

‖�x‖∞ ≤ ε
(
‖|(A†

W ,In)
T|(|b| + |A| |x|)‖∞ + ‖(ATWA)−1| |A|T|d|‖∞

)
+ O(ε2) (24)

and error in the weighted residual is bounded by

‖�d‖∞ ≤ ε
(
‖|W − A†

W ,InA
TW |(|b| + |A| |x|)‖∞ + ‖|(A†

W ,In)
T| |A|T|d|‖∞

)
+ O(ε2).

(25)
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Proof: Since the condition (22) implies (21), applying (23) in Lemma 11, we get[
�d
�x

]
≤ (I + O(|G−1| |�G|))|G−1|

[ |�b| + |�A| |x|
|�A|T|A| |d|

]
.

Finally, using the conditions |�A| ≤ ε |A| and |�b| ≤ ε |b| and the explicit form of G−1,
the upper bounds (24) and (25) can be obtained.

6. Numerical experiments

In this section, we present our experimental results to demonstrate the effectiveness of our
condition numbers and their estimators for the weighted LS problem. All the numerical
experimentswere carried out inMATLAB 2015b,with themachine precisionμ ≈ 2.2×10−16.

Firstly, we adopted the example in Baboulin and Gratton [10] and modified A,W , and
b as the following:

A =

⎡
⎢⎢⎣

1 1 ε2

ε 0 ε2

0 ε ε2

ε2 ε2 2

⎤
⎥⎥⎦ , W = UT

⎡
⎢⎢⎣

1 0 0 0
0 10γ 0 0
0 0 γ 0
0 0 0 γ /10

⎤
⎥⎥⎦U ,

b = b1 + 10−5 · b2, b1 =

⎡
⎢⎢⎣

3ε
ε2 + ε
ε2 + ε

2/ε + 2ε3

⎤
⎥⎥⎦ , b2 =

⎡
⎢⎢⎣
−ε + ε4
1− ε4/2
1− ε4/2
−ε2 + ε3/2

⎤
⎥⎥⎦ ,

where ε, γ > 0 andU is a randomorthogonalmatrix obtained from theQR decomposition
of a randommatrix.Aswe can see,A (orW) becomes ill-conditioned as ε (orγ ) decreases to
zero. The vector b is constructed so that the solution is imbalanced, that is, its components
rangewidely, to show the benefit of the componentwise condition. Note that b1 ∈ Rang(A)
and b2 ∈ Ker(AT), where Rang(A) and Ker(AT) denote the range space of A and the null
space of AT, respectively. We generated the perturbations:

�A = 10−8 · E � A and�b = 10−8 · f � b, (26)

where entries ofE and f are randomvariables uniformly distributed in the interval (−1, 1).
Thus the perturbation size ‖(�A,�b)‖c ≈ 10−8. For the L matrix in our condition
numbers, we chose

L0 = I3, L1 =
⎡
⎣1 0
0 1
0 0

⎤
⎦ , and L2 =

[
0 0 1

]T
.

That is, corresponding to the above three matrices, the whole x, the subvector [x1 x2]T,
and the component x3 are selected, respectively. We called the MATLAB built-in function
lscov to compute the solutions x and x̃ corresponding to the unperturbed WLS (1) and
its perturbed WLS defined by

(A+�A)TW(A+�A)x̃ = (A+�A)TW(b+�b).
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Table 2. Comparison of our condition numbers Krel∞ and Krel
c and their upper bounds Ku,rel∞ and Ku

c
with their corresponding relative errors E rel∞ and E rel

c .

ε γ L Erel∞ Krel∞ Ku,rel∞ Erel
c Krel

c Ku
c

10−2 100 L0 4.0597e−09 2.0000e+00 2.0000e+00 1.3431e−08 4.0806e+02 4.0813e+02
L1 1.1355e−08 2.6350e+02 3.4499e+02 1.3431e−08 4.0806e+02 4.0813e+02
L2 4.0597e−09 2.0000e+00 2.0000e+00 4.0597e−09 2.0000e+00 2.0000e+00

10−2 10−6 L0 8.5775e−09 2.0004e+00 2.0005e+00 1.2050e−06 5.3548e+02 5.3566e+02
L1 9.5653e−07 3.3222e+02 4.2338e+02 1.2050e−06 5.3548e+02 5.3566e+02
L2 8.5775e−09 2.0004e+00 2.0004e+00 8.5775e−09 2.0004e+00 2.0004e+00

10−6 100 L0 1.2311e−07 9.1456e+00 9.1456e+00 1.9008e−02 1.4121e+06 1.4121e+06
L1 1.9008e−02 9.9851e+05 1.4121e+06 1.9008e−02 1.4121e+06 1.4121e+06
L2 1.0898e−09 2.0000e+00 2.0000e+00 1.0898e−09 2.0000e+00 2.0000e+00

10−6 10−6 L0 5.2538e−09 4.6298e+03 4.6298e+03 8.1423e−04 1.0280e+09 1.0280e+09
L1 8.1423e−04 7.2690e+08 1.0280e+09 8.1423e−04 1.0280e+09 1.0280e+09
L2 5.2538e−09 2.0000e+00 2.0000e+00 5.2538e−09 2.0000e+00 2.0000e+00

Wemeasured the mixed and componentwise relative errors in LTx defined by

E rel∞ =
‖LTx̃ − LTx‖∞
‖LTx‖∞ and E rel

c =
‖LTx̃ − LTx‖c
‖LTx‖c ,

where ‖ · ‖c is the componentwise norm defined in (17). Since the data perturbation size
is about 10−8, E rel∞ × 108 and E rel

c × 108 are, respectively, indications of the mixed and
componentwise condition numbers for this particular problem. Specifically, in the table,
our condition numbers are

Krel∞ =
∥∥∥|LTV |vec(|A|)+ |LTA†

W ,In | |b|
∥∥∥∞ /

∥∥∥LTx∥∥∥∞ ,

Krel
c =

∥∥∥|D−1LTx|(|LTV |vec(|A|)+ |LTA†
W ,In | |b|)

∥∥∥∞ ,

where V is defined in (12). Also, in the table, we define the upper bound Ku,rel∞ =
Ku∞/‖LTx‖2, recalling that Ku∞ and Ku

c are defined in Theorem 10.
Table 2 compares our condition numbersKrel∞ andKrel

c with their corresponding relative
errors E rel∞ and E rel

c . First, the table shows that our condition numbers, mixed and compo-
nentwise, are consistently close to the estimates E rel × 108. Second, our componentwise
condition numbers show that the third component of the solution is better conditioned
than the first two, showing the benefit of the componentwise analysis. Third, in the case
when ε = δ = 10−6, our condition numbers are much larger than their corresponding
estimates E rel∞ × 108 and E rel

c × 108. Our explanation is that E rel∞ × 108 and E rel
c × 108

give estimates of the condition numbers for this particular problem with this particular
perturbation, whereas our condition numbers are upper bounds for this problem with
general perturbation.

Secondly, we experimented on the linear model:

b = Ax + w,
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Table 3. Comparison of our condition numbers Krel∞ and Krel
c and their upper bounds Ku,rel∞ and Ku

c
with the corresponding relative errors E rel∞ and E rel

c , when the variances σ 2
i are evenly spaced between

10−4 and 5× 10−4.

L Erel∞ Krel∞ Ku,rel∞ Erel
c Krel

c Ku
c

L0 5.5085e−09 2.7060e+00 4.5323e+00 1.5998e−07 2.6098e+02 2.6204e+02
L1 6.8834e−09 7.5328e+00 8.4972e+00 3.9877e−08 6.2049e+01 6.2311e+01
L2 1.9161e−08 2.8946e+01 2.9075e+01 1.9161e−08 2.8946e+01 2.9075e+01

where x ∈ R
n whose entries are random variables with standard normal distribution and

w ∈ R
m whose entries wi are random variables with normal distribution, mean 0, and

predefined variances σ 2
i . Thus the weight matrix W = D−1z , where z = [σ 2

i ]. In our
experiments, we setm = 50 and n = 10. Them× nmatrix A was generated by the MATLAB

built-in function sprandn with density 0.5. The same as before, the perturbations on
A and b were generated by (26) and both the unperturbed and perturbed weighted least
squares problems were solved by the MATLAB function lscov.

For the Lmatrix in our condition numbers, we chose

L0 = In, L1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0
0 1
...
...

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

n×2, L2 = en.

Thus, corresponding to the above three matrices, the whole x, the subvector [x1 x2]T, and
the last component xn are selected, respectively.

To investigate the impact of the variances σ 2
i , we first set z = [10−4 : (4× 10−4)/(m−

1) : 5 × 10−4], that is, σ 2
i are evenly spaced between 10−4 and 5 × 10−4. We generated

1000 samples of A and b each. The mean values of E rel∞ , E rel
c , Krel∞ and Krel

c , Ku,rel∞ and Ku
c

are displayed in Table 3. As expected, the condition numbers are moderate, when all the
variances are small, that is, the weight matrixW is well-conditioned, and the data matrix
A is well conditioned since it is a random matrix.

We then widened the range of the variances. Specifically, σ 2
i are evenly spaced between

10−4 and 102. Table 4 shows the average values of E rel∞ , E rel
c , Krel∞ and Krel

c , Ku,rel∞ and
Ku

c over 1000 samples of A and b each. As the range of the variances is widened, that
is, the condition number of the weight matrix W increases, the condition numbers of
the weighted least squares problem increase. However, both Tables 3 and 4, along with
Table 2, show that the condition of the weighted least squares problem is more sensitive to
the condition of the data matrix A than that of the weight matrixW .

Our experiments show that our upper bounds are consistently very close to their
corresponding condition numbers. In other words, our condition number estimators are
accurate as well as efficient.
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Table 4. Comparison of our condition numbers Krel∞ and Krel
c and their upper bounds Ku,rel∞ and Ku

c
with their corresponding relative errors E rel∞ and E rel

c , when the variances σ 2
i are evenly spaced between

10−4 and 102.

L Erel∞ Krel∞ Ku,rel∞ Erel
c Krel

c Ku
c

L0 9.2329e−09 6.4432e+00 8.8514e+00 6.0428e−07 1.0567e+03 1.2003e+03
L1 1.2621e−08 1.6575e+01 1.7419e+01 1.3424e−07 2.4916e+02 2.8492e+02
L2 4.8094e−08 7.6436e+01 8.6338e+01 4.8094e−08 7.6436e+01 8.6338e+01

7. Conclusion

By applying adjoint operator and dual norm theory, we define the mixed and component-
wise condition numbers for the linear solution function of the weighted linear least squares
problem. Both the normwise and componentwise perturbation analyses of the solution are
performed. Moreover, we present the componentwise perturbation analysis of both the
solution and the residual of the augmented system of the weighted least squares problem.
We also propose two efficient condition number estimators. Our numerical experiments
show that our condition numbers are tight and can reveal the condition numbers of
individual components of the solution. Moreover, our condition number estimators are
accurate as well as efficient.
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